Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter June 22, 2022

From passive to emerging smart silicones

  • Maria Cazacu ORCID logo EMAIL logo , Mihaela Dascalu ORCID logo , George-Theodor Stiubianu ORCID logo , Adrian Bele ORCID logo , Codrin Tugui ORCID logo and Carmen Racles ORCID logo


Amassing remarkable properties, silicones are practically indispensable in our everyday life. In most classic applications, they play a passive role in that they cover, seal, insulate, lubricate, water-proof, weather-proof etc. However, silicone science and engineering are highly innovative, seeking to develop new compounds and materials that meet market demands. Thus, the unusual properties of silicones, coupled with chemical group functionalization, has allowed silicones to gradually evolve from passive materials to active ones, meeting the concept of “smart materials”, which are able to respond to external stimuli. In such cases, the intrinsic properties of polysiloxanes are augmented by various chemical modifications aiming to attach reactive or functional groups, and/or by engineering through proper cross-linking pattern or loading with suitable fillers (ceramic, magnetic, highly dielectric or electrically conductive materials, biologically active, etc.), to add new capabilities and develop high value materials. The literature and own data reflecting the state-of-the art in the field of smart silicones, such as thermoplasticity, self-healing ability, surface activity, electromechanical activity and magnetostriction, thermo-, photo-, and piezoresponsivity are reviewed.

Corresponding author: Maria Cazacu, Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania, E-mail:

Funding source: Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI

Award Identifier / Grant number: PN-III-P2-2.1-PED-2019-3652 within PNCDI III (contract 320/2020, 3DETSil)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PN-III-P2-2.1-PED-2019-3652, within PNCDI III (contract 320/2020, 3DETSil).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Acome, E., Mitchell, S.K., Morrissey, T.G., Emmett, M.B., Benjamin, C., King, M., Radakovitz, M., and Keplinger, C. (2018). Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359: 61–65.10.1126/science.aao6139Search in Google Scholar

Adedoyin, A.A. and Ekenseair, A.K. (2018). Biomedical applications of magneto-responsive scaffolds. Nano Res. 12274: 1–16.10.1007/s12274-018-2198-2Search in Google Scholar

Agirre-Olabide, I. and Elejabarrieta, M.J. (2017). Effect of synthesis variables on viscoelastic properties of elastomers filled with carbonyl iron powder. J. Polym. Res. 24: 139–148.10.1007/s10965-017-1299-zSearch in Google Scholar

Ahnert, K., Abel, M., Kollosche, M., Jørgensen, P.J., and Kofod, G. (2011). Soft capacitors for wave energy harvesting. J. Mater. Chem. 21: 14492–14497.10.1039/c1jm12454dSearch in Google Scholar

Akbari, S. and Shea, H.R. (2012). An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications. Sensors Actuators Phys. 186: 236–241.10.1016/j.sna.2012.01.030Search in Google Scholar

Alkan, A., Wald, S., Louage, B., De Geest, B.G., Landfester, K., and Wurm, F.R. (2017). Amphiphilic ferrocene-containing PEG block copolymers as micellar nanocarriers and smart surfactants. Langmuir 33: 272–279.10.1021/acs.langmuir.6b03917Search in Google Scholar

Almenningen, A., Bastiansen, O., Ewing, V., Hedberg, K., and Traetterberg, M. (1963). The molecular structure of disiloxane. Acta Chem. Scand. 17: 2455–2460.10.3891/acta.chem.scand.17-2455Search in Google Scholar

Ameduri, B., Boutevin, B., and Kostov, G. (2001). Fluoro-elastomers: synthesis, properties and applications. Prog. Polym. Sci. 1: 105–187.10.1016/S0079-6700(00)00044-7Search in Google Scholar

Ananth, R., Snow, A.W., Hinnant, K.M., Giles, S.L., and Farley, J.P. (2019). Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction. Colloids Surfaces A Physicochem. Eng. Asp. 579: 123686.10.1016/j.colsurfa.2019.123686Search in Google Scholar

Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., and Calius, E.P. (2012). Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112: 041101.10.1063/1.4740023Search in Google Scholar

Araromi, O.A., Gavrilovich, I., Shintake, J., Rosset, S., Richard, M., Gass, V., and Shea, H.R. (2015). Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans. Mechatron. 20: 438–446.10.1109/TMECH.2014.2329367Search in Google Scholar

Asadi Khanouki, M., Sedaghati, R., and Hemmatian, M. (2019). Experimental characterization and microscale modeling of isotropic and anisotropic magnetorheological elastomers. Compos. B Eng. 176: 107311.10.1016/j.compositesb.2019.107311Search in Google Scholar

Bao, Y., Guo, J., Ma, J., Liu, P., Kang, Q., and Zhang, J. (2017). Cationic silicon-based gemini surfactants: effect of hydrophobic chains on surface activity, physic-chemical properties and aggregation behaviors. J. Ind. Eng. Chem. 53: 51–61.10.1016/j.jiec.2017.03.045Search in Google Scholar

Bar-Cohen, Y. (2001). Electroactive polymers as artificial muscles - Reality and challenges. In: 19th AIAA Applied Aerodynamics Conference, American Institute of Aerospace and Astronautics, Inc. in Google Scholar

Bar-Cohen, Y. (2005). Biomimetics: mimicking and inspired-by biology. Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD). In: Proceedings of SPIE Vol. 5759. SPIE, Bellingham, WA. in Google Scholar

Bastola, A.K. and Hossain, M. (2021). The shape–morphing performance of magnetoactive soft materials performance. Mater. Des. 211: 110172.10.1016/j.matdes.2021.110172Search in Google Scholar

Beans, C. (2021). How “forever chemicals” might impair the immune system. Proc. Natl. Acad. Sci. U.S.A. 118: 1–5.10.1073/pnas.2105018118Search in Google Scholar PubMed PubMed Central

Behrens, R.W. (1964). The physical and chemical properties of surfactants and their effects on formulated herbicides. Weeds 12: 255.10.2307/4040747Search in Google Scholar

Bele, A., Cazacu, M., Stiubianu, G., and Vlad, S. (2014). Silicone-barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology. RSC Adv. 4: 58522–58529.10.1039/C4RA09903FSearch in Google Scholar

Bele, A., Cazacu, M., Racles, C., Stiubianu, G., Ovezea, D., and Ignat, M. (2015a). Tuning the electromechanical properties of silicones by crosslinking agent. Adv. Eng. Mater. 17: 1–11.10.1002/adem.201400505Search in Google Scholar

Bele, A., Cazacu, M., Stiubianu, G., Vlad, S., and Ignat, M. (2015b). Polydimethylsiloxane-barium titanate composites: preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior. Compos. B Eng. 68: 237–245.10.1016/j.compositesb.2014.08.050Search in Google Scholar

Bele, A., Stiubianu, G., Varganici, C.D., Ignat, M., and Cazacu, M. (2015c). Silicone dielectric elastomers based on radical crosslinked high molecular weight polydimethylsiloxane co-filled with silica and barium titanate. J. Mater. Sci. 50: 6822–6832.10.1007/s10853-015-9239-ySearch in Google Scholar

Bele, A., Dascalu, M., Tugui, C., Iacob, M., Racles, C., Sacarescu, L., and Cazacu, M. (2016). Dielectric silicone elastomers filled with in situ generated polar silsesquioxanes: preparation, characterization and evaluation of electromechanical performance. Mater. Des. 106: 454–462.10.1016/j.matdes.2016.06.010Search in Google Scholar

Bele, A., Tugui, C., Sacarescu, L., Iacob, M., Stiubianu, G., Dascalu, M., Racles, C., and Cazacu, M. (2018). Ceramic nanotubes-based elastomer composites for applications in electromechanical transducers. Mater. Des. 141: 120–131.10.1016/j.matdes.2017.12.039Search in Google Scholar

Bele, A., Dascalu, M., Tugui, C., Stiubianu, G., Varganici, C., Racles, C., Cazacu, M., and Skov, A.L. (2022a). Soft silicone elastomers exhibiting large actuation strains. J. Appl. Polym. Sci. 52261.10.1002/app.52261Search in Google Scholar

Bele, A., Yu, L., Dascalu, M., Timpu, D., Sacarescu, L., Varganici, C.D., Ionita, D., Isac, D., and Vasiliu, A.L. (2022b). Binary silicone elastomeric systems with stepwise crosslinking as a tool for tuning electromechanical behavior. Polymers 14: 1–13.10.3390/polym14010211Search in Google Scholar PubMed PubMed Central

Bhattacharjee, G., Barmecha, V., Kushwaha, O.S., and Kumar, R. (2018). Kinetic promotion of methane hydrate formation by combining anionic and silicone surfactants: scalability promise of methane storage due to prevention of foam formation. J. Chem. Thermodyn. 117: 248–255.10.1016/j.jct.2017.09.029Search in Google Scholar

Brochu, P. and Pei, Q. (2010). Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31: 10–36.10.1002/marc.200900425Search in Google Scholar PubMed

Brochu, P., Stoyanov, H., Niu, X., and Pei, Q. (2013). All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Mater. Struct. 22: 055022.10.1088/0964-1726/22/5/055022Search in Google Scholar

Brown, P., Butts, C.P., and Eastoe, J. (2013). Stimuli-responsive surfactants. Soft Matter 9: 2365–2374.10.1039/c3sm27716jSearch in Google Scholar

Bui, R. and Brook, M.A. (2019). Dynamic covalent Schiff-base silicone polymers and elastomers. Polymer 160: 282–290.10.1016/j.polymer.2018.11.043Search in Google Scholar

Bui, R. and Brook, M.A. (2021). Thermoplastic silicone elastomers from divanillin crosslinkers in a catalyst-free process. Green Chem. 23: 5600–5608.10.1039/D1GC01696BSearch in Google Scholar

Burke, K.A., Rousseau, I.A., and Mather, P.T. (2014). Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities. Polymer 55: 5897–5907.10.1016/j.polymer.2014.06.088Search in Google Scholar

Bushuyev, O.S., Aizawa, M., Shishido, A., and Barrett, C.J. (2017). Shape-shifting azo dye polymers: towards sunlight-driven molecular devices. Macromol. Rapid Commun. 39: 1700253, in Google Scholar PubMed

Cai, L.H., Kodger, T.E., Guerra, R.E., Pegoraro, A.F., Rubinstein, M., and Weitz, D.A. (2015). Soft poly(dimethylsiloxane) elastomers from architecture-driven entanglement free design. Adv. Mater. 27: 5132–5140.10.1002/adma.201502771Search in Google Scholar PubMed PubMed Central

Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., and Shelley, M. (2004). Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3: 307–310.10.1038/nmat1118Search in Google Scholar PubMed

Cao, J., Han, D., Lu, H., Zhang, P., and Feng, S. (2018). A readily self-healing and recyclable silicone elastomer via boron-nitrogen noncovalent crosslinking. New J. Chem. 42: 18517–18520.10.1039/C8NJ04258FSearch in Google Scholar

Cao, P.F., Li, B., Hong, T., Townsend, J., Qiang, Z., Xing, K., Vogiatzis, K.D., Wang, Y., Mays, J.W., Sokolov, A.P., et al.. (2018). Superstretchable, self-healing polymeric elastomers with tunable properties. Adv. Funct. Mater. 28: 1–9.10.1002/adfm.201800741Search in Google Scholar

Carpi, F. (2010). Electromechanically active polymers. Polym. Int. 59: 277–278.10.1002/pi.2790Search in Google Scholar

Carpi, F. and De Rossi, D. (2010). Electroactive polymer artificial muscles: an overview. WIT Trans. Ecol. Environ. 138: 353–364.10.2495/DN100311Search in Google Scholar

Carpi, F., Salaris, C., and De Rossi, D. (2007). Folded dielectric elastomer actuators. Smart Mater. Struct. 16: S300.10.1088/0964-1726/16/2/S15Search in Google Scholar

Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., and Sommer-larsen, P. (2008). Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology, 1st ed. Elsevier Ltd.Search in Google Scholar

Caspari, P., Dünki, S.J., Nüesch, F.A., and Opris, D.M. (2018). Dielectric elastomer actuators with increased dielectric permittivity and low leakage current capable of suppressing electromechanical instability. J. Mater. Chem. C 6: 2043–2053.10.1039/C7TC05562ESearch in Google Scholar

Cazacu, M., Racles, C., Zaltariov, M.-F., Dumitriu, A.-M.C., Ignat, M., Ovezea, D., and Stiubianu, G. (2013). Electroactive composites based on polydimethylsiloxane and some new metal complexes. Smart Mater. Struct. 22: 104008.10.1088/0964-1726/22/10/104008Search in Google Scholar

Chakma, P. and Konkolewicz, D. (2019). Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 58: 9682–9695.10.1002/anie.201813525Search in Google Scholar PubMed

Chen, G., Sun, Z., Wang, Y., Zheng, J., Wen, S., Zhang, J., Wang, L., Hou, J., Lin, C., and Yue, Z. (2020). Progress in organic coatings designed preparation of silicone protective materials with controlled self- healing and toughness properties. Prog. Org. Coating 140: 105483.10.1016/j.porgcoat.2019.105483Search in Google Scholar

Chen, G., Wen, S., Ma, J., Sun, Z., Lin, C., Yue, Z., Mol, J.M.C., and Liu, M. (2021). Optimization of intrinsic self-healing silicone coatings by benzotriazole loaded mesoporous silica. Surf. Coating. Technol. 421: 127388.10.1016/j.surfcoat.2021.127388Search in Google Scholar

Chen, M., Gong, G., Zhou, L., and Zhang, F. (2017). Facile fabrication of a magnetic self-healing poly(vinyl alcohol) composite hydrogel. RSC Adv. 7: 21476–21483.10.1039/C6RA28634HSearch in Google Scholar

Cheng, T., Zhang, Y.Z., Lai, W.Y., Chen, Y., Zeng, W.J., and Huang, W. (2014). High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. J. Mater. Chem. C 2: 10369–10376.10.1039/C4TC01959HSearch in Google Scholar

Cho, S.H., White, S.R., and Braun, P.V. (2012). Room-temperature polydimethylsiloxane-based self-healing polymers. Chem. Mater. 24: 4209–4214.10.1021/cm302501bSearch in Google Scholar

Choi, G., Ko, H., Jang, H., Hwang, I., Seong, M., Sun, K., Park, H.-H., Park, T.-E., Kim, J., and Jeong, H.E. (2021). Biofouling-resistant tubular fluidic devices with magneto-responsive dynamic walls. Soft Matter 17: 1715–1723.10.1039/D0SM01979HSearch in Google Scholar PubMed

Chortos, A., Mao, J., Mueller, J., Hajiesmaili, E., Lewis, J.A., and Clarke, D.R. (2021). Printing reconfigurable bundles of dielectric elastomer fibers. Adv. Funct. Mater. 31: 1–10.10.1002/adfm.202010643Search in Google Scholar

Chua, T.P., Mariatti, M., Azizan, A., and Rashid, A.A. (2010). Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites. Compos. Sci. Technol. 70: 671–677.10.1016/j.compscitech.2009.12.023Search in Google Scholar

Chung, D.-W. and Lim, J.C. (2009). Study on the effect of structure of polydimethylsiloxane grafted with polyethyleneoxide on surface activities. Colloids Surfaces A Physicochem. Eng. Asp. 336: 35–40.10.1016/j.colsurfa.2008.11.020Search in Google Scholar

Court, R.W., Sims, M.R., Cullen, D.C., and Sephton, M.A. (2014). Searching for life on mars: degradation of surfactant solutions used in organic extraction experiments. Astrobiology 14: 733–752.10.1089/ast.2013.1105Search in Google Scholar PubMed

Cross, R. (2012). Elastic and viscous properties of silly putty. Am. J. Phys. 80: 870–875.10.1119/1.4732086Search in Google Scholar

Cvek, M., Moucka, R., Sedlacik, M., and Pavlinek, V. (2017a). Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane-modified carbonyl iron particles with enhanced wettability. Smart Mater. Struct. 26: 105003.10.1088/1361-665X/aa85c5Search in Google Scholar

Cvek, M., Mrlík, M., Ilčíková, M., Mosnáček, J., Münster, L., and Pavlínek, V. (2017b). Synthesis of silicone elastomers containing silyl-based polymer-grafted carbonyl iron particles: an efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules 50: 2189–2200.10.1021/acs.macromol.6b02041Search in Google Scholar

Cvek, M., Mrlik, M., Sevcik, J., and Sedlacik, M. (2018). Tailoring performance, damping, and surface properties of magnetorheological elastomers via particle-grafting technology. Polymers 10: 1411.10.3390/polym10121411Search in Google Scholar PubMed PubMed Central

Czajka, A., Hazell, G., and Eastoe, J. (2015). Surfactants at the design limit. Langmuir 31: 8205–8217.10.1021/acs.langmuir.5b00336Search in Google Scholar PubMed

Dai, S., Li, M., Yan, H., Zhu, H., Hu, H., Zhang, Y., Cheng, G., Yuan, N., and Ding, J. (2021). Self-healing silicone elastomer with stable and high adhesion in harsh environments. Langmuir 37: 13696–13702.10.1021/acs.langmuir.1c02356Search in Google Scholar PubMed

De Buyl, F. (2001). Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities. Int. J. Adhesion Adhes. 21: 411–422.10.1016/S0143-7496(01)00018-5Search in Google Scholar

De Haan, L.T., Schenning, A.P.H.J., and Broer, D.J. (2014). Programmed morphing of liquid crystal networks. Polymer 55: 5885–5896.10.1016/j.polymer.2014.08.023Search in Google Scholar

Deriabin, K.V., Ignatova, N.A., Kirichenko, S.O., Novikov, A.S., and Islamova, R.M. (2020). Nickel(II)-pyridinedicarboxamide-co-polydimethylsiloxane complexes as elastic self-healing silicone materials with reversible coordination. Polymer 212: 123119.10.1016/j.polymer.2020.123119Search in Google Scholar

Dewasthale, S., Andrews, C., Graiver, D., and Narayan, R. (2017). Water soluble polysiloxanes. Silicon 9: 619–628.10.1007/s12633-015-9334-3Search in Google Scholar

Dodge, L., Chen, Y., and Brook, M.A. (2014). Silicone boronates reversibly crosslink using Lewis acid – Lewis base amine complexes. Chem. Eur J. 20: 9349–9356.10.1002/chem.201402877Search in Google Scholar PubMed

Dong, S., Yang, L., Zhang, P., Wang, H., and Cui, J. (2022). Tough omni-dynamic silicone rubbers with excellent self-healing, elasticity, remoldability, and degradability. Polymer 239: 124434.10.1016/j.polymer.2021.124434Search in Google Scholar

Drobny, J.G. (2007). Handbook of thermoplastic elastomer. William Andrew Publishing, New York.Search in Google Scholar

Du, Z., Qin, J., Wang, W., Zhu, Y., and Wang, G. (2015). Synthesis, surface activities, and aggregation behaviors of butynediol-ethoxylate modified polysiloxanes. J. Phys. Chem. B 119: 14180–14187.10.1021/acs.jpcb.5b07618Search in Google Scholar PubMed

Dünki, S.J., Tress, M., Kremer, F., Ko, S.Y., Nüesch, F.A., Varganici, C.D., Racles, C., and Opris, D.M. (2015). Fine-tuning of the dielectric properties of polysiloxanes by chemical modification. RSC Adv. 5: 50054–50062.10.1039/C5RA07412FSearch in Google Scholar

Dünki, S.J., Cuervo-Reyes, E., and Opris, D.M. (2017). A facile synthetic strategy to polysiloxanes containing sulfonyl side groups with high dielectric permittivity. Polym. Chem. 8: 715–724.10.1039/C6PY01917JSearch in Google Scholar

Dvornic, P.R., Jovanovic, J.D., and Govedarica, M.N. (1993). On the critical molecular chain length of polydimethylsiloxane. J. Appl. Polym. Sci. 49: 1497–1507.10.1002/app.1993.070490901Search in Google Scholar

Ellingford, C., Bowen, C., McNally, T., and Wan, C. (2018). Intrinsically tuning the electromechanical properties of elastomeric dielectrics: a chemistry perspective. Macromol. Rapid Commun. 39: 1800340.10.1002/marc.201800340Search in Google Scholar PubMed

Encyclopaedia Britannica (2021). Silicon. Available at: in Google Scholar

Faiczak, K., Brook, M.A., and Feinle, A. (2020). Energy-dissipating polymeric silicone surfactants. Macromol. Rapid Commun. 41: 1–6.10.1002/marc.202000161Search in Google Scholar PubMed

Fan, X., Yang, X., Wang, S., Wang, S., Xu, X., Jiang, J., Shang, S., and Song, Z. (2021). Modified cellulose nanocrystals are used to enhance the performance of self-healing siloxane elastomers. Carbohydr. Polym. 273: 1–11.10.1016/j.carbpol.2021.118529Search in Google Scholar PubMed

Fauvre, L., Portinha, D., Fleury, E., and Ganachaud, F. (2021). Thermoplastic silicone elastomers as materials exhibiting high mechanical properties and/or self-healing propensity. J. Adhes. Sci. Technol. 35: 2723–2735.10.1080/01694243.2021.1954412Search in Google Scholar

Fawcett, A.S. and Brook, M.A. (2014). Thermoplastic silicone elastomers through self-association of pendant coumarin groups. Macromolecules 47: 1656–1663.10.1021/ma402361zSearch in Google Scholar

Fawcett, A.S., Hughes, T.C., Zepeda-Velazquez, L., and Brook, M.A. (2015). Phototunable cross-linked polysiloxanes. Macromolecules 48: 6499–6507.10.1021/acs.macromol.5b01085Search in Google Scholar

Finkelmann, H. and Rehage, G. (1980). Investigations on liquid crystalline polysiloxanes. I. Synthesis and characterization of linear polymers. Makromol. Chem., Rapid Commun. 1: 31–34.10.1002/marc.1980.030010107Search in Google Scholar

Flory, P.J., Mandelkern, L., Kinsinger, J.B., and Shultz, W.B. (1952). Molecular dimensions of polydimethylsiloxanes. J. Am. Chem. Soc. 74: 3364–3367.10.1021/ja01133a044Search in Google Scholar

Franke, M., Ehrenhofer, A., Lahiri, S., Henke, E.F.M., Wallmersperger, T., and Richter, A. (2020). Dielectric elastomer actuator driven soft robotic structures with bioinspired skeletal and muscular reinforcement. Front. Robot. AI 7: 1–11.10.3389/frobt.2020.510757Search in Google Scholar PubMed PubMed Central

Gao, W., Wang, X., and Xu, W. (2019). Magneto-mechanical properties of polydimethylsiloxane composites with a binary magnetic filler system. Polym. Compos. 40: 337–345.10.1002/pc.24656Search in Google Scholar

García-Merino, B., Bringas, E., and Ortiz, I. (2021). Synthesis and applications of surface-modified magnetic nanoparticles: progress and future prospects. Rev. Chem. Eng., (Ahead of print).Search in Google Scholar

Gilbert, A.R. and Kantor, S.W. (1959). Transient catalysts for the polymerization of organosiloxanes. J. Polym. Sci. 40: 35–58.10.1002/pol.1959.1204013603Search in Google Scholar

Glavan, G., Salamon, P., Belyaeva, I.A., Shamonin, M., and Drevenšek-Olenik, I. (2018). Tunable surface roughness and wettability of a soft magnetoactive elastomer. J. Appl. Polym. Sci. 135: 1–8.10.1002/app.46221Search in Google Scholar

González Calderón, J.A., Contreras López, D., Pérez, E., and Vallejo Montesinos, J. (2020). Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences. Polym. Bull. 77: 2749–2817.10.1007/s00289-019-02869-xSearch in Google Scholar

Gou, Z., Zuo, Y., and Feng, S. (2016). Thermally self-healing silicone-based networks with potential application in recycling adhesives. RSC Adv. 6: 73140–73147.10.1039/C6RA14659GSearch in Google Scholar

Gritskova, I.A., Ezhova, A.A., Chalykh, A.E., Lobanova, N.A., Muzafarov, A.M., Chvalun, S.N., Gusev, S.A., and Levachev, S.M. (2021). Synthesis of polymer microspheres of different diameters in the presence of carbofunctional organosilicon surfactants. Colloid Polym. Sci. 299: 823–833.10.1007/s00396-020-04805-2Search in Google Scholar

Grüning, B. and Koerner, G. (1989). Silicone surfactants. Tenside Surfactants Deterg. 26: 321–317.10.1201/9780203739754-8Search in Google Scholar

Guan, X., Dong, X., and Ou, J. (2008). Magnetostrictive effect of magnetorheological elastomer. J. Magn. Magn Mater. 320: 158–163.10.1016/j.jmmm.2007.05.043Search in Google Scholar

Guo, H., Han, Y., Zhao, W., Yang, J., and Zhang, L. (2020). Universally autonomous self-healing elastomer with high stretchability. Nat. Commun. 11: 1–9.10.1038/s41467-020-15949-8Search in Google Scholar PubMed PubMed Central

Guo, R., Liu, Y., Zhou, L., Li, N., Chen, G., Zhou, Z., and Li, Q. (2020). Synthesis and properties of thermoplastic and dissolvable polysiloxanes containing polyhedral oligomeric silsesquioxane. J. Polym. Sci. 58: 3183–3195.10.1002/pol.20199265Search in Google Scholar

Guoyong, W., Zhiping, D., Qiuxiao, L., and Wei, Z. (2010). Carbohydrate-modified siloxane surfactants and their adsorption and aggregation behavior in aqueous solution. J. Phys. Chem. B 114: 6872–6877.10.1021/jp102160kSearch in Google Scholar

Hajiesmaili, E. and Clarke, D.R. (2019). Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat. Commun. 10: 10–16.10.1038/s41467-018-08094-wSearch in Google Scholar

Hajiesmaili, E. and Clarke, D.R. (2021). Dielectric elastomer actuators. J. Appl. Phys. 129: 151102.10.1063/5.0043959Search in Google Scholar

Han, F., Deng, Y.Y., Zhou, Y.W., and Xu, B.C. (2012). Carbohydrate-modified silicone surfactants. J. Surfactants Deterg. 15: 123–129.10.1007/s11743-011-1290-3Search in Google Scholar

Henstock, J.R., Canham, L.T., and Anderson, S.I. (2015). Silicon: the evolution of its use in biomaterials. Acta Biomater. 11: 17–26.10.1016/j.actbio.2014.09.025Search in Google Scholar

Hermes, M. (2008). Heat and chemical resistant silicone rubber. 4. Corning and the first silicones for high temperature insulation. ChemCases - Kennesaw State Univ, Kennesaw, GA, Available at: in Google Scholar

Hetzer, R.H., Kümmerlen, F., Wirz, K., and Blunk, D. (2014). IAFSS Symposium 11, Fire safety science-proceedings of the eleventh international symposium: Fire testing a new fluorine-free AFFF based on a novel class of environmentally sound high performance siloxane surfactants. University of Canterbury, Christchurch, New Zealand, pp. 1261–1270.Search in Google Scholar

Hill, R.M. (1999). Silicone surfactants. Marcel Dekker, New York.Search in Google Scholar

Hill, R.M. (2002). Silicone surfactants - new developments. Curr. Opin. Colloid Interface Sci. 7: 255–261.10.1016/S1359-0294(02)00068-7Search in Google Scholar

Horodecka, S., Strachota, A., Mossety-Leszczak, B., Šlouf, M., Zhigunov, A., Vyroubalová, M., Kaňková, D., and Netopilík, M. (2020). Meltable copolymeric elastomers based on polydimethylsiloxane with multiplets of pendant liquid-crystalline groups as physical crosslinker: a self-healing structural material with a potential for smart applications. Eur. Polym. J. 137: 109962.10.1016/j.eurpolymj.2020.109962Search in Google Scholar

Housheya, O.J. and Wilkins, C. (2012). Compositional analysis of the high molecular weight ethylene oxide-propylene-oxide copolymer by MALDI mass spectrometry. Int. J. Chem. 4: 14–23.10.5539/ijc.v4n3p14Search in Google Scholar

Huang, Y., Guo, M., Tan, J., and Feng, S. (2020). Impact of molecular architecture on surface properties and aqueous stabilities of silicone based carboxylate surfactants. Langmuir 36: 2023–2029.10.1021/acs.langmuir.9b03653Search in Google Scholar PubMed

Huber, P. and Kaiser, W. (1986). Silicone fluids: synthesis, properties and applications. J. Synth. Lubric. 3: 105–120.10.1002/jsl.3000030204Search in Google Scholar

Hunt, S., McKay, T.G., and Anderson, I.A. (2014). A self-healing dielectric elastomer actuator. Appl. Phys. Lett. 104: 2012–2015.10.1063/1.4869294Search in Google Scholar

Iacob, M., Stiubianu, G., Tugui, C., Ursu, L., Ignat, M., Turta, C., and Cazacu, M. (2015). Goethite nanorods as a cheap and effective filler for siloxane nanocomposite elastomers. RSC Adv. 5: 45439–45445.10.1039/C5RA03765DSearch in Google Scholar

Iacob, M., Tugui, C., Tiron, V., Bele, A., Vlad, S., Vasiliu, T., Cazacu, M., Vasiliu, A.-L., and Racles, C. (2017). Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers. Smart Mater. Struct. 26: 105046.10.1088/1361-665X/aa867cSearch in Google Scholar

Iacob, M., Tiron, V., Stiubianu, G.T., Dascalu, M., Hernandez, L., Varganici, C.D., Tugui, C., and Cazacu, M. (2022). Bentonite as an active natural filler for silicone leading to piezoelectric-like response material. J. Mater. Res. Technol. 17: 79–94.10.1016/j.jmrt.2021.12.125Search in Google Scholar

Indulekha, K., Monisha, S., Thomas, D., Rajeev, R.S., Mathew, D., Ninan, K.N., and Gouri, C. (2018). Polycyclic siloxanes: base resins for novel high temperature resistant platinum curing transparent silicone adhesives. Int. J. Adhesion Adhes. 82: 254–262.10.1016/j.ijadhadh.2018.02.001Search in Google Scholar

Jean-Mistral, C., Jacquet-Richardet, G., and Sylvestre, A. (2020). Parameters influencing fatigue life prediction of dielectric elastomer generators. Polym. Test. 81: 106198.10.1016/j.polymertesting.2019.106198Search in Google Scholar

Ji, X., El Haitami, A., Sorba, F., Rosset, S., Nguyen, G.T.M., Plesse, C., Vidal, F., Shea, H.R., and Cantin, S. (2018). Stretchable composite monolayer electrodes for low voltage dielectric elastomer actuators. Sensor. Actuator. B Chem. 261: 135–143.10.1016/j.snb.2018.01.145Search in Google Scholar

Ji, X., Liu, X., Cacucciolo, V., Imboden, M., Civet, Y., El Haitami, A., Cantin, S., Perriard, Y., and Shea, H. (2019). An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4, eaaz645.10.1126/scirobotics.aaz6451Search in Google Scholar PubMed

Ji, X., Liu, X., Cacucciolo, V., Civet, Y., El Haitami, A., Cantin, S., Perriard, Y., and Shea, H. (2021). Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators. Adv. Funct. Mater. 31: 1–10.10.1002/adfm.202006639Search in Google Scholar

Ji, Y., Huang, Y.Y., Tajbakhsh, A.R., and Terentjev, E.M. (2009). Polysiloxane surfactants for the dispersion of carbon nanotubes in nonpolar organic solvents. Langmuir 25: 12325–12331.10.1021/la901622cSearch in Google Scholar PubMed

Jia, H., Bai, X., Li, N., Yu, L., and Zheng, L. (2011). Siloxane surfactant induced self-assembly of gold nanoparticles and their application to SERS. CrystEngComm 13: 6179–6184.10.1039/c1ce05715dSearch in Google Scholar

Jia, X.Y., Mei, J.F., Lai, J.C., Li, C.H., and You, X.Z. (2015). A self-healing PDMS polymer with solvatochromic properties. Chem. Commun. 51: 8928–8930.10.1039/C5CC01956GSearch in Google Scholar

Jia, X.Y., Mei, J.F., Lai, J.C., Li, C.H., and You, X.Z. (2016). A highly stretchable polymer that can be thermally healed at mild temperature. Macromol. Rapid Commun. 37: 952–956.10.1002/marc.201600142Search in Google Scholar PubMed

Jiang, H., Chensha, L., and Xuenzhen, H. (2013). Actuators based on liquid crystalline elastomer materials. Nanoscale 5: 5225–5240.10.1039/c3nr00037kSearch in Google Scholar PubMed PubMed Central

Kang, J., Son, D., Wang, G.J.N., Liu, Y., Lopez, J., Kim, Y., Oh, J.Y., Katsumata, T., Mun, J., Lee, Y., et al.. (2018). Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30: 1–8.10.1002/adma.201706846Search in Google Scholar PubMed

Kantor, S.W., Grubb, W.T., and Osthoff, R.C. (1954). The mechanism of the acid-and base-catalyzed equilibration of siloxanes. J. Am. Chem. Soc. 76: 5190–5197.10.1021/ja01649a076Search in Google Scholar

Keplinger, C., Kaltenbrunner, M., Arnold, N., and Bauer, S. (Eds.) (2010). Proceedings of the National Academy of Sciences of the United States of America, March 9, 2010: Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability, Washington, D.C., Vol. 107. pp. 4505–4510.Search in Google Scholar

Kim, J., Chaudhury, M.K., and Owen, M.J. (1999). Hydrophobicity loss and recovery of silicone HV insulation. IEEE Trans. Dielectr. Electr. Insul. 6: 695–702.10.1109/TDEI.1999.9286763Search in Google Scholar

Kim, Y., Yuk, H., Zhao, R., Chester, S.A., and Zhao, X. (2018). Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558: 274–279.10.1038/s41586-018-0185-0Search in Google Scholar PubMed

Kim, Y.H. and Wool, R.P. (1983). A theory of healing at a polymer polymer interface. Macromolecules 16: 1115–1120.10.1021/ma00241a013Search in Google Scholar

Kofod, G. (2008). The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J. Phys. D Appl. Phys. 41: 215405.10.1088/0022-3727/41/21/215405Search in Google Scholar

Konkle, G.M. and Talcott, T.D. (1960). Fluorinated organopolysiloxane rubber reinforced with polytetrafluoroe. Patent Application no 2927908.Search in Google Scholar

Kramarenko, E.Y., Stepanov, G.V., and Khokhlov, A.R. (2020). Magnetically active silicone elastomers: twenty years of development. Ineos Open 2: 178–184.10.32931/io1926rSearch in Google Scholar

Kumar, V. and Lee, D.J. (2019). Mechanical properties and magnetic effect of new magneto-rheological elastomers filled with multi-wall carbon nanotubes and iron particles. J. Magn. Magn Mater. 482: 329–335.10.1016/j.jmmm.2019.03.075Search in Google Scholar

Kunieda, H., Ozawa, K., and Huang, K.L. (1998). Effect of oil on the surfactant molecular curvatures in liquid crystals. J. Phys. Chem. B 102: 831–838.10.1021/jp9726908Search in Google Scholar

Kwon, S.H., An, J.S., Choi, S.Y., Chung, K.H., and Choi, H.J. (2019). Poly(glycidyl methacrylate) coated soft-magnetic carbonyl iron/silicone rubber composite elastomer and its magnetorheology. Macromol. Res. 27: 448–453.10.1007/s13233-019-7065-9Search in Google Scholar

Lai, J.C., Mei, J.F., Jia, X.Y., Li, C.H., You, X.Z., and Bao, Z. (2016). A stiff and healable polymer based on dynamic-covalent boroxine bonds. Adv. Mater. 28: 8277–8282.10.1002/adma.201602332Search in Google Scholar PubMed

Laubie, B., Bonnafous, E., Desjardin, V., Germain, P., and Fleury, E. (2013). Silicone-based surfactant degradation in aqueous media. Sci. Total Environ. 454–455: 199–205.10.1016/j.scitotenv.2013.02.022Search in Google Scholar PubMed

Lee, S., Yim, C., Kim, W., and Jeon, S. (2015). Magnetorheological elastomer films with tunable wetting and adhesion properties. ACS Appl. Mater. Interfaces 7: 19853–19856.10.1021/acsami.5b06273Search in Google Scholar PubMed

Lei, C.H., Li, S.L., Xu, R.J., and Xu, Y.Q. (2012). Thermoplastic vulcanizates based on compatibilized polyurethane and silicone rubber blend. J. Elastomers Plastics 44: 563–574.10.1177/0095244312441730Search in Google Scholar

Leroy, E., Hinchet, R., and Shea, H. (2020). Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32: 1–9.10.1002/adma.202002564Search in Google Scholar PubMed

Levi, D.S., Kusnezov, N., and Carman, G.P. (2008). Smart materials applications for pediatric cardiovascular devices. Pediatr. Res. 63: 552–558.10.1203/PDR.0b013e31816a9d18Search in Google Scholar PubMed

Li, C.H., Wang, C., Keplinger, C., Zuo, J.L., Jin, L., Sun, Y., Zheng, P., Cao, Y., Lissel, F., Linder, C., et al.. (2016). A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8: 618–624.10.1038/nchem.2492Search in Google Scholar PubMed

Li, X., Yu, R., Zhao, T., Zhang, Y., Yang, X., Zhao, X., and Huang, W. (2018). A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction. Eur. Polym. J. 108: 399–405.10.1016/j.eurpolymj.2018.09.021Search in Google Scholar

Liang, Y., Wang, H., Li, J., Wu, S., Han, W., Kang, H., and Fang, Q. (2021). Green thermoplastic vulcanizates based on silicone rubber and poly(butylene succinate) via in situ interfacial compatibilization. ACS Omega 6: 4461–4469.10.1021/acsomega.0c06036Search in Google Scholar PubMed PubMed Central

Liu, J., Yao, Y., Li, X., and Zhang, Z. (2021). Fabrication of advanced polydimethylsiloxane-based functional materials: bulk modifications and surface functionalizations. Chem. Eng. J. 408: 127262.10.1016/j.cej.2020.127262Search in Google Scholar

Liu, M., Liu, P., Lu, G., Xu, Z., and Yao, X. (2018). Multiphase-assembly of siloxane oligomers with improved mechanical strength and water-enhanced healing. Angew. Chem. Int. Ed. 57: 11242–11246.10.1002/anie.201805206Search in Google Scholar PubMed

Liu, Y., Yuan, J., Zhang, K., Guo, K., Yuan, L., Wu, Y., and Gao, C. (2020). A novel type of self-healing silicone elastomers with reversible cross-linked network based on the disulfide, hydrogen and metal-ligand bonds. Prog. Org. Coating 144: 105661.10.1016/j.porgcoat.2020.105661Search in Google Scholar

Liu, Z., Xiao, D., Liu, G., Xiang, H., Rong, M., and Zhang, M. (2021). Self-healing and reprocessing of transparent UV-cured polysiloxane elastomer. Prog. Org. Coating 159: 106450.10.1016/j.porgcoat.2021.106450Search in Google Scholar

Loh, X.J. (2016). Polymers for personal care products and cosmetics. RSC Polymer Chemistry Series, Cambridge, UK.10.1039/9781782623984Search in Google Scholar

Lu, H. and Feng, S. (2017). Supramolecular silicone elastomers with healable and hydrophobic properties crosslinked by “salt-forming vulcanization. J. Polym. Sci. Part A Polym. Chem. 55: 903–911.10.1002/pola.28450Search in Google Scholar

Lussier, R., Giroux, Y., Thibault, S., Rodrigue, D., and Ritcey, A.M. (2020). Magnetic soft silicone elastomers with tunable mechanical properties for magnetically actuated devices. Polym. Adv. Technol. 31: 1414–1425.10.1002/pat.4871Search in Google Scholar

Lusterio, A. and Brook, M.A. (2021). Naturally derived silicone surfactants based on saccharides and cysteamine. Molecules 26: 4802.10.3390/molecules26164802Search in Google Scholar PubMed PubMed Central

Lyu, Y.Y., Yi, S.H., Shon, J.K., Chang, S., Pu, L.S., Lee, S.Y., Yie, J.E., Char, K., Stucky, G.D., and Kim, J.M. (2004). Highly stable mesoporous metal oxides using nano-propping hybrid gemini surfactants. J. Am. Chem. Soc. 126: 2310–2311.10.1021/ja0390348Search in Google Scholar PubMed

Ma, R., Chou, S.Y., Xie, Y., and Pei, Q. (2019). Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chem. Soc. Rev. 48: 1741–1786.10.1039/C8CS00834ESearch in Google Scholar

Ma, Z. and Liu, H. (2007). Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Particuol. 5: 1–10.10.1016/j.cpart.2006.11.001Search in Google Scholar

Madsen, F.B., Daugaard, A.E., Hvilsted, S., and Skov, A.L. (2016a). The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 37: 378–413.10.1002/marc.201500576Search in Google Scholar PubMed

Madsen, F.B., Yu, L., and Skov, A.L. (2016b). Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett. 5: 1196–1200.10.1021/acsmacrolett.6b00662Search in Google Scholar PubMed

Maffli, L., Rosset, S., Ghilardi, M., Carpi, F., and Shea, H. (2015). Ultrafast all-polymer electrically tunable silicone lenses. Adv. Funct. Mater. 25: 1656–1665.10.1002/adfm.201403942Search in Google Scholar

Marchi, S., Casu, A., Bertora, F., Athanassiou, A., and Fragouli, D. (2015). Highly magneto-responsive elastomeric films created by a two-step fabrication process. ACS Appl. Mater. Interfaces 7: 19112–19118.10.1021/acsami.5b04711Search in Google Scholar PubMed

Marciniec, B. (Ed.) (2009). Hydrosilylation - a comprehensive review on recent advances. Springer Science and Business Media B.V., Poznan.Search in Google Scholar

Marette, A., Poulin, A., Besse, N., Rosset, S., Briand, D., and Shea, H. (2017). Flexible zinc–tin oxide thin film transistors operating at 1 kV for integrated switching of dielectric elastomer actuators arrays. Adv. Mater. 29: 1–6.10.1002/adma.201700880Search in Google Scholar PubMed

Martín, R., Rekondo, A., Echeberria, J., Cabañero, G., Grande, H.J., and Odriozola, I. (2012). Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chem. Commun. 48: 8255–8257.10.1039/c2cc32030dSearch in Google Scholar PubMed

Mathew, G., Rhee, J.M., and Nah, C. (2006). Finite strain 3D thermoviscoelastic constitutive model. Society 46: 1–10.Search in Google Scholar

Mazurek, P., Vudayagiri, S., and Skov, A.L. (2019). How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem. Soc. Rev. 48: 1448–1464.10.1039/C8CS00963ESearch in Google Scholar

McCoul, D., Rosset, S., Schlatter, S., and Shea, H. (2017). Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators. Smart Mater. Struct. 26: 125022.10.1088/1361-665X/aa9695Search in Google Scholar

Mei, J.F., Jia, X.Y., Lai, J.C., Sun, Y., Li, C.H., Wu, J.H., Cao, Y., You, X.Z., and Bao, Z. (2016). A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π–π interactions. Macromol. Rapid Commun. 37: 1667–1675.10.1002/marc.201600428Search in Google Scholar PubMed

Mestri, R.S., Pratap, A.P., Panchal, K.H., Gamot, K., and Datir, K.A. (2020). Synthesis of cleavable silicone surfactant for water-repellent application. Chem. Pap. 74: 1407–1416.10.1007/s11696-019-00961-0Search in Google Scholar

Métivier, T. and Cassagnau, P. (2019). New trends in cellular silicone: innovations and applications. J. Cell. Plast. 55: 151–200.10.1177/0021955X18806845Search in Google Scholar

Min, T.H., Choi, H.J., Kim, N.H., Park, K., and You, C.Y. (2017). Effects of surface treatment on magnetic carbonyl iron/polyaniline microspheres and their magnetorheological study. Colloids Surfaces A Physicochem. Eng. Asp. 531: 48–55.10.1016/j.colsurfa.2017.07.070Search in Google Scholar

Minaminosono, A., Shigemune, H., Okuno, Y., Katsumata, T., Hosoya, N., and Maeda, S. (2019). A deformable motor driven by dielectric elastomer actuators and flexible mechanisms. Front. Robot. AI 6: 1–12.10.3389/frobt.2019.00001Search in Google Scholar PubMed PubMed Central

Mistri, E.A., Ghosh, A., and Banerjee, S. (2015). Fluorosilicones and other fluoropolymers: synthesis, properties, and applications. In: Banerjee, S. (Ed.), Handbook of specialty fluorinated polymers: preparation, properties, and applications. Elsevier, London, pp. 271–317.10.1016/B978-0-323-35792-0.00006-4Search in Google Scholar

Mittal, K.L. and Pizzi, A. (2009). Handbook of sealant technology. CRC Press, New York, p. 27.10.1201/9781420008630Search in Google Scholar

Molberg, M., Crespy, D., Rupper, P., Nüesch, F., Manson, J.A.E., Löwe, C., and Opris, D.M. (2010). High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Funct. Mater. 20: 3280–3291.10.1002/adfm.201000486Search in Google Scholar

Moretti, G., Rosset, S., Vertechy, R., Anderson, I., and Fontana, M. (2020). A review of dielectric elastomer generator systems. Adv. Intell. Syst. 2: 2000125.10.1002/aisy.202000125Search in Google Scholar

Moskalenko, Y.E., Bagutski, V., and Thiele, C.M. (2017). Chemically synthesized and cross-linked PDMS as versatile alignment medium for organic compounds. Chem. Commun. 53: 95–98.10.1039/C6CC08762KSearch in Google Scholar PubMed

Moucka, R., Sedlacik, M., and Ronzova, A. (2020). Rheology of uncured magnetorheological elastomers. J. Phys. Conf. Ser. 1527: 012012.10.1088/1742-6596/1527/1/012012Search in Google Scholar

Nguyen, T. and Khine, M. (2020). Advances in materials for soft stretchable conductors and their behavior under mechanical deformation. Polymers 12: 1–48.10.3390/polym12071454Search in Google Scholar PubMed PubMed Central

Niu, X., Yang, X., Brochu, P., Stoyanov, H., Yun, S., Yu, Z., and Pei, Q. (2012). Bistable large-strain actuation of interpenetrating polymer networks. Adv. Mater. 24: 6513–6519.10.1002/adma.201202876Search in Google Scholar PubMed

Noll, W. (1968). Chemistry and technology of silicones. Academic Press Inc., New York.Search in Google Scholar

O’Halloran, A., O’Malley, F., and McHugh, P. (2008). A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104: 071101.10.1063/1.2981642Search in Google Scholar

Ogliani, E., Yu, L., Javakhishvili, I., and Skov, A.L. (2018). A thermo-reversible silicone elastomer with remotely controlled self-healing. RSC Adv. 8: 8285–8291.10.1039/C7RA13686BSearch in Google Scholar

Ohm, C., Brehmer, M., and Zentel, R. (2010). Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22: 3366–3387.10.1002/adma.200904059Search in Google Scholar PubMed

Ohm, C., Brehmer, M., and Zentel, R. (2012). Applications of liquid crystalline elastomers. Adv. Polym. Sci. 250: 49–94.10.1007/12_2011_164Search in Google Scholar

Osicka, J., Mrlik, M., Ilcikova, M., Hanulikova, B., Urbanek, P., Sedlacik, M., and Mosnacek, J. (2018). Reversible actuation ability upon light stimulation of the smart systems with controllably grafted graphene oxide with poly (glycidyl methacrylate) and PDMS elastomer: effect of compatibility and graphene oxide reduction on the photo-actuation performance. Polymers 10: 832.10.3390/polym10080832Search in Google Scholar PubMed PubMed Central

Owen, M.J. (2005). Why silicones behave funny. Dow Corning Corporation, Midland, MI, p. 11.Search in Google Scholar

Panahi-Sarmad, M., Chehrazi, E., Noroozi, M., Raef, M., Razzaghi-Kashani, M., and Haghighat Baian, M.A. (2019). Tuning the surface chemistry of graphene oxide for enhanced dielectric and actuated performance of silicone rubber composites. ACS Appl. Electron. Mater. 1: 198–209.10.1021/acsaelm.8b00042Search in Google Scholar

Park, H.S. and Nguyen, T.D. (2013). Viscoelastic effects on electromechanical instabilities in dielectric elastomers. Soft Matter 9: 1031–1042.10.1039/C2SM27375FSearch in Google Scholar

Paufler, P. (1988). Intrinsic properties of Group IV elements and III-V, II-VI and I-VII compounds. In: Madeluing, O. (Ed.). Numerical data and functional relationships in science and technology. Springer-Verlag, Berlin/Heidelberg, p. 188.Search in Google Scholar

Pelrine, R., Kornbluh, R., and Kofod, G. (2000a). High-strain actuator materials based on dielectric elastomers. Adv. Mater. 12: 1223–1225.10.1002/1521-4095(200008)12:16<1223::AID-ADMA1223>3.0.CO;2-2Search in Google Scholar

Pelrine, R., Kornbluh, R., Pei, Q., and Joseph, J. (2000b). High-speed electrically actuated elastomers with strain greater than 100. Science 287: 836–839.10.1126/science.287.5454.836Search in Google Scholar

Pelrine, R., Sommer-Larsen, P., Kornbluh, R., Heydt, R., Kofod, G., Pei, Q., and Gravesen, P. (2001). Applications of dielectric elastomer actuators. In: Bar-Cohen, Y. (Ed.), Smart structures and materials 2001: electroactive polymer actuators and devices. Proceedings of SPIE, Bellingham, WA, pp. 335–349.10.1117/12.432665Search in Google Scholar

Pelrine, R. and Kornbluh, R. (2008). Introduction: history of dielectric elastomer actuators. In: Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., and Sommer-Larsen, P. (Eds.), Dielectric elastomers as electromechanical transducers. Elsevier Ltd., Oxford, UK, pp. 9–13.10.1016/B978-0-08-047488-5.00031-9Search in Google Scholar

Pelrine, R.E., Kornbluh, R.D., and Joseph, J.P. (1998). Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors Actuators A Phys 64: 77–85.10.1016/S0924-4247(97)01657-9Search in Google Scholar

Perju, E., Ko, Y.S., Dünki, S.J., and Opris, D.M. (2020). Increased electromechanical sensitivity of polysiloxane elastomers by chemical modification with thioacetic groups. Mater. Des. 186: 108319.10.1016/j.matdes.2019.108319Search in Google Scholar

Poikelispää, M., Shakun, A., Das, A., and Vuorinen, J. (2016). Improvement of actuation performance of dielectric elastomers by barium titanate and carbon black fillers. J. Appl. Polym. Sci. 133: 44116.10.1002/app.44116Search in Google Scholar

Pouget, E., Tonnar, J., Lucas, P., Lacroix-Desmazes, P., Ganachaud, F., and Boutevin, B. (2010). Well-architectured poly(dimethylsiloxane)-containing copolymers obtained by radical chemistry. Chem. Rev. 110: 1233–1277.10.1021/cr8001998Search in Google Scholar

Poulin, A., Rosset, S., and Shea, H.R. (2015). Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 107: 244104.10.1063/1.4937735Search in Google Scholar

Poulin, A., Imboden, M., Sorba, F., Grazioli, S., Martin-Olmos, C., Rosset, S., and Shea, H. (2018a). An ultra-fast mechanically active cell culture substrate. Sci. Rep. 8: 9895.10.1038/s41598-018-27915-ySearch in Google Scholar PubMed PubMed Central

Poulin, A., Rosset, S., and Shea, H. (2018b). Fabrication and characterization of silicone based dielectric elastomer actuators for mechanical stimulation of living cells. In: Proceedings of Electroactive Polymer Actuators and Devices (EAPAD) XX. Proceedings of SPIE, Denver, Colorado, United, States pp. 133–141.10.1117/12.2295687Search in Google Scholar

Racles, C. (2010). Siloxane-based surfactants containing tromethamol units. Soft Mater. 8: 263–273.10.1080/1539445X.2010.495627Search in Google Scholar

Racles, C. and Hamaide, T. (2005). Synthesis and characterization of water soluble saccharide functionalized polysiloxanes and their use as polymer surfactants for the stabilization of polycaprolactone nanoparticles. Macromol. Chem. Phys. 206: 1757–1768.10.1002/macp.200500139Search in Google Scholar

Racles, C., Hamaide, T., and Ioanid, A. (2006). Siloxane surfactants in polymer nanoparticles formulation. Appl. Organomet. Chem. 20: 235–245.10.1002/aoc.1051Search in Google Scholar

Racles, C., Hamaide, T., and Fleury, E. (2010). Siloxane-containing compounds as polymer stabilizers. In: Segewicz, L. and Petrowsky, M. (Eds.), Polymer aging, stabilizers and amphiphilic block copolymers. Nova Science Publishers, New York, pp. 213–233.Search in Google Scholar

Racles, C., Alexandru, M., Nistor, A., and Cazacu, M. (2011). Surface properties of siloxane-based surfactants containing tromethamol units. Rev. Roum. Chem. 56: 941–946.Search in Google Scholar

Racles, C., Cazacu, M., Fischer, B., and Opris, D.M. (2013). Synthesis and characterization of silicones containing cyanopropyl groups and their use in dielectric elastomer actuators. Smart Mater. Struct. 22: 104004.10.1088/0964-1726/22/10/104004Search in Google Scholar

Racles, C., Alexandru, M., Bele, A., Musteata, V.E., Cazacu, M., and Opris, D.M. (2014a). Chemical modification of polysiloxanes with polar pendant groups by co-hydrosilylation. RSC Adv. 4: 37620–37628.10.1039/C4RA06955BSearch in Google Scholar

Racles, C., Iacob, M., Butnaru, M., Sacarescu, L., and Cazacu, M. (2014b). Aqueous dispersion of metal oxide nanoparticles, using siloxane surfactants. Colloids Surfaces A Physicochem. Eng. Asp. 448: 160–168.10.1016/j.colsurfa.2014.02.029Search in Google Scholar

Racles, C., Mares, M., and Sacarescu, L. (2014c). A polysiloxane surfactant dissolves a poorly soluble drug (nystatin) in water. Colloids Surfaces A Physicochem. Eng. Asp. 443: 233–239.10.1016/j.colsurfa.2013.11.010Search in Google Scholar

Racles, C., Bele, A., Dascalu, M., Musteata, V.E., Varganici, C.D., Ionita, D., Vlad, S., Cazacu, M., Dünki, S.J., and Opris, D.M. (2015a). Polar–nonpolar interconnected elastic networks with increased permittivity and high breakdown fields for dielectric elastomer transducers. RSC Adv. 5: 58428–58438.10.1039/C5RA06865GSearch in Google Scholar

Racles, C., Musteata, V.E., Bele, A., Dascalu, M., Tugui, C., and Matricala, A.L. (2015b). Highly stretchable composites from PDMS and polyazomethine fine particles. RSC Adv. 5: 102599–102609.10.1039/C5RA12297JSearch in Google Scholar

Racles, C., Cozan, V., Bele, A., and Dascalu, M. (2016). Polar silicones: structure-dielectric properties relationship. Des. Monomers Polym. 19: 496–507.10.1080/15685551.2016.1169381Search in Google Scholar

Racles, C., Dascalu, M., Bele, A., Tiron, V., Asandulesa, M., Tugui, C., Vasiliu, A.L., and Cazacu, M. (2017). All-silicone elastic composites with counter-intuitive piezoelectric response, designed for electromechanical applications. J. Mater. Chem. C 5: 6997–7010.10.1039/C7TC02201HSearch in Google Scholar

Racles, C., Silion, M., and Sacarescu, L. (2018). Multi-tasking pyridyl-functionalized siloxanes. Colloids Surfaces A Physicochem. Eng. Asp. 547: 102–110.10.1016/j.colsurfa.2018.03.050Search in Google Scholar

Racles, C., Cazacu, M., Zaltariov, M., Iacob, M., and Butnaru, M. (2019). Siloxane-based compounds with tailored surface properties for health and environment. Phosphorus, Sulfur Silicon Relat. Elem 194: 972–977.10.1080/10426507.2019.1630405Search in Google Scholar

Racles, C., Dascalu, M., Bele, A., and Cazacu, M. (2020a). Reactive and functional silicones for special applications. In: Guitierrez, T. (Ed.). Reactive and functional polymers. Springer, Cham, pp. 235–291.10.1007/978-3-030-43403-8_11Search in Google Scholar

Racles, C., Ursu, C., Dascalu, M., Asandulesa, M., Tiron, V., Bele, A., Tugui, C., and Teodoroff-Onesim, S. (2020b). Multi-stimuli responsive free-standing films of DR1-grafted silicones. Chem. Eng. J. 401: 126087.10.1016/j.cej.2020.126087Search in Google Scholar

Rao, Y.L., Chortos, A., Pfattner, R., Lissel, F., Chiu, Y.C., Feig, V., Xu, J., Kurosawa, T., Gu, X., Wang, C., et al.. (2016). Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 138: 6020–6027.10.1021/jacs.6b02428Search in Google Scholar PubMed

Rebrov, E.A., Muzafarov, A.M., Papkov, V.S., and Zdanov, A.A. (1986). Space-network polyorganosiloxanes. Dokl. Akad. Nauk SSSR 309: 376–381.Search in Google Scholar

Riess, G., Berger, K., and Kern, W. (2017). Novel silicone thermoplastic elastomers with tailored permeation properties. AIP Conf. Proc. 1914: 120003.10.1063/1.5016761Search in Google Scholar

Rinaldi, A., Tamburrano, A., Fortunato, M., and Sarto, M.S. (2016). A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16: 2148.10.3390/s16122148Search in Google Scholar PubMed PubMed Central

Roberts, J. (2015). A successful failure. Distillations Magazine 1: 8–9.Search in Google Scholar

Romasanta, L.J., Lopez-Manchado, M.A., and Verdejo, R. (2015). Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog. Polym. Sci. 51: 188–211.10.1016/j.progpolymsci.2015.08.002Search in Google Scholar

Ronzova, A., Sedlacik, M., and Cvek, M. (2021). Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: synthesis, stability and performance. Soft Matter 17: 1299–1306.10.1039/D0SM01785JSearch in Google Scholar PubMed

Rösch, L., John, P., and Reitmeier, R. (2003). Organic silicon compounds. In: Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons, San Francisco, pp. 637–674.10.1002/14356007.a24_021Search in Google Scholar

Sánchez-Ferrer, A. and Finkelmann, H. (2013). Opto-mechanical effect in photoactive nematic main-chain liquid-crystalline elastomers. Soft Matter 9: 4621–4627.10.1039/c3sm27341eSearch in Google Scholar

Sánchez-Ferrer, A., Torras, N., and Esteve, J. (2015). Integration of liquid-crystalline elastomers in MEMS/MOEMS. In: Thakur, V., and Kessler, M. (Eds.). Liquid crystalline polymers. Springer, Cham, pp. 553–582.10.1007/978-3-319-22894-5_19Search in Google Scholar

Schlachter, I. and Feldmann-Krane, G. (1998). Silicone surfactants. In: Holmberg, K. (Ed.). Novel surfactants: preparation, applications, and biodegradability. Marcel Dekker, New York, pp. 227–259.Search in Google Scholar

Sebastian, M.T. and Jantunen, H. (2010). Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7: 415–434.10.1111/j.1744-7402.2009.02482.xSearch in Google Scholar

Shan, Y., Zhou, Z., Bai, H., Wang, T., Liu, L., Zhao, X., and Huang, Y. (2020). Recovery of the self-cleaning property of silicon elastomers utilizing the concept of reversible coordination bonds. Soft Matter 16: 8473–8481.10.1039/D0SM01264ESearch in Google Scholar PubMed

Shan, Y., Li, Z., Yu, T., Wang, X., Cui, H., Yang, K., and Cui, Y. (2022). Self-healing strain sensor based on silicone elastomer for human motion detection. Compos. Sci. Technol. 218: 109208.10.1016/j.compscitech.2021.109208Search in Google Scholar

Sheima, Y., Caspari, P., and Opris, D.M. (2019). Artificial muscles: dielectric elastomers responsive to low voltages. Macromol. Rapid Commun. 40: 1900205.10.1002/marc.201900205Search in Google Scholar PubMed

Shi, J., Zhao, N., Yan, D., Song, J., Fu, W., and Li, Z. (2020). Design of a mechanically strong and highly stretchable thermoplastic silicone elastomer based on coulombic interactions. J. Mater. Chem. 8: 5943–5951.10.1039/D0TA01593HSearch in Google Scholar

Shian, S., Bertoldi, K., and Clarke, D.R. (2015). Dielectric elastomer based “grippers” for soft robotics. Adv. Mater. 27: 6814–6819.10.1002/adma.201503078Search in Google Scholar

Shibaev, V., Bobrovsky, A., and Boiko, N. (2003). Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog. Polym. Sci. 28: 729–836.10.1016/S0079-6700(02)00086-2Search in Google Scholar

Shintake, J., Rosset, S., Schubert, B., Floreano, D., and Shea, H. (2016a). Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28: 231–238.10.1002/adma.201504264Search in Google Scholar PubMed

Shintake, J., Shea, H., and Floreano, D. (2016b). Biomimetic underwater robots based on dielectric elastomer actuators. IEEE Int. Conf. Intell. Robot. Syst. 2016: 4957–4962.10.1109/IROS.2016.7759728Search in Google Scholar

Shivapooja, P., Wang, Q., Orihuela, B., Rittschof, D., Lõpez, G.P., and Zhao, X. (2013). Bioinspired surfaces with dynamic topography for active control of biofouling. Adv. Mater. 25: 1430–1434.10.1002/adma.201203374Search in Google Scholar PubMed

Si, J., Cui, Z., Xie, P., Song, L., Wang, Q., Liu, Q., and Liu, C. (2016). Characterization of 3D elastic porous polydimethylsiloxane (PDMS) cell scaffolds fabricated by VARTM and particle leaching. J. Appl. Polym. Sci. 133: 42909.10.1002/app.42909Search in Google Scholar

Silicone Elastomer History (2016). SIMTEC. Available at: in Google Scholar

Silicones Enabling Sustainability and Innovation (2020). Glob. Silicones Counc. Available at: in Google Scholar

Simonin, L., Falco, G., Pensec, S., Dalmas, F., Chenal, J.M., Ganachaud, F., Marcellan, A., Chazeau, L., and Bouteiller, L. (2021). Macromolecular additives to turn a thermoplastic elastomer into a self-healing material. Macromolecules 54: 888–895.10.1021/acs.macromol.0c02352Search in Google Scholar

Söntjens, S.H.M., Sijbesma, R.P., Van Genderen, M.H.P., and Meijer, E.W. (2000). Stability and lifetime of quadruply hydrogen bonded 2-Ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc. 122: 7487–7493.10.1021/ja000435mSearch in Google Scholar

Soroceanu, A. and Stiubianu, G.T. (2021). Siloxane matrix molecular weight influences the properties of nanocomposites based on metal complexes and dielectric elastomer. Materials 14: 3352.10.3390/ma14123352Search in Google Scholar PubMed PubMed Central

Sorokin, V.V., Ecker, E., Stepanov, G.V., Shamonin, M., Monkman, G.J., Kramarenko, E.Y., and Khokhlov, A.R. (2014). Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter 10: 8765–8776.10.1039/C4SM01738BSearch in Google Scholar

Sorokin, V.V., Sokolov, B.O., Stepanov, G.V., and Kramarenko, E.Y. (2018). Controllable hydrophobicity of magnetoactive elastomer coatings. J. Magn. Magn Mater. 459: 268–271.10.1016/j.jmmm.2017.10.074Search in Google Scholar

Sosnin, I.M., Vlassov, S., and Dorogin, L.M. (2021). Application of polydimethylsiloxane in photocatalyst composite materials: a review. React. Funct. Polym. 158: 104781.10.1016/j.reactfunctpolym.2020.104781Search in Google Scholar

Srividhya, M., Chandrasekar, K., Baskar, G., and Reddy, B.S.R. (2007). Physico-chemical properties of siloxane surfactants in water and their surface energy characteristics. Polymer 48: 1261–1268.10.1016/j.polymer.2007.01.015Search in Google Scholar

Stiubianu, G., Dumitriu, A.M., Varganici, C.D., Tugui, C., Iacob, M., Bele, A., and Cazacu, M. (2016). Changes induced in the properties of dielectric silicone elastomers by the incorporation of transition metal complexes. High Perform. Polym. 28: 915–926.10.1177/0954008315610393Search in Google Scholar

Ştiubianu, G., Soroceanu, A., Varganici, C.D., Tugui, C., and Cazacu, M. (2016). Dielectric elastomers based on silicones filled with transitional metal complexes. Compos. B Eng. 93: 236–243.10.1016/j.compositesb.2016.03.005Search in Google Scholar

Strąkowska, A., Kosmalska, A., Masłowski, M., Szmechtyk, T., Strzelec, K., and Zaborski, M. (2019). POSS as promoters of self-healing process in silicone composites. Polym. Bull. 76: 3387–3402.10.1007/s00289-018-2522-8Search in Google Scholar

Stricher, A.M., Rinaldi, R.G., Barrès, C., Ganachaud, F., and Chazeau, L. (2015). How I met your elastomers: from network topology to mechanical behaviours of conventional silicone materials. RSC Adv. 5: 53713–53725.10.1039/C5RA06965CSearch in Google Scholar

Su, J., Yu, L., and Skov, A.L. (2019). Remarkable improvement of the electro-mechanical properties of polydimethylsiloxane elastomers through the combined usage of glycerol and pyridinium-based ionic liquids. Polym. Technol. Mater. 59: 271–281.10.1080/25740881.2019.1625398Search in Google Scholar

Subramanian, V. and Varade, D. (2017). Self-healed materials from thermoplastic polymer composites. In: Ponnamma, D. (Ed.). Smart polymer nanocomposites. Springer International Publishing AG, Gujarat, India, pp. 153–180.10.1007/978-3-319-50424-7_6Search in Google Scholar

Sun, H., Liu, X., Liu, S., Yu, B., and Ning, N. (2020a). Supramolecular silicone dielectric elastomer with high dielectric constant, fast and highly efficient self-healing at mild conditions. J. Mater. Chem. 8: 23330–23343.10.1039/D0TA06577CSearch in Google Scholar

Sun, H., Liu, X., Liu, S., Yu, B., Ning, N., Tian, M., and Zhang, L. (2020b). Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network. Chem. Eng. J. 384: 123242.10.1016/j.cej.2019.123242Search in Google Scholar

Sunderland, E.M., Hu, X.C., Dassuncao, C., Tokranov, A.K., Wagner, C.C., and Allen, J.G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29: 131–147.10.1038/s41370-018-0094-1Search in Google Scholar PubMed PubMed Central

Suriano, R., Tonelli, C., and Turri, S. (2020). Viscoelastic properties and self-healing behavior in a family of supramolecular ionic blends from silicone functional oligomers. Polym. Adv. Technol. 31: 3247–3257.10.1002/pat.5049Search in Google Scholar

Tao, H.Q., Yue, D.W., and Li, C.H. (2022). A fast self-healing magnetic nanocomposite for magnetic actuators. Macromol. Mater. Eng. 307: 2100649.10.1002/mame.202100649Search in Google Scholar

Tazawa, S., Shimojima, A., Maeda, T., and Hotta, A. (2018). Thermoplastic polydimethylsiloxane with l-phenylalanine-based hydrogen-bond networks. J. Appl. Polym. Sci. 135: 45419.10.1002/app.45419Search in Google Scholar

Tian, M., Zuo, H., Wang, J., Ning, N., Yu, B., and Zhang, L. (2020). A silicone elastomer with optimized and tunable mechanical strength and self-healing ability based on strong and weak coordination bonds. Polym. Chem. 11: 4047–4057.10.1039/D0PY00434KSearch in Google Scholar

TPSiV Material Range (2011). Available at: in Google Scholar

Tugui, C. (2021). Silicone-spin crossover composites capable of multi-stimuli response. In: Abstract of 13th international conference on physics of advanced materials, Spain, pp. 242–243, Available at: in Google Scholar

Tugui, C., Cazacu, M., Sacarescu, L., Bele, A., Stiubianu, G., Ursu, C., and Racles, C. (2015a). Full silicone interpenetrating bi-networks with different organic groups attached to the silicon atoms. Polymer 77: 312–322.10.1016/j.polymer.2015.09.042Search in Google Scholar

Tugui, C., Stiubianu, G., Iacob, M., Ursu, C., Bele, A., Vlad, S., and Cazacu, M. (2015b). Bimodal silicone interpenetrating networks sequentially built as electroactive dielectric elastomers. J. Mater. Chem. C 3: 8963–8969.10.1039/C5TC01391GSearch in Google Scholar

Tugui, C., Vlad, S., Iacob, M., Varganici, C.D., Pricop, L., and Cazacu, M. (2016). Interpenetrating poly(urethane-urea)–polydimethylsiloxane networks designed as active elements in electromechanical transducers. Polym. Chem. 7: 2709–2719.10.1039/C6PY00157BSearch in Google Scholar

Tugui, C., Bele, A., Tiron, V., Hamciuc, E., Varganici, C.D., and Cazacu, M. (2017a). Dielectric elastomers with dual piezo-electrostatic response optimized through chemical design for electromechanical transducers. J. Mater. Chem. C 5: 824–834.10.1039/C6TC05193FSearch in Google Scholar

Tugui, C., Ursu, C., Sacarescu, L., Asandulesa, M., Stoian, G., Ababei, G., and Cazacu, M. (2017b). Stretchable energy harvesting devices: attempts to produce high-performance electrodes. ACS Sustain. Chem. Eng. 5: 7851–7858.10.1021/acssuschemeng.7b01354Search in Google Scholar

Tugui, C., Serbulea, M.S., and Cazacu, M. (2019). Preparation and characterisation of stacked planar actuators. Chem. Eng. J. 364: 217–225.10.1016/j.cej.2019.01.150Search in Google Scholar

Tugui, C., Stiubianu, G.T., Serbulea, M.S., and Cazacu, M. (2020). Silicone dielectric elastomers optimized by crosslinking pattern-a simple approach to high-performance actuators. Polym. Chem. 11: 3271–3284.10.1039/D0PY00223BSearch in Google Scholar

Utrera-Barrios, S., Verdejo, R., López-Manchado, M.A., and Hernández Santana, M. (2020). Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater. Horiz. 7: 2882–2902.10.1039/D0MH00535ESearch in Google Scholar

Vatankhah-Varnoosfaderani, M., Daniel, W.F.M., Zhushma, A.P., Li, Q., Morgan, B.J., Matyjaszewski, K., Armstrong, D.P., Spontak, R.J., Dobrynin, A.V., and Sheiko, S.S. (2017). Bottlebrush elastomers: a new platform for freestanding electroactuation. Adv. Mater. 29: 1604209.10.1002/adma.201604209Search in Google Scholar PubMed

Voronkov, M.G., Mileshkevich, V.P., and Yuzhelevskii, Y.A. (1978). The siloxane bond: physical properties and chemical transformations. Springer, New York.Search in Google Scholar

Wacker Chemie, A.G. (2021). Elastosil film 2030. Availabe at: in Google Scholar

Wacker Silicones (2014a). Geniomer property data sheets.Search in Google Scholar

Wacker Silicones (2014b). Geniomer silicone-based thermoplastics.Search in Google Scholar

Walsh, S. (2019). The future of silicone elastomers to 2024. Available at: in Google Scholar

Wang, D.P., Zhao, Z.H., Li, C.H., and Zuo, J.L. (2019). An ultrafast self-healing polydimethylsiloxane elastomer with persistent sealing performance. Mater. Chem. Front. 3: 1411–1421.10.1039/C9QM00115HSearch in Google Scholar

Wang, G., Qu, W., Du, Z., Cao, Q., and Li, Q. (2011). Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety. J. Phys. Chem. B 115: 3811–3818.10.1021/jp110578uSearch in Google Scholar PubMed

Wang, G., Li, A., Zhao, W., Xu, Z., Ma, Y., Zhang, F., Zhang, Y., Zhou, J., and He, Q. (2021). A review on fabrication methods and research progress of superhydrophobic silicone rubber materials. Adv. Mater. Interfac. 8: 2001460.10.1002/admi.202001460Search in Google Scholar

Wang, J.J., Hsu, T.H., Yeh, C.N., Tsai, J.W., and Su, Y.C. (2012). Piezoelectric polydimethylsiloxane films for MEMS transducers. J. Micromech. Microeng. 22: 015013.10.1088/0960-1317/22/1/015013Search in Google Scholar

Wang, J.L., Sheng, S.Z., He, Z., Wang, R., Pan, Z., Zhao, H.Y., Liu, J.W., and Yu, S.H. (2021). Self-powered flexible electrochromic smart window. Nano Lett. 21: 9976–9982.10.1021/acs.nanolett.1c03438Search in Google Scholar PubMed

Wang, S. and Urban, M.W. (2020). Self-healing polymers. Nat. Rev. Mater. 5: 562–583.10.1038/s41578-020-0202-4Search in Google Scholar

Wang, W., Lu, W., Kang, N.G., Mays, I., and Hong, K. (2017). Thermoplastic elastomers based on block, graft, and star copolymers. In: Çankaya, N. (Ed.). Elastomers. IntechOpen, London, pp. 97–119.10.5772/intechopen.68586Search in Google Scholar

Wang, Y., Ding, L., Zhao, C., Wang, S., Xuan, S., Jiang, H., and Gong, X. (2018). A novel magnetorheological shear-stiffening elastomer with self-healing ability. Compos. Sci. Technol. 168: 303–311.10.1016/j.compscitech.2018.10.019Search in Google Scholar

Wang, Y., Xiang, P., Ren, A., Lai, H., Zhang, Z., Xuan, Z., Wan, Z., Zhang, J., Hao, X., Wu, L., et al.. (2020). MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Appl. Mater. Interfaces 12: 53973–53983.10.1021/acsami.0c17338Search in Google Scholar PubMed

Wang, Z., Nelson, J.K., Miao, J., Linhardt, R.J., Schadler, L.S., Hillborg, H., and Zhao, S. (2012b). Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 19: 960–967.10.1109/TDEI.2012.6215100Search in Google Scholar

Wang, Z., Liu, Y., Zhang, D., Zhang, K., Gao, C., and Wu, Y. (2021). Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Compos. Sci. Technol. 216: 109042.10.1016/j.compscitech.2021.109042Search in Google Scholar

Warrick, E.L., Piccoli, W.A., and Stark, F.O. (1955). Melt viscosities of dimethylpolysiloxanes. J. Am. Chem. Soc. 77: 5017–5018.10.1021/ja01624a024Search in Google Scholar

Wei, L., Wang, J.W., Gao, X.H., Wang, H.Q., Wang, X.Z., and Ren, H. (2020). Enhanced dielectric properties of a poly(dimethyl siloxane) bimodal network percolative composite with MXene. ACS Appl. Mater. Interfaces 12: 16805–16814.10.1021/acsami.0c01409Search in Google Scholar PubMed

White, B.T. and Long, T.E. (2019). Advances in polymeric materials for electromechanical devices. Macromol. Rapid Commun. 40: 1800521.10.1002/marc.201800521Search in Google Scholar PubMed

Wright, P.V. (1984). Cyclische siloxane. In: Ivin, K.J., and Saegusa, T. (Eds.). Ring opening polymerization. Elsevier, London, pp. 1055–1133.Search in Google Scholar (2022).Search in Google Scholar

Yan, H., Dai, S., Chen, Y., Ding, J., and Yuan, N. (2019). A high stretchable and self–healing silicone rubber with double reversible bonds. ChemistrySelect 4: 10719–10725.10.1002/slct.201902244Search in Google Scholar

Yang, L., Lin, Y., Wang, L., and Anqiang, Z. (2014). The synthesis and characterization of supramolecular elastomers based on linear carboxyl terminated polydimethylsiloxane oligomers. Polym. Chem. 5: 153–160.10.1039/C3PY01005HSearch in Google Scholar

Yang, T., Liu, L., Li, X., and Zhang, L. (2022). High performance silicate/silicone elastomer dielectric composites. Polymer 240: 124470.10.1016/j.polymer.2021.124470Search in Google Scholar

Yang, Z., Peng, H., Wang, W., and Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116: 2658–2667.10.1002/app.31787Search in Google Scholar

Yi, B., Wang, S., Hou, C., Huang, X., Cui, J., and Yao, X. (2021). Dynamic siloxane materials: from molecular engineering to emerging applications. Chem. Eng. J. 405: 127023.10.1016/j.cej.2020.127023Search in Google Scholar

Yilgör, E. and Yilgör, I. (2014). Silicone containing copolymers: synthesis, properties and applications. Prog. Polym. Sci. 39: 1165–1195.10.1016/j.progpolymsci.2013.11.003Search in Google Scholar

Yin, J., Hinchet, R., Shea, H., and Majidi, C. (2021). Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31: 1–26.10.1002/adfm.202007428Search in Google Scholar

Yin, Y.S. and Chang, X.T. (2011). Ocean engineering application of nanocomposites. In: Jinsong, L., and Lau, A.K.T. (Eds.). Multifunctional polymer nanocomposites. CRC Press, Boca Raton, FL, pp. 423–434.10.1201/b10462-11Search in Google Scholar

Yin, Z., Guo, J., Qiao, J., and Chen, X. (2020). Improved self-healing properties and crack growth resistance of polydimethylsiloxane elastomers with dual-capsule room-temperature healing systems. Colloid Polym. Sci. 298: 67–77.10.1007/s00396-019-04587-2Search in Google Scholar

You, Y., Rong, M.Z., and Zhang, M.Q. (2021). Adaptable reversibly interlocked networks from immiscible polymers enhanced by hierarchy-induced multilevel energy consumption mechanisms. Macromolecules 54: 4802–4815.10.1021/acs.macromol.1c00289Search in Google Scholar

Yu, D., Zhao, X., Zhou, C., Zhang, C., and Zhao, S. (2017). Room temperature self-healing methyl phenyl silicone rubbers based on the metal–ligand cross-link: synthesis and characterization. Macromol. Chem. Phys. 218: 1600519.10.1002/macp.201600519Search in Google Scholar

Yu, L. and Skov, A.L. (2018). Molecular strategies for improved dielectric elastomer electrical breakdown strengths. Macromol. Rapid Commun. 39: 1800383.10.1002/marc.201800383Search in Google Scholar PubMed

Yu, L., Madsen, F.B., Hvilsted, S., and Skov, A.L. (2015). Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks. RSC Adv. 5: 49739–49747.10.1039/C5RA07375HSearch in Google Scholar

Yu, S., Zuo, H., Xu, X., Ning, N., Yu, B., Zhang, L., and Tian, M. (2021). Self-healable silicone elastomer based on the synergistic effect of the coordination and ionic bonds. ACS Appl. Polym. Mater. 3: 2667–2677.10.1021/acsapm.1c00236Search in Google Scholar

Zalewski, K., Chyłek, Z., and Trzciński, W.A. (2021). A review of polysiloxanes in terms of their application in explosives. Polymers 13: 1080.10.3390/polym13071080Search in Google Scholar PubMed PubMed Central

Zare, M., Ghomi, E.R., Venkatraman, P.D., and Ramakrishna, S. (2021). Silicone-based biomaterials for biomedical applications: antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 138: 1–18.10.1002/app.50969Search in Google Scholar

Zhang, B., Digby, Z.A., Flum, J.A., Foster, E.M., Sparks, J.L., and Konkolewicz, D. (2015). Self-healing, malleable and creep limiting materials using both supramolecular and reversible covalent linkages. Polym. Chem. 6: 7368–7372.10.1039/C5PY01214GSearch in Google Scholar

Zhang, B., Zhang, P., Zhang, H., Yan, C., Zheng, Z., Wu, B., and Yu, Y. (2017). A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer. Macromol. Rapid Commun. 38: 1700110.10.1002/marc.201700110Search in Google Scholar PubMed

Zhang, H., Dai, M., and Zhang, Z. (2019). The analysis of transparent dielectric elastomer actuators for lens. Optik 178: 841–845.10.1016/j.ijleo.2018.10.057Search in Google Scholar

Zhang, K., Liu, Y., Wang, Z., Song, C., Gao, C., and Wu, Y. (2020a). A type of self-healable, dissoluble and stretchable organosilicon elastomer for flexible electronic devices. Eur. Polym. J. 134: 109857.10.1016/j.eurpolymj.2020.109857Search in Google Scholar

Zhang, K., Sun, J., Song, J., Gao, C., Wang, Z., Song, C., Wu, Y., and Liu, Y. (2020b). Self-healing Ti3C2MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12: 45306–45314.10.1021/acsami.0c13653Search in Google Scholar PubMed

Zhang, L., Yao, W., Gao, Y., Zhang, C., and Yang, H. (2018). Polysiloxane-based side chain liquid crystal polymers: from synthesis to structure–phase transition behavior relationships. Polymers 10: 749.10.3390/polym10070794Search in Google Scholar PubMed PubMed Central

Zhang, M., Yan, D., Wang, J., and Shao, L.-H. (2021). Ultrahigh flexoelectric effect of 3D interconnected porous polymers: modelling and verification. J. Mech. Phys. Solid. 151: 104396.10.1016/j.jmps.2021.104396Search in Google Scholar

Zhang, X., Lin, G., Kumar, S.R., and Mark, J.E. (2009). Hydrogels prepared from polysiloxane chains by end linking them with trifunctional silanes containing hydrophilic groups. Polymer 50: 5414–5421.10.1016/j.polymer.2009.01.047Search in Google Scholar

Zhang, Y., Chen, W., Wang, L., and Li, P. (2018). Visible-light-induced selective amination of enol ethers with: N -alkoxyamides by using DDQ as a photoredox catalyst. Org. Chem. Front. 5: 3562–3566.10.1039/C8QO00980ESearch in Google Scholar

Zhang, Y., Wang, Q., Yi, S., Lin, Z., Wang, C., Chen, Z., and Jiang, L. (2021). 4D printing of magnetoactive soft materials for on-demand magnetic actuation transformation. ACS Appl. Mater. Interfaces 13: 4174–4184.10.1021/acsami.0c19280Search in Google Scholar PubMed

Zhao, H., Wood, R.J., Hajiesmaili, E., Clarke, D.R., and Duduta, M. (2019). Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl. Acad. Sci. U.S.A. 116: 2476–2481.10.1073/pnas.1815053116Search in Google Scholar PubMed PubMed Central

Zhao, L., Shi, X., Yin, Y., Jiang, B., and Huang, Y. (2020). A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos. Sci. Technol. 186: 107919.10.1016/j.compscitech.2019.107919Search in Google Scholar

Zhao, P., Wang, L., Xie, L., Wang, W., Wang, L., Zhang, C., Li, L., and Feng, S. (2021). Mechanically strong, autonomous self-healing, and fully recyclable silicone coordination elastomers with unique photoluminescent properties. Macromol. Rapid Commun. 42: 2100519.10.1002/marc.202100519Search in Google Scholar PubMed

Zhao, P.C., Li, W., Huang, W., and Li, C.H. (2020). A self-healing polymer with fast elastic recovery upon stretching. Molecules 25: 1–13.10.3390/molecules25030597Search in Google Scholar PubMed PubMed Central

Zhao, X. and Zhang, J. (2019). A novel composite silicone foam with enhanced safeguarding performance and self-healing property. React. Funct. Polym. 138: 114–121.10.1016/j.reactfunctpolym.2019.03.004Search in Google Scholar

Zheng, N., Xu, Y., Zhao, Q., and Xie, T. (2021). Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121: 1716–1745.10.1021/acs.chemrev.0c00938Search in Google Scholar PubMed

Zheng, P.and McCarthy, T.J. (2012). A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134: 2024–2027.10.1021/ja2113257Search in Google Scholar PubMed

Zheng, S. and Brook, M.A. (2020). Reversible redox crosslinking of thiopropylsilicones. Macromol. Rapid Commun. 42: 2000375.10.1002/marc.202000375Search in Google Scholar PubMed

Zheng, S., Chen, Y., and Brook, M.A. (2020). Thermoplastic silicone elastomers based on Gemini ionic crosslinks. Polym. Chem. 11: 7382–7392.10.1039/D0PY01044HSearch in Google Scholar

Zhou, X. and Zhang, D. (2016). Transition from micelle to vesicle of a novel sugar-based surfactant containing trisiloxane. Tenside Surfactants Deterg. 53: 273–277.10.3139/113.110433Search in Google Scholar

Received: 2021-10-18
Accepted: 2022-03-26
Published Online: 2022-06-22

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.2.2023 from
Scroll Up Arrow