Abstract
Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work is supported by ZiQoo Chemical Co. Ltd., Japan.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abdelouahab-Reddam, Z., El Mail, R., Coloma, F., and Sepúlveda-Escribano, A. (2015). Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs. Appl. Catal. Gen. 494: 87–94, https://doi.org/10.1016/j.apcata.2015.01.026.Search in Google Scholar
Abdullah, A.Z., Bakar, M.Z.A., and Bhatia, S. (2006). Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. J. Hazard Mater. 129: 39–49, https://doi.org/10.1016/j.jhazmat.2005.05.051.Search in Google Scholar
Alvarez-Merino, M., Ribeiro, M., Silva, J., Carrasco-Marin, F., and Maldonado-Hodar, F. (2004). Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion. Environ. Sci. Technol. 38: 4664–4670, https://doi.org/10.1021/es034964c.Search in Google Scholar
Avgouropoulos, G., Oikonomopoulos, E., Kanistras, D., and Ioannides, T. (2006). Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts. Appl. Catal. B Environ. 65: 62–69, https://doi.org/10.1016/j.apcatb.2005.12.016.Search in Google Scholar
Bai, B., Qiao, Q., Li, J., and Hao, J. (2016). Progress in research on catalysts for catalytic oxidation of formaldehyde. Chin. J. Catal. 37: 102–122, https://doi.org/10.1016/s1872-2067(15)61007-5.Search in Google Scholar
Balasubramanian, S. and Viswanath, D. (1975). A model for catalytic oxidation of hydrocarbons in the vapor phase. Ind. Eng. Chem. Fund. 14: 158–165, https://doi.org/10.1021/i160055a004.Search in Google Scholar
Barakat, T., Rooke, J.C., Franco, M., Cousin, R., Lamonier, J.F., Giraudon, J.M., Su, B.L., and Siffert, S. (2012). Pd- and/or Au-loaded Nb-and V-doped macro-mesoporous TiO2 supports as catalysts for the total oxidation of VOCs. Eur. J. Inorg. Chem. 2012: 2812–2818, https://doi.org/10.1002/ejic.201101233.Search in Google Scholar
Barakat, T., Rooke, J.C., Tidahy, H.L., Hosseini, M., Cousin, R., Lamonier, J.F., Giraudon, J.M., De Weireld, G., Su, B.L., and Siffert, S. (2011). Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds. ChemSusChem 4: 1420–1430, https://doi.org/10.1002/cssc.201100282.Search in Google Scholar
Bartholomew, C.H. (2001). Mechanisms of catalyst deactivation. Appl. Catal. Gen. 212: 17–60, https://doi.org/10.1016/s0926-860x(00)00843-7.Search in Google Scholar
Bastakoti, B.P., Li, Y., Guragain, S., Pramanik, M., Alshehri, S.M., Ahamad, T., Liu, Z., and Yamauchi, Y. (2016). Synthesis of mesoporous transition-metal phosphates by polymeric micelle assembly. Chem. Eur J. 22: 7463–7467, https://doi.org/10.1002/chem.201600435.Search in Google Scholar PubMed
Bastos, S., Carabineiro, S., Órfão, J., Pereira, M., Delgado, J., and Figueiredo, J. (2012). Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catal. Today 180: 148–154, https://doi.org/10.1016/j.cattod.2011.01.049.Search in Google Scholar
Bedia, J., Rosas, J., Rodríguez-Mirasol, J., and Cordero, T. (2010). Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation. Appl. Catal. B Environ. 94: 8–18, https://doi.org/10.1016/j.apcatb.2009.10.015.Search in Google Scholar
Bendahou, K., Cherif, L., Siffert, S., Tidahy, H., Benaissa, H., and Aboukais, A. (2008). The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Appl. Catal. Gen. 351: 82–87, https://doi.org/10.1016/j.apcata.2008.09.001.Search in Google Scholar
Bhaumik, A. (2002). Mesoporous titanium phosphates and related molecular sieves: synthesis, characterization and applications. J. Chem. Sci. 114: 451–460, https://doi.org/10.1007/bf02703834.Search in Google Scholar
Bhaumik, A. and Inagaki, S. (2001). Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 123: 691–696, https://doi.org/10.1021/ja002481s.Search in Google Scholar
Boukha, Z., González-Prior, J., de Rivas, B., González-Velasco, J.R., López-Fonseca, R., and Gutiérrez-Ortiz, J.I. (2018). Pd supported catalyst for gas-phase 1,2-dichloroethane abatement: efficiency and high selectivity towards oxygenated products. J. Ind. Eng. Chem. 57: 77–88, https://doi.org/10.1016/j.jiec.2017.08.010.Search in Google Scholar
Burgos, N., Paulis, M., Antxustegi, M.M., and Montes, M. (2002). Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths. Appl. Catal. B Environ. 38: 251–258, https://doi.org/10.1016/s0926-3373(01)00294-6.Search in Google Scholar
Cao, S., Fei, X., Wen, Y., Sun, Z., Wang, H., and Wu, Z. (2018). Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of Dichloromethane (CH2Cl2). Appl. Catal. Gen. 550: 20–27, https://doi.org/10.1016/j.apcata.2017.10.006.Search in Google Scholar
Centi, G. (2001). Supported palladium catalysts in environmental catalytic technologies for gaseous emissions. J. Mol. Catal. Chem. 173: 287–312, https://doi.org/10.1016/s1381-1169(01)00155-8.Search in Google Scholar
Chen, X., Cai, S., Chen, J., Xu, W., Jia, H., and Chen, J. (2018a). Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chem. Eng. J. 334: 768–779, https://doi.org/10.1016/j.cej.2017.10.091.Search in Google Scholar
Chen, X., Yu, E., Cai, S., Jia, H., Chen, J., and Liang, P. (2018b). In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem. Eng. J. 344: 469–479, https://doi.org/10.1016/j.cej.2018.03.091.Search in Google Scholar
Chen, X., Cai, S., Yu, E., Chen, J., and Jia, H. (2019a). MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation. Appl. Surf. Sci. 475: 312–324, https://doi.org/10.1016/j.apsusc.2018.12.277.Search in Google Scholar
Chen, Z., Li, J., Yang, P., Cheng, Z., Li, J., and Zuo, S. (2019b). Ce-modified mesoporous γ-Al2O3 supported Pd–Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation. Chem. Eng. J. 356: 255–261, https://doi.org/10.1016/j.cej.2018.09.040.Search in Google Scholar
Cheng, Z., Chen, Z., Li, J., Zuo, S., and Yang, P. (2018). Mesoporous silica-pillared clays supported nanosized Co3O4–CeO2 for catalytic combustion of toluene. Appl. Surf. Sci. 459: 32–39, https://doi.org/10.1016/j.apsusc.2018.07.203.Search in Google Scholar
Chuang, K.-H., Liu, Z.-S., Chang, Y.-H., Lu, C.-Y., and Wey, M.-Y. (2010). Study of SBA-15 supported catalysts for toluene and NO removal: the effect of promoters (Co, Ni, Mn, Ce). React. Kinet. Mech. Catal. 99: 409–420, https://doi.org/10.1007/s11144-009-0140-z.Search in Google Scholar
Coughlin, R.W. (1969). Carbon as adsorbent and catalyst. Ind. Eng. Chem. Prod. Res. Dev. 8: 12–23, https://doi.org/10.1021/i360029a003.Search in Google Scholar
Cui, W., Li, S., Wang, D., Deng, Y., and Chen, Y. (2019). High reactivity and sintering resistance of CH4 oxidation over modified Pd/Al2O3. Catal. Commun. 119: 86–90, https://doi.org/10.1016/j.catcom.2018.10.028.Search in Google Scholar
da Silva, A. G.M, Fajardo, H. V, Balzer, R., Probst, L. F.D., Lovón, A. S.P., Lovón-Quintana, . J., Valença, G. P., Schreine, W. H., and Robles-Dutenhefner, P. A. (2015). Versatile and efficient catalysts for energy and environmental processes: Mesoporous silica containing Au, Pd and Au-Pd. J. Power Sources 285: 460–468, https://doi.org/10.1016/j.jpowsour.2015.03.066.10.1016/j.jpowsour.2015.03.066Search in Google Scholar
Dai, Q., Wang, W., Wang, X., and Lu, G. (2017). Sandwich-structured CeO2@ ZSM-5 hybrid composites for catalytic oxidation of 1,2-dichloroethane: an integrated solution to coking and chlorine poisoning deactivation. Appl. Catal. B Environ. 203: 31–42, https://doi.org/10.1016/j.apcatb.2016.10.009.Search in Google Scholar
Darif, B., Ojala, S., Pirault-Roy, L., Bensitel, M., Brahmi, R., and Keiski, R.L. (2016). Study on the catalytic oxidation of DMDS over Pt–Cu catalysts supported on Al2O3, AlSi20 and SiO2. Appl. Catal. B Environ. 181: 24–33, https://doi.org/10.1016/j.apcatb.2015.07.050.Search in Google Scholar
Das, D. and Parida, K. (2007). Mn(III) oxide pillared titanium phosphate (TiP) for catalytic deep oxidation of VOCs. Appl. Catal. Gen. 324: 1–8, https://doi.org/10.1016/j.apcata.2007.02.024.Search in Google Scholar
Delimaris, D. and Ioannides, T. (2009). VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method. Appl. Catal. B Environ. 89: 295–302, https://doi.org/10.1016/j.apcatb.2009.02.003.Search in Google Scholar
Deng, J., Zhang, L., Dai, H., and Au, C.-T. (2009). In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: high activity for the complete oxidation of toluene and ethyl acetate. Appl. Catal. Gen. 352: 43–49, https://doi.org/10.1016/j.apcata.2008.09.037.Search in Google Scholar
Deng, Q.-F., Ren, T.-Z., Agula, B., Liu, Y., and Yuan, Z.-Y. (2014). Mesoporous CexZr1−xO2 solid solutions supported CuO nanocatalysts for toluene total oxidation. J. Ind. Eng. Chem. 20: 3303–3312, https://doi.org/10.1016/j.jiec.2013.12.012.Search in Google Scholar
Deng, Y., Tang, W., Li, W., and Chen, Y. (2018). MnO2-nanowire@ NiO-nanosheet core-shell hybrid nanostructure derived interfacial effect for promoting catalytic oxidation activity. Catal. Today 308: 58–63, https://doi.org/10.1016/j.cattod.2017.07.007.Search in Google Scholar
Dissanyake, S., Wasalathanthri, N., Amin, A.S., He, J., Poges, S., Rathnayake, D., and Suib, S.L. (2020). Mesoporous Co3O4 catalysts for VOC elimination: oxidation of 2-propanol. Appl. Catal. Gen. 590: 117366, https://doi.org/10.1016/j.apcata.2019.117366.Search in Google Scholar
Doggali, P., Teraoka, Y., Mungse, P., Shah, I.K., Rayalu, S., and Labhsetwar, N. (2012). Combustion of volatile organic compounds over Cu–Mn based mixed oxide type catalysts supported on mesoporous Al2O3, TiO2 and ZrO2. J. Mol. Catal. Chem. 358: 23–30, https://doi.org/10.1016/j.molcata.2012.02.004.Search in Google Scholar
Drobek, M., Figoli, A., Santoro, S., Navascués, N., Motuzas, J., Simone, S., Algieri, C., Gaeta, N., Querze, L., and Trotta, A. (2015). PVDF-MFI mixed matrix membranes as VOCs adsorbers. Microporous Mesoporous Mater. 207: 126–133, https://doi.org/10.1016/j.micromeso.2015.01.005.Search in Google Scholar
El-Safty, S.A. (2008). Review on the key controls of designer copolymer-silica mesophase monoliths (HOM-type) with large particle morphology, ordered geometry and uniform pore dimension. J. Porous Mater. 15: 369–387, https://doi.org/10.1007/s10934-007-9157-8.Search in Google Scholar
Fan, J., Niu, X., Teng, W., Zhang, P., Zhang, W.-x., and Zhao, D. (2020). Highly dispersed Fe-Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. J. Mater. Chem. A. 8: 17174–17184, https://doi.org/10.1039/d0ta05473a.Search in Google Scholar
Fang, X.-S., Ye, C.-H., Xu, X.-X., Xie, T., Wu, Y.-C., and Zhang, L.-D. (2004). Synthesis and photoluminescence of α-Al2O3 nanowires. J. Phys. Condens. Matter 16: 4157, https://doi.org/10.1088/0953-8984/16/23/030.Search in Google Scholar
Feng, X., Guo, J., Wen, X., Xu, M., Chu, Y., and Yuan, S. (2018). Enhancing performance of Co/CeO2 catalyst by Sr doping for catalytic combustion of toluene. Appl. Surf. Sci. 445: 145–153, https://doi.org/10.1016/j.apsusc.2018.03.070.Search in Google Scholar
Fu, X., Liu, Y., Deng, J., Jing, L., Zhang, X., Zhang, K., Han, Z., Jiang, X., and Dai, H. (2020). Intermetallic compound PtMny-derived Pt-MnOx supported on mesoporous CeO2: highly efficient catalysts for the combustion of toluene. Appl. Catal. Gen. 595: 117509, https://doi.org/10.1016/j.apcata.2020.117509.Search in Google Scholar
Fu, X., Liu, Y., Yao, W., and Wu, Z. (2016). One-step synthesis of bimetallic Pt–Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation. Catal. Commun. 83: 22–26, https://doi.org/10.1016/j.catcom.2016.05.001.Search in Google Scholar
García, T., López, J.M., Solsona, B., Sanchis, R., Willock, D.J., Davies, T.E., Lu, L., He, Q., Kiely, C.J., and Taylor, S.H. (2019). The key role of nanocasting in gold-based Fe2O3 nanocasted catalysts for oxygen activation at the metal-support interface. ChemCatChem 11: 1915–1927, https://doi.org/10.1002/cctc.201900210.Search in Google Scholar
Gaur, V., Sharma, A., and Verma, N. (2005). Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals. Carbon 43: 3041–3053, https://doi.org/10.1016/j.carbon.2005.06.039.Search in Google Scholar
Gelin, P., Urfels, L., Primet, M., and Tena, E. (2003). Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds. Catal. Today 83: 45–57, https://doi.org/10.1016/s0920-5861(03)00215-3.Search in Google Scholar
Gennequin, C., Lamallem, M., Cousin, R., Siffert, S., Idakiev, V., Tabakova, T., Aboukaïs, A., and Su, B.-L. (2009). Total oxidation of volatile organic compounds on Au/Ce–Ti–O and Au/Ce–Ti–Zr–O mesoporous catalysts. J. Mater. Sci. 44: 6654–6662, https://doi.org/10.1007/s10853-009-3631-4.Search in Google Scholar
Golodet͡s, G.I. (1983). Heterogeneous catalytic reactions involving molecular oxygen, 15. Elsevier, Amsterdam.Search in Google Scholar
González-Prior, J., López-Fonseca, R., Gutiérrez-Ortiz, J., and De Rivas, B. (2016). Oxidation of 1,2-dichloroethane over nanocube-shaped Co3O4 catalysts. Appl. Catal. B Environ. 199: 384–393, https://doi.org/10.1016/j.apcatb.2016.06.046.Search in Google Scholar
Guo, Y., Gao, Y., Li, X., Zhuang, G., Wang, K., Zheng, Y., Sun, D., Huang, J., and Li, Q. (2019). Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chem. Eng. J. 362: 41–52, https://doi.org/10.1016/j.cej.2019.01.012.Search in Google Scholar
Gutiérrez-Ortiz, J.I., de Rivas, B., López-Fonseca, R., Martín, S., and González-Velasco, J.R. (2007). Structure of Mn–Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons. Chemosphere 68: 1004–1012, https://doi.org/10.1016/j.chemosphere.2007.02.025.Search in Google Scholar PubMed
HafezKhiabani, N., Fathi, S., Shokri, B., and Hosseini, S.I. (2015). A novel method for decoking of Pt–Sn/Al2O3 in the naphtha reforming process using RF and pin-to-plate DBD plasma systems. Appl. Catal. Gen. 493: 8–16, https://doi.org/10.1016/j.apcata.2014.12.041.Search in Google Scholar
He, C., Yu, Y., Chen, C., Yue, L., Qiao, N., Shen, Q., Chen, J., and Hao, Z. (2013). Facile preparation of 3D ordered mesoporous CuOx–CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds. RSC Adv. 3: 19639–19656, https://doi.org/10.1039/c3ra42566e.Search in Google Scholar
He, F., Luo, J., and Liu, S. (2016). Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene. Chem. Eng. J. 294: 362–370, https://doi.org/10.1016/j.cej.2016.02.068.Search in Google Scholar
He, J., Chen, D., Li, N., Xu, Q., Li, H., He, J., and Lu, J. (2020). Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene. Appl. Catal. B Environ. 265: 118560, https://doi.org/10.1016/j.apcatb.2019.118560.Search in Google Scholar
He, J., Chen, D., Li, N., Xu, Q., Li, H., He, J., and Lu, J. (2021). Pt–Pd bimetallic nanoparticles anchored on uniform mesoporous MnO2 sphere as an advanced nanocatalyst for highly efficient toluene oxidation. Green. Energy. Environ, https://doi.org/10.1016/j.gee.2021.03.002.Search in Google Scholar
Hoffmann, F., Cornelius, M., Morell, J., and Fröba, M. (2006). Silica‐based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 45: 3216–3251, https://doi.org/10.1002/anie.200503075.Search in Google Scholar PubMed
Hosseini, M., Barakat, T., Cousin, R., Aboukaïs, A., Su, B.-L., De Weireld, G., and Siffert, S. (2012). Catalytic performance of core-shell and alloy Pd–Au nanoparticles for total oxidation of VOC: the effect of metal deposition. Appl. Catal. B Environ. 111: 218–224, https://doi.org/10.1016/j.apcatb.2011.10.002.Search in Google Scholar
Hosseini, M., Siffert, S., Tidahy, H., Cousin, R., Lamonier, J.-F., Aboukais, A., Vantomme, A., Roussel, M., and Su, B.-L. (2007). Promotional effect of gold added to palladium supported on a new mesoporous TiO2 for total oxidation of volatile organic compounds. Catal. Today 122: 391–396, https://doi.org/10.1016/j.cattod.2007.03.012.Search in Google Scholar
Hosseini, M., Siffert, S., Cousin, R., Aboukaïs, A., Hadj-Sadok, Z., and Su, B.-L. (2009). Total oxidation of VOCs on Pd and/or Au supported on TiO2/ZrO2 followed by “operando” DRIFT. C. R. Chim. 12: 654–659, https://doi.org/10.1016/j.crci.2008.09.032.Search in Google Scholar
Hosseini, S., Niaei, A., Salari, D., Alvarez-Galvan, M.C., and Fierro, J. (2014). Study of correlation between activity and structural properties of Cu–(Cr, Mn and Co)2 nano mixed oxides in VOC combustion. Ceram. Int. 40: 6157–6163, https://doi.org/10.1016/j.ceramint.2013.11.068.Search in Google Scholar
Hu, C., Zhu, Q., Jiang, Z., Zhang, Y., and Wang, Y. (2008). Preparation and formation mechanism of mesoporous CuO–CeO2 mixed oxides with excellent catalytic performance for removal of VOCs. Microporous Mesoporous Mater. 113: 427–434, https://doi.org/10.1016/j.micromeso.2007.11.043.Search in Google Scholar
Huang, H., Gu, Y., Zhao, J., and Wang, X. (2015). Catalytic combustion of chlorobenzene over VOx/CeO2 catalysts. J. Catal. 326: 54–68, https://doi.org/10.1016/j.jcat.2015.02.016.Search in Google Scholar
Huang, Q., Zuo, S., and Zhou, R. (2010). Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs. Appl. Catal. B Environ. 95: 327–334, https://doi.org/10.1016/j.apcatb.2010.01.011.Search in Google Scholar
Ihm, S.-K., Jun, Y.-D., Kim, D.-C., and Jeong, K.-E. (2004). Low-temperature deactivation and oxidation state of Pd/γ-Al2O3 catalysts for total oxidation of n-hexane. Catal. Today 93: 149–154, https://doi.org/10.1016/j.cattod.2004.06.096.Search in Google Scholar
Jeong, M.-G., Park, E.J., Jeong, B., Kim, D.H., and Kim, Y.D. (2014). Toluene combustion over NiO nanoparticles on mesoporous SiO2 prepared by atomic layer deposition. Chem. Eng. J. 237: 62–69, https://doi.org/10.1016/j.cej.2013.09.100.Search in Google Scholar
Ji, L., Cao, X., Lu, S., Du, C., Li, X., Chen, T., Buekens, A., and Yan, J. (2018). Catalytic oxidation of PCDD/F on a V2O5–WO3/TiO2 catalyst: effect of chlorinated benzenes and chlorinated phenols. J. Hazard Mater. 342: 220–230, https://doi.org/10.1016/j.jhazmat.2017.07.020.Search in Google Scholar PubMed
Jiang, L., Yang, N., Zhu, J., and Song, C. (2013). Preparation of monolithic Pt–Pd bimetallic catalyst and its performance in catalytic combustion of benzene series. Catal. Today 216: 71–75, https://doi.org/10.1016/j.cattod.2013.05.026.Search in Google Scholar
Jiang, S. and Song, S. (2013). Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by tuning the surface structures of CNTs. Appl. Catal. B Environ. 140: 1–8, https://doi.org/10.1016/j.apcatb.2013.03.040.Search in Google Scholar
Jiao, F., Hill, A.H., Harrison, A., Berko, A., Chadwick, A.V., and Bruce, P.G. (2008). Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. J. Am. Chem. Soc. 130: 5262–5266, https://doi.org/10.1021/ja710849r.Search in Google Scholar PubMed
Jiao, F., Jumas, J.-C., Womes, M., Chadwick, A.V., Harrison, A., and Bruce, P.G. (2006). Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J. Am. Chem. Soc. 128: 12905–12909, https://doi.org/10.1021/ja063662i.Search in Google Scholar
Joshi, A.V., Bhusare, S., Baidossi, M., Qafisheh, N., and Sasson, Y. (2005). Oxidative coupling of thiols to disulfides using a solid anhydrous potassium phosphate catalyst. Tetrahedron Lett. 46: 3583–3585, https://doi.org/10.1016/j.tetlet.2005.03.040.Search in Google Scholar
Kamal, M.S., Razzak, S.A., and Hossain, M.M. (2016). Catalytic oxidation of volatile organic compounds (VOCs)-A review. Atmos. Environ. 140: 117–134, https://doi.org/10.1016/j.atmosenv.2016.05.031.Search in Google Scholar
Kawi, S. and Te, M. (1998). MCM-48 supported chromium catalyst for trichloroethylene oxidation. Catal. Today 44: 101–109, https://doi.org/10.1016/s0920-5861(98)00178-3.Search in Google Scholar
Kim, A., Bruinsma, P., Chen, Y., Wang, L.-Q., and Liu, J. (1997). Amphoteric surfactant templating route for mesoporouszirconia. Chem. Commun. 2: 161–162, https://doi.org/10.1039/a604578b.Search in Google Scholar
Kim, I.H., Park, E.J., Park, C.H., Han, S.W., Seo, H.O., and Kim, Y.D. (2017). Activity of catalysts consisting of Fe2O3 nanoparticles decorating entire internal structure of mesoporous Al2O3 bead for toluene total oxidation. Catal. Today 295: 56–64, https://doi.org/10.1016/j.cattod.2017.03.023.Search in Google Scholar
Konsolakis, M., Carabineiro, S., Marnellos, G., Asad, M., Soares, O., Pereira, M., Órfão, J., and Figueiredo, J. (2017). Volatile organic compounds abatement over copper-based catalysts: effect of support. Inorg. Chim. Acta. 455: 473–482, https://doi.org/10.1016/j.ica.2016.07.059.Search in Google Scholar
Kuemmel, M., Grosso, D., Boissière, C., Smarsly, B., Brezesinski, T., Albouy, P.A., Amenitsch, H., and Sanchez, C. (2005). Thermally stable nanocrystalline γ‐alumina layers with highly ordered 3D mesoporosity. Angew. Chem. 117: 4665–4668, https://doi.org/10.1002/ange.200500037.Search in Google Scholar
Kujawa, J., Cerneaux, S., and Kujawski, W. (2015). Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Membr. Sci. 474: 11–19, https://doi.org/10.1016/j.memsci.2014.08.054.Search in Google Scholar
Kumar, S., Malik, M., and Purohit, R. (2017). Synthesis methods of mesoporous silica materials. Mater. Today Proc. 4: 350–357, https://doi.org/10.1016/j.matpr.2017.01.032.Search in Google Scholar
Kustov, A.L., Tkachenko, O.P., Kustov, L.M., and Romanovsky, B.V. (2011). Lanthanum cobaltite perovskite supported onto mesoporous zirconium dioxide: nature of active sites of VOC oxidation. Environ. Int. 37: 1053–1056, https://doi.org/10.1016/j.envint.2011.05.002.Search in Google Scholar PubMed
Lee, H-J., Yang, J-H., You, J-H., and Yoon, B-Y. (2020). Sea-urchin-like mesoporous copper-manganese oxide catalysts: Influence of copper on benzene oxidation. J. Ind. Eng. Chem. 89: 156–165, https://doi.org/10.1016/j.jiec.2020.05.005.Search in Google Scholar
Leson, G. and Winer, A.M. (1991). Biofiltration: an innovative air pollution control technology for VOC emissions. J. Air Waste Manag. 41: 1045–1054, https://doi.org/10.1080/10473289.1991.10466898.Search in Google Scholar PubMed
Li, W., Zhuang, M., and Wang, J. (2008). Catalytic combustion of toluene on Cu-Mn/MCM-41 catalysts: influence of calcination temperature and operating conditions on the catalytic activity. Catal. Today 137: 340–344, https://doi.org/10.1016/j.cattod.2007.11.002.Search in Google Scholar
Li, W., Wang, J., and Gong, H. (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 148: 81–87, https://doi.org/10.1016/j.cattod.2009.03.007.Search in Google Scholar
Li, P., He, C., Cheng, J., Ma, C.Y., Dou, B.J., and Hao, Z.P. (2011). Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: effects of preparation methods. Appl. Catal. B Environ. 101: 570–579, https://doi.org/10.1016/j.apcatb.2010.10.030.Search in Google Scholar
Li, W., Yue, Q., Deng, Y., and Zhao, D. (2013). Ordered mesoporous materials based on interfacial assembly and engineering. Adv. Mater. 25: 5129–5152, https://doi.org/10.1002/adma.201302184.Search in Google Scholar PubMed
Li, J., Zuo, S., and Qi, C. (2017). Preparation and high performance of rare earth modified Co/USY for benzene catalytic combustion. Catal. Commun. 91: 30–33, https://doi.org/10.1016/j.catcom.2016.12.011.Search in Google Scholar
Li, W., Liu, H., Ma, X., Mo, S., Li, S., and Chen, Y. (2018). Fabrication of silica supported Mn–Ce benzene oxidation catalyst by a simple and environment-friendly oxalate approach. J. Porous Mater. 25: 107–117, https://doi.org/10.1007/s10934-017-0424-z.Search in Google Scholar
Li, Q., Odoom-Wubah, T., Zhou, Y., Mulka, R., Zheng, Y., Huang, J., Sun, D., and Li, Q. (2019a). Coral-like CoMnOx as a highly active catalyst for benzene catalytic oxidation. Ind. Eng. Chem. Res. 58: 2882–2890, https://doi.org/10.1021/acs.iecr.8b06258.Search in Google Scholar
Li, Y., Xiao, L., Liu, F., Dou, Y., Liu, S., Fan, Y., Cheng, G., Song, W., and Zhou, J. (2019b). Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst. J. Nanopart. Res. 21: 28, https://doi.org/10.1007/s11051-019-4467-8.Search in Google Scholar
Li, J., Dai, L., Liu, Y., Deng, J., Jing, L., Hou, Z., Pei, W., Zhang, X., and Dai, H. (2021). Combustion of acetylene over the mesoporous CeO2-supported IrFe bimetallic catalysts. Catal. Today 382: 22–33, https://doi.org/10.1016/j.cattod.2021.03.006.Search in Google Scholar
Liang, C., Li, Z., and Dai, S. (2008). Mesoporous carbon materials: synthesis and modification. Angew. Chem. Int. Ed. 47: 3696–3717, https://doi.org/10.1002/anie.200702046.Search in Google Scholar PubMed
Liotta, L. (2010). Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 100: 403–412, https://doi.org/10.1016/j.apcatb.2010.08.023.Search in Google Scholar
Liu, J., He, D., Chen, D., Hao, H., Yu, J., Lu, J., Liu, F., Liu, P., Zhao, Y., and Luo, Y. (2017). Promotional effects of rare-earth (La, Ce and Pr) modification over HZSM-5 for methyl mercaptan catalytic decomposition. J. Taiwan Inst. Chem. Eng. 80: 262–268, https://doi.org/10.1016/j.jtice.2017.07.006.Search in Google Scholar
Liu, L., Deng, Q.-F., Agula, B., Ren, T.-Z., Liu, Y.-P., Zhaorigetu, B., and Yuan, Z.-Y. (2012). Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catal. Today 186: 35–41, https://doi.org/10.1016/j.cattod.2011.08.022.Search in Google Scholar
Liu, P., Liao, Y., Li, J., Chen, L., Fu, M., Wu, P., Zhu, R., Liang, X., Wu, T., and Ye, D. (2021). Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene. J. Colloid Interface Sci. 594: 713–726, https://doi.org/10.1016/j.jcis.2021.03.093.Search in Google Scholar PubMed
Liu, Q., Wang, A., Wang, X., and Zhang, T. (2006). Ordered crystalline alumina molecular sieves synthesized via a nanocasting route. Chem. Mater. 18: 5153–5155, https://doi.org/10.1021/cm0615727.Search in Google Scholar
Liu, Y., Dai, H., Deng, J., Xie, S., Yang, H., Tan, W., Han, W., Jiang, Y., and Guo, G. (2014). Mesoporous Co3O4-supported gold nanocatalysts: highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. J. Catal. 309: 408–418, https://doi.org/10.1016/j.jcat.2013.10.019.Search in Google Scholar
Liu, X., Zhang, Q., Ning, P., Tang, T., Hu, J., and Su, W. (2018). One-pot synthesis of mesoporous Al2O3-supported Pt–Pd catalysts for toluene combustion. Catal. Commun. 115: 26–30, https://doi.org/10.1016/j.catcom.2018.07.003.Search in Google Scholar
Lu, C.-Y., Wey, M.-Y., and Chuang, K.-H. (2009). Catalytic treating of gas pollutants over cobalt catalyst supported on porous carbons derived from rice husk and carbon nanotube. Appl. Catal. B Environ. 90: 652–661, https://doi.org/10.1016/j.apcatb.2009.04.030.Search in Google Scholar
Ma, X., Feng, X., He, X., Guo, H., Lv, L., Guo, J., Cao, H., and Zhou, T. (2012). Mesoporous CuO/CeO2 bimetal oxides: one-pot synthesis, characterization and their application in catalytic destruction of 1,2-dichlorobenzene. Microporous Mesoporous Mater. 158: 214–218, https://doi.org/10.1016/j.micromeso.2012.03.044.Search in Google Scholar
Ma, M., Huang, H., Chen, C., Zhu, Q., Yue, L., Albilali, R., and He, C. (2018). Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction. Mol. Catal. 455: 192–203, https://doi.org/10.1016/j.mcat.2018.06.016.Search in Google Scholar
Masui, T., Imadzu, H., Matsuyama, N., and Imanaka, N. (2010). Total oxidation of toluene on Pt/CeO2–ZrO2–Bi2O3/γ-Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone. J. Hazard Mater. 176: 1106–1109, https://doi.org/10.1016/j.jhazmat.2009.11.108.Search in Google Scholar
Matějová, L., Topka, P., Jirátová, K., and Šolcová, O. (2012). Total oxidation of model volatile organic compounds over some commercial catalysts. Appl. Catal. Gen. 443: 40–49, https://doi.org/10.1016/j.apcata.2012.07.018.Search in Google Scholar
Melero, J.A., Stucky, G.D., van Grieken, R., and Morales, G. (2002). Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups. J. Mater. Chem. 12: 1664–1670, https://doi.org/10.1039/b110598c.Search in Google Scholar
Minicò, S., Scirè, S., Crisafulli, C., Maggiore, R., and Galvagno, S. (2000). Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Appl. Catal. B Environ. 28: 245–251, https://doi.org/10.1016/s0926-3373(00)00181-8.Search in Google Scholar
Mo, S., Li, S., Li, W., Li, J., Chen, J., and Chen, Y. (2016). Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. J. Mater. Chem. A. 4: 8113–8122, https://doi.org/10.1039/c6ta02593e.Search in Google Scholar
Moffat, J. (1978). Phosphates as catalysts. Catal. Rev. Sci. Eng. 18: 199–258, https://doi.org/10.1080/03602457808081868.Search in Google Scholar
Morris, S.M., Fulvio, P.F., and Jaroniec, M. (2008). Ordered mesoporous alumina-supported metal oxides. J. Am. Chem. Soc. 130: 15210–15216, https://doi.org/10.1021/ja806429q.Search in Google Scholar PubMed
Nevanperä, T.K., Ojala, S., Bion, N., Epron, F., and Keiski, R.L. (2016). Catalytic oxidation of dimethyl disulfide (CH3SSCH3) over monometallic Au, Pt and Cu catalysts supported on γ-Al2O3, CeO2 and CeO2-Al2O3. Appl. Catal. B Environ. 182: 611–625, https://doi.org/10.1016/j.apcatb.2015.10.012.Search in Google Scholar
Niesz, K., Yang, P., and Somorjai, G.A. (2005). Sol-gel synthesis of ordered mesoporous alumina. Chem. Commun. 15: 1986–1987, https://doi.org/10.1039/b419249d.Search in Google Scholar PubMed
Orlov, A., and Klinowski, J. (2009). Oxidation of volatile organic compounds on SBA-15 mesoporous molecular sieves modified with manganese. Chemosphere 74: 344–348, https://doi.org/10.1016/j.chemosphere.2008.08.049.Search in Google Scholar PubMed
Pal, N. and Bhaumik, A. (2013). Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci. 189: 21–41, https://doi.org/10.1016/j.cis.2012.12.002.Search in Google Scholar PubMed
Pan, H., Jian, Y., Chen, C., He, C., Hao, Z., Shen, Z., and Liu, H. (2017). Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl–ethyl–ketone combustion. Environ. Sci. Technol. 51: 6288–6297, https://doi.org/10.1021/acs.est.7b00136.Search in Google Scholar PubMed
Parlett, C.M., Aydin, A., Durndell, L.J., Frattini, L., Isaacs, M.A., Lee, A.F., Liu, X., Olivi, L., Trofimovaite, R., and Wilson, K. (2017). Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming. Catal. Commun. 91: 76–79, https://doi.org/10.1016/j.catcom.2016.12.021.Search in Google Scholar
Peng, J. and Wang, S. (2007). Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Appl. Catal. B Environ. 73: 282–291, https://doi.org/10.1016/j.apcatb.2006.12.012.Search in Google Scholar
Piumetti, M., Bonelli, B., Armandi, M., Gaberova, L., Casale, S., Massiani, P., and Garrone, E. (2010). Vanadium-containing SBA-15 systems prepared by direct synthesis: physico-chemical and catalytic properties in the decomposition of dichloromethane. Microporous Mesoporous Mater. 133: 36–44, https://doi.org/10.1016/j.micromeso.2010.04.011.Search in Google Scholar
Piumetti, M., Fino, D., and Russo, N. (2015). Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl. Catal. B Environ. 163: 277–287, https://doi.org/10.1016/j.apcatb.2014.08.012.Search in Google Scholar
Puertolas, B., Solsona, B., Agouram, S., Murillo, R., Mastral, A.M., Aranda, A., Taylor, S.H., and Garcia, T. (2010). The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Appl. Catal. B Environ. 93: 395–405, https://doi.org/10.1016/j.apcatb.2009.10.014.Search in Google Scholar
Qin, Y., Qu, Z., Dong, C., Wang, Y., and Huang, N. (2019). Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports. J. Environ. Sci. 76: 208–216, https://doi.org/10.1016/j.jes.2018.04.027.Search in Google Scholar
Qiu, Y., Hou, M., Gao, J., Zhai, H., Liu, H., Jin, M., Liu, X., and Lai, L. (2019). One-step synthesis of monodispersed mesoporous carbon nanospheres for high-performance flexible quasi-solid-state micro-supercapacitors. Small 15: 1903836, https://doi.org/10.1002/smll.201903836.Search in Google Scholar
Qu, Z., Bu, Y., Qin, Y., Wang, Y., and Fu, Q. (2012). The effects of alkali metal on structure of manganese oxide supported on SBA-15 for application in the toluene catalytic oxidation. Chem. Eng. J. 209: 163–169, https://doi.org/10.1016/j.cej.2012.07.138.Search in Google Scholar
Sa, Y.J., Kwon, K., Cheon, J.Y., Kleitz, F., and Joo, S.H. (2013). Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. J. Mater. Chem. A. 1: 9992–10001, https://doi.org/10.1039/c3ta11917c.Search in Google Scholar
Sanchis, R., Cecilia, J., Soriano, M., Vázquez, M., Dejoz, A., Nieto, J.L., Castellón, E.R., and Solsona, B. (2018). Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chem. Eng. J. 334: 1159–1168, https://doi.org/10.1016/j.cej.2017.11.060.Search in Google Scholar
Seo, D.-S., Kim, J.-C., Sohn, H.-H., Cho, W.-G., Lee, S.U., Kim, E.-Y., Tae, G., Dai Kim, J., Lee, S.Y., and Lee, H.Y. (2004). Two-dimensional packing patterns of amino acid surfactant and higher alcohols in an aqueous phase and their associated packing parameters. J. Colloid Interface Sci. 273: 596–603, https://doi.org/10.1016/j.jcis.2004.01.004.Search in Google Scholar
Shah, R., Thonon, B., and Benforado, D. (2000). Opportunities for heat exchanger applications in environmental systems. Appl. Therm. Eng. 20: 631–650, https://doi.org/10.1016/s1359-4311(99)00045-9.Search in Google Scholar
Shi, Z., Yang, P., Tao, F., and Zhou, R. (2016). New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chem. Eng. J. 295: 99–108, https://doi.org/10.1016/j.cej.2016.03.032.Search in Google Scholar
Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., and Siemieniewska, T. (1985). Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 57: 603–619.10.1351/pac198557040603Search in Google Scholar
Singh, S., Kumar, R., Setiabudi, H.D., Nanda, S., and Vo, D.-V.N. (2018). Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: a state-of-the-art review. Appl. Catal. Gen. 559: 57–74, https://doi.org/10.1016/j.apcata.2018.04.015.Search in Google Scholar
Sinha, A.K. and Suzuki, K. (2005). Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. Angew. Chem. 117: 275–277, https://doi.org/10.1002/ange.200461284.Search in Google Scholar
Sinhamahapatra, A., Sutradhar, N., Roy, B., Pal, P., Bajaj, H.C., and Panda, A.B. (2011). Microwave assisted synthesis of fine chemicals in solvent-free conditions over mesoporous zirconium phosphate. Appl. Catal. B Environ. 103: 378–387, https://doi.org/10.1016/j.apcatb.2011.01.045.Search in Google Scholar
Song, K.S., Klvana, D., and Kirchnerova, J. (2001). Kinetics of propane combustion over La0.66Sr0.34Ni0.3Co0.7O3 perovskite. Appl. Catal. Gen. 213: 113–121, https://doi.org/10.1016/s0926-860x(00)00884-x.Search in Google Scholar
Spivey, J.J. (1987). Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res. 26: 2165–2180, https://doi.org/10.1021/ie00071a001.Search in Google Scholar
Su, Y., Fu, K., Zheng, Y., Ji, N., Song, C., Ma, D., Lu, X., Han, R., and Liu, Q. (2021). Catalytic oxidation of dichloromethane over Pt–Co/HZSM-5 catalyst: synergistic effect of single-atom Pt, Co3O4, and HZSM-5. Appl. Catal. B Environ. 288: 119980, https://doi.org/10.1016/j.apcatb.2021.119980.Search in Google Scholar
Taguchi, A. and Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77: 1–45, https://doi.org/10.1016/j.micromeso.2004.06.030.Search in Google Scholar
Tang, W., Li, J., Wu, X., and Chen, Y. (2015). Limited nanospace for growth of Ni–Mn composite oxide nanocrystals with enhanced catalytic activity for deep oxidation of benzene. Catal. Today 258: 148–155, https://doi.org/10.1016/j.cattod.2015.04.023.Search in Google Scholar
Tang, W., Wu, X., Li, S., Li, W., and Chen, Y. (2014). Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal. Commun. 56: 134–138, https://doi.org/10.1016/j.catcom.2014.07.023.Search in Google Scholar
Tidahy, H., Siffert, S., Lamonier, J.-F., Zhilinskaya, E., Aboukaïs, A., Yuan, Z.-Y., Vantomme, A., Su, B.-L., Canet, X., and De Weireld, G. (2006). New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2–TiO2 catalysts for VOCs total oxidation. Appl. Catal. Gen. 310: 61–69, https://doi.org/10.1016/j.apcata.2006.05.020.Search in Google Scholar
Todorova, S., Blin, J., Naydenov, A., Lebeau, B., Karashanova, D., Kolev, H., Gaudin, P., Velinova, R., Vidal, L., and Michelin, L. (2021). Co–Mn oxides supported on hierarchical macro-mesoporous silica for CO and VOCs oxidation. Catal. Today 361: 94–101, https://doi.org/10.1016/j.cattod.2020.01.019.Search in Google Scholar
Todorova, S., Blin, J., Naydenov, A., Lebeau, B., Kolev, H., Gaudin, P., Dotzeva, A., Velinova, R., Filkova, D., and Ivanova, I. (2019). Co3O4–MnOx oxides supported on SBA-15 for CO and VOCs oxidation. Catal. Today 357: 602–612, https://doi.org/10.1016/j.cattod.2019.05.018.Search in Google Scholar
Torres, J.Q., Giraudon, J.-M., and Lamonier, J.-F. (2011). Formaldehyde total oxidation over mesoporous MnOx catalysts. Catal. Today 176: 277–280, https://doi.org/10.1016/j.cattod.2010.11.089.Search in Google Scholar
Ungureanu, A., Dragoi, B., Chirieac, A., Ciotonea, C., Royer, S.b., Duprez, D., Mamede, A.S., and Dumitriu, E. (2013). Composition-dependent morphostructural properties of Ni–Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica. ACS Appl. Mater. Interfaces 5: 3010–3025, https://doi.org/10.1021/am302733m.Search in Google Scholar PubMed
Wan, Y., Shi, Y., and Zhao, D. (2007). Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem. Commun. 9: 897–926, https://doi.org/10.1039/b610570j.Search in Google Scholar PubMed
Wang, C.Y. and Bai, H. (2011). Aerosol processing of mesoporous silica supported bimetallic catalysts for low temperature acetone oxidation. Catal. Today 174: 70–78, https://doi.org/10.1016/j.cattod.2011.02.025.Search in Google Scholar
Wang, H., Yang, W., Tian, P., Zhou, J., Tang, R., and Wu, S. (2017). A highly active and anti-coking Pd–Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature. Appl. Catal. Gen. 529: 60–67, https://doi.org/10.1016/j.apcata.2016.10.016.Search in Google Scholar
Wang, C., Tian, C., Guo, Y., Zhang, Z., Hua, W., Zhan, W., Guo, Y., Wang, L., and Lu, G. (2018a). Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions. J. Hazard Mater. 342: 290–296, https://doi.org/10.1016/j.jhazmat.2017.08.036.Search in Google Scholar PubMed
Wang, Y., Arandiyan, H., Liu, Y., Liang, Y., Peng, Y., Bartlett, S., Dai, H., Rostamnia, S., and Li, J. (2018b). Template-free scalable synthesis of flower-like Co3−xMnxO4 spinel catalysts for toluene oxidation. ChemCatChem 10: 3429–3434, https://doi.org/10.1002/cctc.201800598.Search in Google Scholar
Wang, J., Wang, P., Yoshida, A., Zhao, Q., Li, S., Hao, X., Abudula, A., Xu, G., and Guan, G. (2020a). Mn–Co oxide decorated on Cu nanowires as efficient catalysts for catalytic oxidation of toluene. Carbon Resour. Convers. 3: 36–45, https://doi.org/10.1016/j.crcon.2020.02.001.Search in Google Scholar
Wang, J., Wang, P., Zhao, Q., Shi, J., Yu, T., Du, X., Hao, X., Abudula, A., and Guan, G. (2020b). Stable hetero-metal doped Co-based catalysts prepared by electrodeposition method for low temperature combustion of toluene. Carbon Resour. Convers. 3: 95–103, https://doi.org/10.1016/j.crcon.2020.04.001.Search in Google Scholar
Wang, J., Wang, P., Zhao, Q., Yu, T., Du, X., Hao, X., Abudula, A., and Guan, G. (2020c). Highly dispersed Ag nanoparticles embedded on the surface of CeO2/CF nanowires derived from three-dimensional structured Cu foam for toluene catalytic oxidation. Mol. Catal. 486: 110879, https://doi.org/10.1016/j.mcat.2020.110879.Search in Google Scholar
Wang, J., Yoshida, A., Wang, P., Yu, T., Wang, Z., Hao, X., Abudula, A., and Guan, G. (2020d). Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method. Appl. Catal. B Environ. 271: 118941, https://doi.org/10.1016/j.apcatb.2020.118941.Search in Google Scholar
Wang, K., Zeng, Y., Lin, W., Yang, X., Cao, Y., Wang, H., Peng, F., and Yu, H. (2020e). Energy-efficient catalytic removal of formaldehyde enabled by precisely Joule-heated Ag/Co3O4@mesoporous-carbon monoliths. Carbon 167: 709–717, https://doi.org/10.1016/j.carbon.2020.06.055.Search in Google Scholar
Wang, Z., Ma, P., Zheng, K., Wang, C., Liu, Y., Dai, H., Wang, C., Hsi, H.-C., and Deng, J. (2020f). Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts. Appl. Catal. B Environ. 274: 118963, https://doi.org/10.1016/j.apcatb.2020.118963.Search in Google Scholar
Wang, Z., Yang, H., Liu, R., Xie, S., Liu, Y., Dai, H., Huang, H.and Deng, J. (2020g). Probing toluene catalytic removal mechanism over supported Pt nano-and single-atom-catalyst. J. Hazard Mater. 392: 122258. https://doi.org/10.1016/j.jhazmat.2020.122258.Search in Google Scholar PubMed
Wu, Z., Deng, J., Xie, S., Yang, H., Zhao, X., Zhang, K., Lin, H., Dai, H., and Guo, G. (2016). Mesoporous Cr2O3-supported Au–Pd nanoparticles: high-performance catalysts for the oxidation of toluene. Microporous Mesoporous Mater. 224: 311–322, https://doi.org/10.1016/j.micromeso.2015.11.061.Search in Google Scholar
Xia, Y., Dai, H., Jiang, H., Deng, J., He, H., and Au, C.T. (2009). Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environ. Sci. Technol. 43: 8355–8360, https://doi.org/10.1021/es901908k.Search in Google Scholar PubMed
Xia, Y., Dai, H., Jiang, H., Zhang, L., Deng, J., and Liu, Y. (2011). Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. J. Hazard Mater. 186: 84–91, https://doi.org/10.1016/j.jhazmat.2010.10.073.Search in Google Scholar PubMed
Xia, Y., Xia, L., Liu, Y., Yang, T., Deng, J., and Dai, H. (2018). Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO2 nanotubes. J. Environ. Sci. 64: 276–288, https://doi.org/10.1016/j.jes.2017.06.025.Search in Google Scholar PubMed
Xiang, W.-D., Yang, Y.-X., Chen, J., Wang, Z., and Liu, X.-N. (2008). Preparation of mesoporous silica using amphoteric surfactant potassium and sodium N-dodecyl glycine template. J. Am. Ceram. Soc. 91: 1517–1521.10.1111/j.1551-2916.2008.02356.xSearch in Google Scholar
Xie, S., Deng, J., Zang, S., Yang, H., Guo, G., Arandiyan, H., and Dai, H. (2015). Au–Pd/3DOM Co3O4: highly active and stable nanocatalysts for toluene oxidation. J. Catal. 322: 38–48, https://doi.org/10.1016/j.jcat.2014.09.024.Search in Google Scholar
Xie, S., Liu, Y., Deng, J., Yang, J., Zhao, X., Han, Z., Zhang, K., and Dai, H. (2017). Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of o-xylene. J. Catal. 352: 282–292, https://doi.org/10.1016/j.jcat.2017.05.016.Search in Google Scholar
Xie, S., Liu, Y., Deng, J., Yang, J., Zhao, X., Han, Z., Zhang, K., Wang, Y., Arandiyan, H., and Dai, H. (2018). Mesoporous CoO-supported palladium nanocatalysts with high performance for o-xylene combustion. Catal. Sci. Technol. 8: 806–816, https://doi.org/10.1039/c7cy02007d.Search in Google Scholar
Xu, W., Chen, X., Chen, J., and Jia, H. (2021). Bimetal oxide CuO/Co3O4 derived from Cu ions partly-substituted framework of ZIF-67 for toluene catalytic oxidation. J. Hazard Mater. 403: 123869, https://doi.org/10.1016/j.jhazmat.2020.123869.Search in Google Scholar
Yang, P., Xue, X., Meng, Z., and Zhou, R. (2013). Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds. Chem. Eng. J. 234: 203–210, https://doi.org/10.1016/j.cej.2013.08.107.Search in Google Scholar
Yang, P., Shi, Z., Yang, S., and Zhou, R. (2015a). High catalytic performances of CeO2–CrOx catalysts for chlorinated VOCs elimination. Chem. Eng. Sci. 126: 361–369, https://doi.org/10.1016/j.ces.2014.12.051.Search in Google Scholar
Yang, P., Yang, S., Shi, Z., Meng, Z., and Zhou, R. (2015b). Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts. Appl. Catal. B Environ. 162: 227–235, https://doi.org/10.1016/j.apcatb.2014.06.048.Search in Google Scholar
Yang, Z., Zhang, N., Cao, Y., Li, Y., Liao, Y., Li, Y., Gong, M., and Chen, Y. (2017). Promotional effect of lanthana on the high-temperature thermal stability of Pt/TiO2 sulfur-resistant diesel oxidation catalysts. RSC Adv. 7: 19318–19329, https://doi.org/10.1039/c7ra00582b.Search in Google Scholar
Yang, J., Liu, Y., Deng, J., Zhao, X., Zhang, K., Han, Z., and Dai, H. (2019a). AgAuPd/meso-Co3O4: high-performance catalysts for methanol oxidation. Chin. J. Catal. 40: 837–848, https://doi.org/10.1016/s1872-2067(18)63205-x.Search in Google Scholar
Yang, K., Liu, Y., Deng, J., Zhao, X., Yang, J., Han, Z., Hou, Z., and Dai, H. (2019b). Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: highly active catalysts for benzene combustion. Appl. Catal. B Environ. 244: 650–659, https://doi.org/10.1016/j.apcatb.2018.11.077.Search in Google Scholar
Yang, Y., Wang, G., Zheng, P., Dang, F., and Han, J. (2020). Carbon deposits during catalytic combustion of toluene on Pd–Pt-based catalysts. Catal. Sci. Technol. 10: 2452–2461, https://doi.org/10.1039/d0cy00101e.Search in Google Scholar
Yang, Y., Wang, G., Ge, S., Yang, H., Liu, M., and Liu, M. (2021). Study on anti-sulfur dioxide poisoning of palladium-based catalyst for toluene catalytic combustion. Int. J. Hydrogen Energy 46: 6329–6340, https://doi.org/10.1016/j.ijhydene.2020.11.126.Search in Google Scholar
Yao, Y.F.Y. (1984). The oxidation of CO and hydrocarbons over noble metal catalysts. J. Catal. 87: 152–162, https://doi.org/10.1016/0021-9517(84)90178-7.Search in Google Scholar
Yao, Y., Zhang, M., Shi, J., Gong, M., Zhang, H., and Yang, Y. (2001). Encapsulation of fluorescein into MCM-41 mesoporous molecular sieve by a sol-gel method. Mater. Lett. 48: 44–48, https://doi.org/10.1016/s0167-577x(00)00278-0.Search in Google Scholar
Yu, D., Liu, Y., and Wu, Z. (2010). Low-temperature catalytic oxidation of toluene over mesoporous MnOx–CeO2/TiO2 prepared by sol-gel method. Catal. Commun. 11: 788–791, https://doi.org/10.1016/j.catcom.2010.02.016.Search in Google Scholar
Zhang, H., Zhou, Y., Li, Y., Bandosz, T.J., and Akins, D.L. (2012). Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach. J. Colloid Interface Sci. 375: 106–111, https://doi.org/10.1016/j.jcis.2012.02.046.Search in Google Scholar PubMed
Zhang, X., Liu, Y., Deng, J., Yu, X., Han, Z., Zhang, K., and Dai, H. (2019). Alloying of gold with palladium: an effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Appl. Catal. B Environ. 257: 117879, https://doi.org/10.1016/j.apcatb.2019.117879.Search in Google Scholar
Zhang, X., Zhao, J., Song, Z., Liu, W., Zhao, H., Zhao, M., Xing, Y., and Du, H. (2020). The catalytic oxidation performance of toluene over the Ce–Mn–Ox catalysts: effect of synthetic routes. J. Colloid Interface Sci. 562: 170–181, https://doi.org/10.1016/j.jcis.2019.12.029.Search in Google Scholar PubMed
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279: 548–552, https://doi.org/10.1126/science.279.5350.548.Search in Google Scholar PubMed
Zhao, Q., Liu, Q., Zheng, Y., Han, R., Song, C., Ji, N., and Ma, D. (2020a). Enhanced catalytic performance for volatile organic compound oxidation over in situ growth of MnOx on Co3O4 nanowire. Chemosphere 244: 125532, https://doi.org/10.1016/j.chemosphere.2019.125532.Search in Google Scholar PubMed
Zhao, Q., Zheng, Y., Song, C., Liu, Q., Ji, N., Ma, D., and Lu, X. (2020b). Novel monolithic catalysts derived from in situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl. Catal. B Environ. 265: 118552, https://doi.org/10.1016/j.apcatb.2019.118552.Search in Google Scholar
Zheng, Y., Zhao, Q., Shan, C., Lu, S., Su, Y., Han, R., Song, C., Ji, N., Ma, D., and Liu, Q. (2020). Enhanced acetone oxidation over the CeO2/Co3O4 catalyst derived from metal-organic frameworks. ACS Appl. Mater. Interfaces 12: 28139–28147, https://doi.org/10.1021/acsami.0c04904.Search in Google Scholar PubMed
Zheng, Y., Liu, Q., Shan, C., Su, Y., Fu, K., Lu, S., Han, R., Song, C., Ji, N., and Ma, D. (2021). Defective ultrafine MnOx nanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds. Environ. Sci. Technol. 55: 5403–5411, https://doi.org/10.1021/acs.est.0c08335.Search in Google Scholar PubMed
Zhu, K., Wang, D., and Liu, J. (2009). Self-assembled materials for catalysis. Nano Res. 2: 1–29, https://doi.org/10.1007/s12274-009-9002-2.Search in Google Scholar
Zhu, J., Mu, W., Su, L., Li, X., Guo, Y., Zhang, S., and Li, Z. (2017). Al-doped TiO2 mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol. J. Solid State Chem. 248: 142–149, https://doi.org/10.1016/j.jssc.2017.01.028.Search in Google Scholar
Zuo, S., Huang, Q., Li, J., and Zhou, R. (2009). Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation. Appl. Catal. B Environ. 91: 204–209, https://doi.org/10.1016/j.apcatb.2009.05.025.Search in Google Scholar
Zuo, S., Liu, F., Tong, J., and Qi, C. (2013). Complete oxidation of benzene with cobalt oxide and ceria using the mesoporous support SBA-16. Appl. Catal. Gen. 467: 1–6, https://doi.org/10.1016/j.apcata.2013.06.056.Search in Google Scholar
Zuo, S., Sun, X., Lv, N., and Qi, C. (2014). Rare earth-modified Kaolin/NaY-supported Pd–Pt bimetallic catalyst for the catalytic combustion of benzene. ACS Appl. Mater. Interfaces 6: 11988–11996, https://doi.org/10.1021/am500138q.Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/revce-2021-0029).
© 2022 Walter de Gruyter GmbH, Berlin/Boston