Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter August 29, 2022

Synthesis and applications of TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes

  • Pedro José Navarro-Gázquez , Maria J. Muñoz-Portero , Encarna Blasco-Tamarit , Rita Sánchez-Tovar and José García-Antón EMAIL logo


In recent years, TiO2/ZnO hybrid nanostructures have been attracting the interest of the scientific community due to their excellent photoelectrochemical properties. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials lies in their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This factor produces a decrease in the band gap and the recombination rate and an increase in the light absorption range. The aim of this review is to perform a revision of the main methods to synthesise TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes. Electrochemical synthesis methods provide an easy, fast, and highly efficient route to carry out the synthesis of nanostructures such as nanowires, nanorods, nanotubes, etc. They allow us to control the stoichiometry, thickness and structure mainly by controlling the voltage, time, temperature, composition of the electrolyte, and concentration of monomers. In addition, a study of the most promising applications for TiO2/ZnO hybrid nanostructures has been carried out. In this review, the applications of dye-sensitised solar cell, photoelectrocatalytic degradation of organic compounds, photoelectrochemical water splitting, gas sensors, and lithium-ion batteries have been highlighted.

Corresponding author: José García-Antón, Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain, E-mail:

Funding source: Ministerio de Ciencia e Innovación and ESF Investing in your future

Award Identifier / Grant number: PEJ2018-003596-A-AR

Funding source: Agencia Estatal de Investigación and the European Social Fund

Award Identifier / Grant number: PID2019-105844RB-I00/MCIN/AEI/10.13039/501100011033

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank the Agencia Estatal de Investigación (PID2019-105844RB-I00/MCIN/AEI/10.13039/501100011033) for the financial support and the European Social Fund for the co-financing. Pedro José Navarro Gázquez also wants to show his gratitude for the concession of grant PEJ2018-003596-A-AR funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Aal, A., Barakat, M., and Mohamed, R. (2008). Electrophoreted Zn–TiO2–ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol. Appl. Surf. Sci. 254: 4577–4583, in Google Scholar

Abdel-wahed, M.S., Gad-allah, T.A., Abdel-karim, A., and Margha, F.H. (2021). UV sensitive ZnO and TiO2-ZnO nanocrystalline transparent glass-ceramic materials for photocatalytic decontamination of surface water and textile industry wastewater. Environ Prog Sustainable Energy 40: e13653, in Google Scholar

Abellán, M.N., Giménez, J., and Esplugas, S. (2009). Photocatalytic degradation of antibiotics: the case of sulfamethoxazole and trimethoprim. Catal. Today 144: 131–136, in Google Scholar

Acar, C., Dincer, I., and Naterer, G.F. (2016). Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 40: 1449–1473, in Google Scholar

Adams, D.M., Brus, L., Chidsey, C.E.D., Creager, S., Creutz, C., Kagan, C.R., Kamat, P.V., Lieberman, M., Lindsay, S., Marcus, R.A., et al.. (2003). Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107: 6668–6697, in Google Scholar

Aldabagh, S.Y., Aadim, K.A., and Abbas, T.T. (2016). Fabrication of TiO2 doped ZnO UV detector by pulse laser deposition. Int. J. Eng. Appl. Sci. 3: 34–36.Search in Google Scholar

Alivisatos, A.P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100: 13226–13239, in Google Scholar

Al-Johani, M.S., Al-Zaghayer, Y.S., and Al-Mayman, S.I. (2015). TiO2/ZnO photocatalytic activity for hydrogen production. J. Environ. Sci., in Google Scholar

Allam, N. and Grimes, C. (2009). Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties. Langmuir 25: 7234–7240, in Google Scholar PubMed

Allen, N.S., Mahdjoub, N., Vishnyakov, V., Kelly, P.J., and Kriek, R.J. (2018). The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym. Degrad. Stabil. 150: 31–36, in Google Scholar

Anaya-Esparza, L.M., Montalvo-González, E., González-Silva, N., Méndez-Robles, M.D., Romero-Toledo, R., Yahia, E.M., and Pérez-Larios, A. (2019). Synthesis and characterization of TiO2-ZnO-MgO mixed oxide and their antibacterial activity. Materials 12: 698, in Google Scholar PubMed PubMed Central

Archana, T., Vijayakumar, K., Arivanandhan, M., and Jayavel, R. (2019). TiO2 nanostructures with controlled morphology for improved electrical properties of photoanodes and quantum dot sensitized solar cell characteristics. Surface. Interfac. 17: 100350, in Google Scholar

Arin, J., Thongtem, S., and Thongtem, T. (2013). Single-step synthesis of ZnO/TiO2 nanocomposites by microwave radiation and their photocatalytic activities. Mater. Lett. 96: 78–81, in Google Scholar

Asgari, V., Noormohammadi, M., Ramazani, A., and Kashi, M.A. (2017). A facile method to form highly-ordered TiO2 nanotubes at a stable growth rate of 1000 nm min-1 under 60 v using an organic electrolyte for improved photovoltaic properties. J. Phys. D Appl. Phys. 50: 375501, in Google Scholar

Aydin, E.B., Siğircik, G., and Takci, H.A.M. (2021). Antimicrobial properties and corrosion behavior of TiO2NTs electrodes modified with Ag and ZnO nanorod in simulated body fluid solution. J. Mol. Struct. 1240: 130569, in Google Scholar

Bai, S., Yuan, Z., and Gao, F. (2018). Synthesis, characterization and applications of ZnO/TiO2/SiO2 zinc (tris) thiourea sulfate nanocomposite. J. Mater. Chem. C 34: 3898–3904.Search in Google Scholar

Bai, N., Liu, X., Li, Z., Ke, X., Zhang, K., and Wu, Q. (2021). High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods. J. Sol. Gel Sci. Technol. 99: 92–100, in Google Scholar

Banerjee, A.N. (2011). The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 4: 35–65, in Google Scholar PubMed PubMed Central

Banerjee, A.N. and Chattopadhyay, K.K. (2005). Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Prog. Cryst. Growth Char. Mater. 50: 52–105, in Google Scholar

Batista-Grau, P., Sánchez-Tovar, R., Fernández-Domene, R.M., and García-Antón, J. (2020). Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting. Surf. Coating. Technol. 381: 125197, in Google Scholar

Bensebaa, F. (2013). Chapter 2: wet production methods. In: Bensebaa, F. (Ed.), Interface science and technology. Nanoparticle technologies. Elsevier, Ottawa, Canada, pp. 85–146.Search in Google Scholar

Benkara, S. and Zerkout, S. (2010). Preparation and characterization of ZnO nanorods grown into aligned TiO 2 nanotube array. J. Mater. Environ. Sci. 1: 173–188.Search in Google Scholar

Blasco-Tamarit, E., Muñoz-Portero, M.J., Sánchez-Tovar, R., Fernández-Domene, R.M., and García-Antón, J. (2018). The effect of Reynolds number on TiO2 nanosponges doped with Li+ cations. New J. Chem. 42: 11054–11063, in Google Scholar

Bonatto, F., Puga, M.L., Alves, A.K., da Silva, J.A., Jimenez, V.L., and Bergmann, C.P. (2020). Direct synthesis of singular silver dendrites over TiO2 nanotubes using pentetic acid as capping agent. Mater. Lett. 264: 127163, in Google Scholar

Boro, B., Gogoi, B., Rajbongshi, B.M., and Ramchiary, A. (2018). Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew. Sustain. Energy Rev. 81: 2264–2270, in Google Scholar

Boyadjiev, S.I., Kéri, O., Bárdos, P., Firkala, T., Gáber, F., Nagy, Z.K., Baji, Z., Takács, M., and Szilágyi, I.M. (2017). TiO 2/ZnO and ZnO/TiO 2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl. Surf. Sci. 424: 190–197, in Google Scholar

Brooms, T., Otieno, B., Onyango, M., and Ochieng, A. (2017). Photocatalytic degradation of P-Cresol using TiO 2/ZnO hybrid surface capped with polyaniline. J. Environ. Sci. Heal. Part A 53: 1–9, in Google Scholar PubMed

Byrappa, K. and Yoshimura, M. (2001). 1 - Hydrothermal Technology—Principles and Applications. In: Handbook of Hydrothermal Technology. William Andrew Publishing, Norwich, NY, pp. 1–52.10.1016/B978-081551445-9.50002-7Search in Google Scholar

Cao, Z., Yang, Y., Qin, J., He, J., and Su, Z. (2022). 3D TiO 2/ZnO hybrid framework: stable host for lithium metal anodes. Chem. Eng. J. 427: 132026, in Google Scholar

Chabalala, M.B., Gumbi, N.N., Mamba, B.B., Al-Abri, M.Z., and Nxumalo, E.N. (2021). Photocatalytic nanofiber membranes for the degradation of micropollutants and their antimicrobial activity: recent advances and future prospects. Membranes 11: 678, in Google Scholar PubMed PubMed Central

Chen, H., Zhu, L., Liu, H., and Li, W. (2013). Effects of preparing conditions on the nanostructures electrodeposited from the Zn(NO3)2 electrolyte containing KCl. Thin Solid Films 534: 205–213, in Google Scholar

Chen, Q., Tong, R., Chen, X., Xue, Y., Xie, Z., Kuang, Q., and Zheng, L. (2018). Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catal. Sci. Technol. 8: 1296–1303, in Google Scholar

Chen, X. and Mao, S.S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107: 2891–2959, in Google Scholar PubMed

Cheng, Z., Gu, Z., Chen, J., Yu, J., and Zhou, L. (2016). Synthesis, characterization, and photocatalytic activity of porous La–N–co-doped TiO2 nanotubes for gaseous chlorobenzene oxidation. J. Environ. Sci. 46: 203–213, in Google Scholar PubMed

Choi, K.-S., Jang, H.S., McShane, C.M., Read, C.G., and Seabold, J.A. (2010). Electrochemical synthesis of inorganic polycrystalline electrodes with controlled architectures. MRS Bull. 35: 753–760, in Google Scholar

Chu, D., Younis, A., and Li, S. (2012). Direct growth of TiO 2 nanotubes on transparent substrates and their resistive switching characteristics. J. Phys. D Appl. Phys. 45: 1–5, in Google Scholar

Dai, S., Li, Y., Du, Z., and Carter, K.R. (2013). Electrochemical deposition of ZnO hierarchical nanostructures from hydrogel coated electrodes. J. Electrochem. Soc. 160: D156–D162, in Google Scholar

Degen, A. and Kosec, M. (2000). Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J. Eur. Ceram. Soc. 20: 667–673, in Google Scholar

Drunka, R., Grabis, J., Letlena, A., Jankovica, D., Krumina, A., and Steins, I. (2019). Preparation of ZnO modified TiO2 nanoporous coatings and their photocatalytic properties. IOP Conf. Ser. Mater. Sci. Eng. 503: 012008, in Google Scholar

Duarte, C.A., Goulart, L.R., de Souza Castro Filice, L., de Lima, I.L., Campos-Fernándes, E., Dantas, N.O., Silva, A.C.A., Soares, M.B.P., dos Santos, R.R., Cardoso, C.M.A., et al.. (2020). Characterization of crystalline phase of TiO2. Materials 13: 4071.10.3390/ma13184071Search in Google Scholar PubMed PubMed Central

Elfiky, M. and Salahuddin, N. (2021). Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2–ZnO hybrids. Microchem. J. 170: 106582, in Google Scholar

Elias, J. and Le, C. (2008). Electrochemical deposition of ZnO nanowire arrays with tailored dimensions 621: 171–177, in Google Scholar

Elias, J., Tenazaera, R., and Levyclement, C. (2007). Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films 515: 8553–8557, in Google Scholar

El Ruby Mohamed, A. and Rohani, S. (2011). Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4: 1065–1086, in Google Scholar

Fakharuddin, A., Di Giacomo, F., Palma, A.L., Matteocci, F., Ahmed, I., Razza, S., D’Epifanio, A., Licoccia, S., Ismail, J., Di Carlo, A., et al.. (2015). Vertical TiO2 nanorods as a medium for stable and high-efficiency Perovskite solar modules. ACS Nano 9: 8420–8429, in Google Scholar PubMed

Fahoume, M., Maghfoul, O., Aggour, M., Hartiti, B., Chraïbi, F., and Ennaoui, A. (2006). Growth and characterization of ZnO thin films prepared by electrodeposition technique. Sol. Energy Mater. Sol. Cells 90: 1437–1444, in Google Scholar

Farooq, U., Ahmed, F., Pervez, S.A., Rehman, S., Pope, M.A., Fichtner, M., and Roberts, E.P.L. (2020). A stable TiO 2–graphene nanocomposite anode with high rate capability for lithium-ion batteries. RSC Adv. 10: 29975–29982, in Google Scholar PubMed PubMed Central

Fatimah, I. and Novitasari (2016). Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol. IOP Conf. Ser. Mater. Sci. Eng. 107: 012003, in Google Scholar

Feldheim, D.L. and Keating, C.D. (1998). Self-assembly of single electron transistors and related devices. Chem. Soc. Rev. 27: 1–12, in Google Scholar

Feng, W., Lin, L., Li, H., Chi, B., Pu, J., and Li, J. (2017). Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting. Int. J. Hydrogen Energy 42: 3938–3946, in Google Scholar

Feng, W., Yang, X., He, Z., and Liu, M. (2021). Hydrogen sulfide gas sensor based on TiO2–ZnO composite sensing membrane-coated no-core fiber. J. Phys. D Appl. Phys. 54: 135105, in Google Scholar

Frade, T., Lobato, K., Carreira, J.F.C., Rodrigues, J., Monteiro, T., and Gomes, A. (2016). TiO2 anatase intermediary layer acting as template for ZnO pulsed electrodeposition. Mater. Des. 110: 18–26, in Google Scholar

Gaya, U.I. and Abdullah, A.H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9: 1–12, in Google Scholar

Georgakopoulos, T., Todorova, N., Pomoni, K., and Trapalis, C. (2015). On the transient photoconductivity behavior of sol-gel TiO2/ZnO composite thin films. J. Non-Cryst. Solids 410: 135–141, in Google Scholar

Ghicov, A. and Schmuki, P. (2009). Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 40: 2791–2808, in Google Scholar PubMed

Giannakopoulou, T., Todorova, N., Giannouri, M., Yu, J., and Trapalis, C. (2014). Optical and photocatalytic properties of composite TiO 2/ZnO thin films. Catal. Today 230: 174–180, in Google Scholar

Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., and Dickey, E.C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16: 3331–3334, in Google Scholar

Goux, A., Pauporté, T., Chivot, J., and Lincot, D. (2005). Temperature effects on ZnO electrodeposition. Electrochim. Acta 50: 2239–2248, in Google Scholar

Guo, L., Gao, G., Liu, X., and Liu, F. (2008). Preparation and characterization of TiO2 nanosponge. Mater. Chem. Phys. 111: 322–325, in Google Scholar

Gupta, D., Chauhan, R., Kumar, N., Singh, V., Srivastava, V.C., Mohanty, P., and Mandal, T.K. (2020). Enhancing photocatalytic degradation of quinoline by ZnO:TiO2 mixed oxide: optimization of operating parameters and mechanistic study. J. Environ. Manage. 258: 110032, in Google Scholar PubMed

Hashem, A.M. and Abdal-hay, A. (2021). Synthesis of TiO2@ZnO heterojunction for dye photodegradation and wastewater treatment. J. Alloys Compd. 886: 161169, in Google Scholar

Hashemi, M.M., Nikfarjam, A., Hajghassem, H., and Salehifar, N. (2020). Hierarchical dense array of ZnO nanowires spatially grown on ZnO/TiO2 nanofibers and their ultraviolet activated gas sensing properties. J. Phys. Chem. C 124: 322–355, in Google Scholar

Hernández, S., Hidalgo, D., Sacco, A., Chiodoni, A., Lamberti, A., Cauda, V., Tresso, E., and Saracco, G. (2015). Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Phys. Chem. Chem. Phys. 17: 7775–7786, in Google Scholar PubMed

Hidayat, R., Fadillah, G., and Wahyuningsih, S. (2019). A control of TiO2 nanostructures by hydrothermal condition and their application: a short review. IOP Conf. Ser. Mater. Sci. Eng. 578: 012031, in Google Scholar

Himmah, S.W., Diantoro, M., Astarini, N.A., Tiana, S.K.G., NasikhudinHidayat, A., and Taufiq, A. (2021). Structural, morphological, optical, and electrical properties of TiO2/ZnO rods multilayer films as photoanode on dye-sensitized solar cells. J. Phys. Conf. Ser. 1816: 012095, in Google Scholar

Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69–96, in Google Scholar

Hoyer, P. (1996). Formation of a titanium dioxide nanotube array. Langmuir 12: 1413–1412, in Google Scholar

Hsu, C.-L., Wu, H.-Y., Fang, C.-C., and Chang, S.-P. (2018). Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles. ACS Appl. Energy Mater. 1: 2087–2095, in Google Scholar

Huang, J.Y., Zhang, K.Q., and Lai, Y.K. (2013). Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review. Int. J. Photoenergy 2013: 761971, in Google Scholar

Ii, W.W. (2000). Coatings 71, in Google Scholar

Iijima, S. and Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363: 603–605, in Google Scholar

Inamdar, A.I., Mujawar, S.H., Barman, S.R., Bhosale, P.N., and Patil, P.S. (2008). The effect of bath temperature on the electrodeposition of zinc oxide thin films via an acetate medium. Semicond. Sci. Technol. 23: 085013, in Google Scholar

Inamdar, A.I., Sonavane, A.C., Sharma, S.K., Im, H., and Patil, P.S. (2010). Nanocrystalline zinc oxide thin films by novel double pulse single step electrodeposition. J. Alloys Compd. 495: 76–81, in Google Scholar

Indira, K., Mudali, U.K., Nishimura, T., and Rajendran, N. (2015). A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J. Bio- Tribo-Corrosion 1: 1–22, in Google Scholar

Indora, V., Yadav, S., and Mohan, D. (2020). Optical and structural analysis of sol-gel derived TiO2/MWCNT nanocomposites. 3Rd Int. Conf. Condens. Matter Appl. Phys. 2220: 020110.Search in Google Scholar

Iqbal, A., Saidu, U., Sreekantan, S., Ahmad, M.N., and Rashid, M. (2021). Mesoporous TiO2 implanted ZnO QDs for the photodegradation of tetracycline: material design, structural characterization and photodegradation mechanism. Catalysts 11: 1205, in Google Scholar

Izaki, M. and Omi, T. (1996). Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68: 2439–2440, in Google Scholar

Jain, R., Jadon, N., and Pawaiya, A. (2017). Polypyrrole based next generation electrochemical sensors and biosensors: a review. TrAC Trends Anal. Chem. 97: 363–373, in Google Scholar

Jiang, S., Wu, M., Zhou, Y., Wen, Y., Yang, C., and Zhang, S. (2007). Effects of electrodeposition conditions on the microstructures of ZnO thin films. Integrated Ferroelectrics Int. J. 88: 33–42, in Google Scholar

Jiang, Q., Han, Z., Yuan, Y., Cai, C., Li, J., and Cheng, Z. (2022a). Controlled preparation and photocatalytic performance of TiO2/ZnO phase-mixed nanotubes-based nano-spheres. Mater. Chem. Phys. 279: 125737, in Google Scholar

Jiang, X., Xu, L., Ji, W., Wang, W., Du, J., Yang, L., Song, W., Han, X., and Zhao, B. (2022b). One plus one greater than two: ultrasensitive surface-enhanced Raman scattering by TiO2/ZnO heterojunctions based on electron-hole separation. Appl. Surf. Sci. 584: 152609, in Google Scholar

Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A., and Kim, H.Y. (2010). Electrospun titania oxide nanofibers coupled zinc oxide nanobranches as a novel nanostructure for lithium ion batteries applications electrospun titania oxide nanofibers coupled zinc oxide nanobranches as a novel nanostructure for lithium ion. Bioceram. Dev. Appl. 1: D110129, in Google Scholar

Karuppuchamy, S. and Ito, S. (2008). Cathodic electrodeposition of nanoporous ZnO thin films from new electrochemical bath and their photoinduced hydrophilic properties. Vacuum 82: 547–550, in Google Scholar

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K. (1999). Titania nanotubes prepared by chemical processing. Adv. Mater. 11: 1307–1311,<1307::AID-ADMA1307>3.0.CO;2-H.10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-HSearch in Google Scholar

Kenanakis, G., Vernardou, D., Dalamagkas, A., and Katsarakis, N. (2015). Photocatalytic and electrooxidation properties of TiO2 thin films deposited by sol-gel. Catal. Today 240: 146–152, in Google Scholar

Khosravi, M., Maddah, A., Mehrdadi, N., Nabi, R., and Baghdadi, M. (2020). Synthesis of TiO2/ZnO electrospun nanofibers coated-sewage sludge carbon for adsorption of Ni(II), Cu(II), and COD from aqueous solutions and industrial wastewaters. J. Dispersion Sci. Technol. 42: 802–812, in Google Scholar

Kianfar, A. and Arayesh, M.A. (2019). Synthesis, characterization and investigation of photocatalytic and catalytic applications of Fe3O4/TiO2/CuO nanoparticles for degradation of MB and reduction of nitrophenols. J. Environ. Chem. Eng. 8: 103640, in Google Scholar

Klein, D.L., Rotht, R., Lim, A.K.L., Alivisatosti, A.P., and McEuen, P.L. (1997). A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389: 699–701, in Google Scholar

Kochuveedu, S.T. (2016). Photocatalytic and photoelectrochemical water splitting on TiO2 via photosensitization. J. Nanomater. 2016: 4073142, in Google Scholar

Kubiak, A., Bielan, Z., Kubacka, M., Gabała, E., Zgoła-Grześkowiak, A., Janczarek, M., Zalas, M., Zielinska-Jurek, A., Siwińska-Ciesielczyk, K., and Jesionowski, T. (2020). Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Appl. Surf. Sci. 520: 146344, in Google Scholar

Kubiak, A., Żółtowska, S., Bartkowiak, A., Gabała, E., Sacharczuk, N., Zalas, M., Siwińska-Ciesielczyk, K., and Jesionowski, T. (2021). The TiO2-ZnO systems with multifunctional applications in photoactive processes — efficient photocatalyst under UV-LED light and electrode materials in DSSCs. Materials 14: 6063, in Google Scholar PubMed PubMed Central

Kuchibhatla, S.V.N.T., Karakoti, A.S., Bera, D., and Seal, S. (2007). One dimensional nanostructured materials. Prog. Mater. Sci. 52: 699–913, in Google Scholar

Kumar, M. and Sasikumar, C. (2014). Electrodeposition of nanostructured ZnO thin film: a review. Am. J. Mater. Sci. Eng. 2: 18–23, in Google Scholar

Kusior, A., Wnuk, A., Trenczek-Zajac, A., Zakrzewska, K., and Radecka, M. (2015). TiO2 nanostructures for photoelectrochemical cells (PECs). Int. J. Hydrogen Energy 40: 4936–4944, in Google Scholar

Kusior, A., Zych, L., Zakrzewska, K., and Radecka, M. (2019). Photocatalytic activity of TiO 2/SnO 2 nanostructures with controlled dimensionality/complexity. Appl. Surf. Sci. 471: 973–985, in Google Scholar

Kutuzova, A., Dontsova, T., and Kwapinski, W. (2020). TiO2–SnO2 nanocomposites: effect of acid–base and structural-adsorption properties on photocatalytic performance. J. Inorg. Organomet. Polym. Mater. 30: 3060–3072, in Google Scholar

Lai, Y., Zhuang, H., Sun, L., Chen, Z., and Lin, C. (2009). Self-organized TiO2 nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance. Electrochim. Acta 54: 6536–6542, in Google Scholar

Lai, Y., Zhuang, H., Xie, K., Gong, D., Tang, Y., Sun, L., Lin, C., and Chen, Z. (2010). Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance. New J. Chem. 34: 1335–1340, in Google Scholar

Le, P.H. and Leu, J. (2018). Recent advances in TiO2 nanotube-based materials for photocatalytic applications designed by anodic oxidation. In: Titanium dioxide – material for a sustainable environment. IntechOpen, London, UK, pp. 131–150.10.5772/intechopen.77063Search in Google Scholar

Lee, K.M., Lee, E.S., Yoo, B., and Shin, D.H. (2013). Synthesis of ZnO-decorated TiO2nanotubes for dye-sensitized solarcells. Electrochim. Acta 109: 181–186, in Google Scholar

Lee, C.G., Na, K.H., Kim, W.T., Park, D.C., Yang, W.H., and Choi, W.Y. (2019). TiO2/ZnO nanofibers prepared by electrospinning and their photocatalytic degradation of methylene blue compared with TiO2 nanofibers. Appl. Sci. 9: 3404, in Google Scholar

Li, S., Zhang, G., Guo, D., Yu, L., and Zhang, W. (2009). Anodization fabrication of highly ordered TiO2 nanotubes. J. Phys. Chem. C 113: 12759–12765, in Google Scholar

Li, F., Jiao, Y., Xie, S., and Li, J. (2015). Sponge-like porous TiO2/ZnO nanodonuts for high efficiency dye-sensitized solar cells. J. Power Sources 280: 373–378, in Google Scholar

Li, G., Zhao, Q., Yang, H., and Liu, Z. (2016). Fabrication and characterization of ZnO-coated TiO2 nanotube arrays. Compos. Interfac. 23: 125–132, in Google Scholar

Li, Y., Zhao, Q., Shen, Y., Liu, X., Zhao, H., and Jiang, T. (2017). Fabrication of a ternary TiO 2 –CuO/graphite oxide composite and its efficient application in photocatalysis. J. Nanosci. Nanotechnol. 17: 3194–3199, in Google Scholar

Li, Z., Li, Z., Zuo, C., and Fang, X. (2022). Application of Nanostructured TiO2 in UV Photodetectors: A Review. Adv. Mater. 34: 2109083, doi: in Google Scholar PubMed

Li, Z., Yu, L., Wang, H., Yang, H., and Ma, H. (2020). Tio2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with ron collection. Nanomaterials 10: 1–14, in Google Scholar PubMed PubMed Central

Liang, Z., Gao, R., Lan, J., Wiranwetchayan, O., and Zhang, Q. (2013). Cells growth of vertically aligned ZnO nanowalls for inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 117: 34–40, in Google Scholar

Liao, Y., Zhang, K., Wang, X., Zhang, D., Li, Y., Su, H., Zhang, H., and Zhong, Z. (2018). Preparation of ZnO@TiO2 nanotubes heterostructured film by thermal decomposition and their photocatalytic performances. RSC Adv. 8: 8064–8070, in Google Scholar PubMed PubMed Central

Lin, Y., Yang, J., and Zhou, X. (2011). Controlled synthesis of oriented ZnO nanorod arrays by seed-layer-free electrochemical deposition. Appl. Surf. Sci. 258: 1491–1494, in Google Scholar

Lin, L., Yang, Y., Men, L., Wang, X., He, D., Chai, Y., Zhao, B., Ghoshroy, S., and Tang, Q. (2013). A highly efficient TiO2@ZnO n-p-n heterojunction nanorod photocatalyst. Nanoscale 5: 588–593, in Google Scholar PubMed

Lin, W.H., Chiu, Y.H., Shao, P.W., and Hsu, Y.J. (2016). Metal-particle-decorated ZnO nanocrystals: photocatalysis and charge dynamics. ACS Appl. Mater. Interfaces 8: 32754–32763, in Google Scholar PubMed

Liu, C., Jiao, Y., Tian, Y., Wang, Y., and Jiang, Z. (2013). Biomimetic synthesis of TiO2-SiO2-Ag nanocomposites with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5: 3824–3832, in Google Scholar PubMed

Liu, W., Su, P., Chen, S., Wang, N., Ma, Y., Liu, Y., Wang, J., Zhang, Z., Li, H., and Webster, T.J. (2014). Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale 6: 9050–9062, in Google Scholar PubMed

Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., and Ning, H. (2012). A survey on gas sensing technology. Sensors 12: 9635–9665, in Google Scholar PubMed PubMed Central

Liu, Y., Cai, T., Wang, L., Shuqu, Z., Zhang, G., and Xia, X. (2017). Hollow microsphere TiO2/ZnO p–n heterojuction with high photocatalytic performance for 2,4-dinitropheno mineralization. Nano 12: 1750076, in Google Scholar

Lou, Y., Yuan, S., Zhao, Y., Hu, P., Wang, Z., Zhang, M., Shi, L., and Li, D. (2013). A simple route for decorating TiO2 nanoparticle over ZnO aggregates dye-sensitized solar cell. Chem. Eng. J. 229: 190–196, in Google Scholar

Lu, J., Jin, H., Dai, Y., Yang, K., and Huang, B. (2012). Effect of electronegativity and charge balance on the visible-light-responsive photocatalytic activity of nonmetal doped anatase TiO2. Int. J. Photoenergy 2012: 928503, in Google Scholar

Lü, X., Huang, F., Mou, X., Wang, Y., and Xu, F. (2010). A general preparation strategy for hybrid TiO2 hierarchical spheres and their enhanced solar energy utilization efficiency. Adv. Mater. 22: 3719–3722, in Google Scholar PubMed

Lv, Y., Guo, Y., Zhang, H., Zhou, X., and Chen, H. (2018). Enhanced efficiency and stability of fully air-processed TiO2 nanorods array based perovskite solar cell using commercial available CuSCN and carbon. Sol. Energy 173: 7–16, in Google Scholar

Ma, Q.lan, Ma, S., and Huang, Y.M. (2018). Enhanced photovoltaic performance of dye sensitized solar cell with ZnO nanohoneycombs decorated TiO2 photoanode. Mater. Lett. 218: 237–240, in Google Scholar

Macak, J.M., Tsuchiya, H., and Schmuki, P. (2005a). High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chemie – Int. Ed. 44: 2100–2102, in Google Scholar PubMed

Macak, J.M., Sirotna, K., and Schmuki, P. (2005b). Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta 50: 3679–3684, in Google Scholar

Macak, J.M., Zlamal, M., Krysa, J., and Schmuki, P. (2007). Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3: 300–304, in Google Scholar PubMed

Madian, M., Eychmüller, A., and Giebeler, L. (2018). Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries 4: 7, in Google Scholar

Malallah Rzaij, J. and Mohsen Abass, A. (2020). Review on: TiO2 thin film as a metal oxide gas sensor. J. Chem. Rev. 2: 114–121, in Google Scholar

Mane, R.S., Lee, W.J., Pathan, H.M., and Han, S.H. (2005). Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells. J. Phys. Chem. B 109: 24254–24259, in Google Scholar PubMed

Mansoorianfar, M., Rahighi, R., Hojjati-Najafabadi, A., Mei, C., and Li, D. (2021). Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing. Mater. Des. 198: 109314, in Google Scholar

Marimuthu, T. and Anandhan, N. (2017). Growth and characterization of ZnO nanostructure on TiO2-ZnO films as a light scattering layer for dye sensitized solar cells. Mater. Res. Bull. 95: 616–624, in Google Scholar

Marotti, R.E., Giorgi, P., Machado, G., and Dalchiele, E.A. (2006). Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol. Energy Mater. Sol. Cells 90: 2356–2361, in Google Scholar

Mazhir, S. N., Mohamed, G. H., Abdullah, A. A., and Radhi, M. D. (2015). UV Photovoltaic detector based on Bi doped TiO2 Fabricated by Pulse Laser Deposition. Int. J. of Adv. Res. 3: 1060–1070.Search in Google Scholar

Maziarz, W., Kusior, A., and Trenczek-Zajac, A. (2016). Nanostructured TiO2-based gas sensors with enhancedsensitivity to reducing gases. Beilstein J. Nanotechnol. 7: 1718–1726, in Google Scholar

Mendoza, C., Valle, A., Castellote, M., Bahamonde, A., and Faraldos, M. (2014). TiO2 and TiO2–SiO2 coated cement: comparison of mechanic and photocatalytic properties. Appl. Catal. B Environ. 178: 155–164, in Google Scholar

Mercado, C., Lubrin, M., Hernandez, H., and Carubio, R. (2019). Comparison of photoelectrochemical current in amorphous and crystalline anodized TiO2 nanotube electrodes. Int. J. Photoenergy 2019: 1–8, in Google Scholar

Michalcik, Z., Horakova, M., Spatenka, P., Klementova, S., Zlamal, M., and Martin, N. (2012). Photocatalytic activity of nanostructured titanium dioxide thin films. Int. J. Photoenergy 2012: 689154, in Google Scholar

Miyoshi, A., Nishioka, S., and Maeda, K. (2018). Water splitting on rutile TiO2-based photocatalysts. Chem. Eur. J. 24: 18204–18219, in Google Scholar PubMed

Mohsen, M. and Yousef, M. (2015). Visible light-driven photoelectrochemical water splitting on ZnO – TiO2 heterogeneous nanotube photoanodes. J. Appl. Electrochem. 45: 557–566, in Google Scholar

Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N., and Grimes, C.A. (2003). Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18: 2588–2593, in Google Scholar

Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A. (2005). Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5: 191–195, in Google Scholar PubMed

Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A. (2006a). Use of highly-ordered TiO 2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6: 215–218, in Google Scholar PubMed

Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A. (2006b). A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90: 2011–2075, in Google Scholar

Moradi, S., Aberoomand-Azar, P., Raeis-Farshid, S., Abedini-Khorrami, S., and Givianrad, M.H. (2016). The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite. J. Saudi Chem. Soc. 20: 373–378, in Google Scholar

Nagamine, S. (2020). Photocatalytic microreactor using TiO2/Ti plates: formation of TiO2 nanostructure and separation of oxidation/reduction into different channels. Adv. Powder Technol. 31: 521–527, in Google Scholar

Naseri, N., Yousefi, M., and Moshfegh, A.Z. (2011). A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation. Sol. Energy 85: 1972–1978, in Google Scholar

Ng, S., Kuberský, P., Krbal, M., Prikryl, J., Gärtnerová, V., Moravcová, D., Sopha, H., Zazpe, R., Yam, F.K., Jäger, A., et al.. (2018). ZnO coated anodic 1D TiO2 nanotube layers: efficient photo-electrochemical and gas sensing heterojunction. Adv. Eng. Mater. 20: 1700589, in Google Scholar

Ng, S.W., Yam, F.K., and Hassan, Z. (2015). Rapid formation of zinc oxide nanosheets on titanium dioxide nanotubes through electrochemical method. Optoelectron. Adv. Mater. Rapid Commun. 9: 1429–1434.Search in Google Scholar

Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11: 401–425, in Google Scholar

Odhiambo, V., Ongarbayeva, A., Kéri, O., Simon, L., and Szilágyi, I. (2020). Synthesis of TiO2/WO3 composite nanofibers by a water-based electrospinning process and their application in photocatalysis. Nanomaterials 10: 882, in Google Scholar PubMed PubMed Central

Oliveira, H.G., Silva, E.D., and Longo, C. (2010). Electrochemical and photocatalytic properties of TiO2/WO3 photoelectrodes. Sol. Hydrog. Nanotechnol. V. 7770: 777006, in Google Scholar

Opra, D.P., Gnedenkov, S.V., and Sinebryukhov, S.L. (2019). Recent efforts in design of TiO 2 ( B ) anodes for high-rate lithium-ion batteries: a review. J. Power Sources 442: 227225, in Google Scholar

Ostojic, J., Herenda, S., Bešić, Z., Milos, M., and Galic, B. (2017). Advantages of an electrochemical method compared to the spectrophotometric kinetic study of peroxidase inhibition by boroxine derivative. Molecules 22: 1120, in Google Scholar PubMed PubMed Central

Otani, S., Katayama, J., Umemoto, H., and Matsuoka, M. (2006). Effect of bath temperature on the electrodeposition mechanism of zinc oxide film from zinc nitrate solution. J. Electrochem. Soc. 153: C551, in Google Scholar

Palmas, S., Polcaro, A.M., Ruiz, J.R., Da Pozzo, A., Mascia, M., and Vacca, A. (2010). TiO2 photoanodes for electrically enhanced water splitting. Int. J. Hydrogen Energy 35: 6561–6570, in Google Scholar

Pantelis, D. and Tsiourva, T. (2017). 10. Corrosion of weldments. In: El-Sherik, A.M. (Ed.), Trends in oil and gas corrosion research and technologies: Production and transmission. Woodhead Publishing Series in Energy. Elsevier, Dhahran, Saudi Arabia, pp. 249–270.10.1016/B978-0-08-101105-8.00010-3Search in Google Scholar

Paramasivam, I., Jha, H., Liu, N., and Schmuki, P. (2012). A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 8: 3073–3103, in Google Scholar PubMed

Park, J.Y., Choi, S.W., Lee, J.W., Lee, C., and Kim, S.S. (2009). Synthesis and gas sensing properties of TiO2-ZnO core-shell nanofibers. J. Am. Ceram. Soc. 92: 2551–2554, in Google Scholar

Park, S., Lim, S.J., Kim, J., and Yu, J.-W. (2017). Organic light-emitting diodes with an internal light extraction layer prepared by intense pulsed light. Macromol. Res. 25: 1022–1027, in Google Scholar

Pérez-González, M., Tomás, S.A., Morales-Luna, M., Arvizu, M.A., and Tellez-Cruz, M.M. (2015). Optical, structural, and morphological properties of photocatalytic TiO2-ZnO thin films synthesized by the sol-gel process. Thin Solid Films 594: 304–309, in Google Scholar

Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., Khallaf, H., Park, S., and Schulte, A. (2008). Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys. B Condens. Matter 403: 3713–3717, in Google Scholar

Prabakaran, S., Nisha, K.D., Harish, S., Archana, J., Navaneethan, M., Ponnusamy, S., Muthamizhchelvan, C., Ikeda, H., and Hayakawa, Y. (2019). Synergistic effect and enhanced electrical properties of TiO2/SnO2/ZnO nanostructures as electron extraction layer for solar cell application. Appl. Surf. Sci. 498: 143702, in Google Scholar

Pradhan, D. and Leung, K.T. (2008). Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24: 9707–9716.10.1021/la8008943Search in Google Scholar PubMed

Pradhan, D., Sindhwani, S., and Leung, K.T. (2010). Parametric study on dimensional control of ZnO nanowalls and nanowires by electrochemical deposition. Nanoscale Res. Lett. 5: 1727–1736, in Google Scholar PubMed PubMed Central

Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A. (2007). A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111: 7235–7241, in Google Scholar

Prasad, B.E., Kamath, P.V., and Ranganath, S. (2012). Electrodeposition of ZnO coatings from aqueous Zn(NO3)2 baths: effect of Zn concentration, deposition temperature, and time on orientation. J. Solid State Electrochem. 16: 3715–3722, in Google Scholar

Prasannalakshmi, P. and Shanmugam, N. (2017). Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Mater. Sci. Semicond. Process. 61: 114–124, in Google Scholar

Qin, J., Cao, Z., He, J., Li, H., and Su, Z. (2021a). Fast fabrication of small pore anodic titania nanotube arrays under high voltage. Surf. Coating. Technol. 420: 127360, in Google Scholar

Qin, J., Cao, Z., Li, H., and Su, Z. (2021b). Formation of anodic TiO2 nanotube arrays with ultra-small pore size. Surf. Coating. Technol. 405: 126661, in Google Scholar

Qin, L., Chen, Q., Lan, R., Jiang, R., Quan, X., Xu, B., Zhang, F., and Jia, Y. (2015). Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J. Mater. Sci. Technol. 31: 1059–1064, in Google Scholar

Ramgir, N., Bhusari, R., Rawat, N.S., Patil, S.J., Debnath, A.K., Gadkari, S.C., and Muthe, K.P. (2020). TiO2/ZnO heterostructure nanowire based NO2 sensor. Mater. Sci. Semicond. Process. 106: 104770, in Google Scholar

Reddy, C.V., Reddy, K.R., Shetti, N.P., Shim, J., Aminabhavi, T.M., and Dionysiou, D.D. (2020). Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting – a review. Int. J. Hydrogen Energy 45: 18331–18347, in Google Scholar

Reyes-Coronado, D., Rodriguez Gattorno, G., Espinosa Pesqueira, M., Cab, C., de Coss, R., and Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19: 145605, in Google Scholar PubMed

Roduner, E. (2006). Size matters: why nanomaterials are different. Chem. Soc. Rev. 35: 583–592, in Google Scholar PubMed

Roy, P., Berger, S., and Schmuki, P. (2011). TiO2 nanotubes: synthesis and applications. Angew. Chemie - Int. Ed. 50: 2904–2939, in Google Scholar PubMed

Samadipakchin, P., Mortaheb, H.R., and Zolfaghari, A. (2017). ZnO nanotubes: preparation and photocatalytic performance evaluation. J. Photochem. Photobiol. Chem. 337: 91–99, in Google Scholar

Sánchez-Tovar, R., Paramasivam, I., Lee, K., and Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. J. Mater. Chem. 22: 12792, in Google Scholar

Sánchez-Tovar, R., Lee, K., Garcia-Anton, J., and Schmuki, P. (2013a). Photoelectrochemical properties of anodic TiO2 nanosponge layers. Ecs Electrochem. Lett. 2: H9–H11, in Google Scholar

Sánchez-Tovar, R., Lee, K., García-Antón, J., and Schmuki, P. (2013b). Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochem. Commun. 26: 1–4, in Google Scholar

Sánchez-Tovar, R., Fernández-Domene, R.M., García-García, D.M., and García-Antón, J. (2015a). Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization. J. Power Sources 286: 224–231, in Google Scholar

Sánchez-Tovar, R., Fernández-Domene, R.M., Martínez-Sánchez, A., Blasco-Tamarit, E., and García-Antón, J. (2015b). Synergistic effect between hydrodynamic conditions during Ti anodization and acidic treatment on the photoelectric properties of TiO2 nanotubes. J. Catal. 330: 434–441, in Google Scholar

Sánchez-Tovar, R., Blasco-Tamarit, E., Fernández-Domene, R.M., Lucas-Granados, B., and García-Antón, J. (2017). Should TiO2 nanostructures doped with Li+ be used as photoanodes for photoelectrochemical water splitting applications? J. Catal. 349: 41–52, in Google Scholar

Sánchez-Tovar, R., Blasco-Tamarit, E., Fernández-Domene, R.M., Villanueva-Pascual, M., and García-Antón, J. (2020). Electrochemical formation of novel TiO2-ZnO hybrid nanostructures for photoelectrochemical water splitting applications. Surf. Coating. Technol. 388: 125605, in Google Scholar

Shaheen, B.S., Salem, H.G., El-sayed, M.A., and Allam, N.K. (2013). Thermal/electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production. J. Phys. Chem. 117: 18502–18509, in Google Scholar

Shao, D., Sun, H., Xin, G., Lian, J., and Sawyer, S. (2014). High quality ZnO–TiO2 core–shell nanowires for efficient ultraviolet sensing. Appl. Surf. Sci. 314: 872–876, in Google Scholar

Sharma, S., Kumar, N., Makgwane, P., Chauhan, N., Kumari, K., Rani, M., and Maken, S. (2021). TiO2/SnO2 nano-composite: new insights in synthetic, structural, optical and photocatalytic aspects. Inorg. Chim. Acta. 529: 120640, in Google Scholar

Sivaprakash, V. and Narayanan, R. (2020). Synthesis of TiO2 nanotubes via electrochemical anodization with different water content. Mater. Today Proc. 37: 142–146, in Google Scholar

Siwińska-Stefańska, K., Kubiak, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga, S., and Jesionowski, T. (2018). TiO2-ZnO binary oxide systems: comprehensive characterization and tests of photocatalytic activity. Materials 11: 1–19, in Google Scholar PubMed PubMed Central

Siwińska-Stefańska, K., Kubiak, A., Piasecki, A., Dobrowolska, A., Czaczyk, K., Motylenko, M., Rafaja, D., Ehrlich, H., and Jesionowski, T. (2019). Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties. Appl. Surf. Sci. 463: 791–801, in Google Scholar

Skompska, M. and Zarebska, K. (2014). Electrodeposition of ZnO nanorod arrays on transparent conducting substrates – a review. Electrochim. Acta 127: 467–488, in Google Scholar

Soares, L. and Alves, A. (2018). Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis. Mater. Lett. 211: 339–342, in Google Scholar

Song, L., Jiang, Q., Du, P., Yang, Y., Xiong, J., and Cui, C. (2014). Novel structure of TiO2-ZnO core shell rice grain for photoanode of dye-sensitized solar cells. J. Power Sources 261: 1–6, in Google Scholar

Su, Z., Zhang, L., Prof, F., and Hong, M. (2013). Formation of crystalline TiO2 by anodic oxidation of titanium. Prog. Nat. Sci. Mater. Int. 23: 294–301, in Google Scholar

Sun, S., Jiao, S., Zhang, K., Wang, D., Gao, S., Li, H., Wang, J., Yu, Q., Guo, F., and Zhao, L. (2012). Nucleation effect and growth mechanism of ZnO nanostructures by electrodeposition from aqueous zinc nitrate baths. J. Cryst. Growth 359: 15–19, in Google Scholar

Sun, W., Cui, S., Wei, N., Chen, S., Liu, Y., and Wang, D. (2018). Hierarchical WO3/TiO2 nanotube nanocomposites for efficient photocathodic protection of 304 stainless steel under visible light. J. Alloys Compd. 749: 741–749, in Google Scholar

Tan, A.W., Pingguan-Murphy, B., Ahmad, R., and Akbar, S.A. (2012). Review of titania nanotubes: fabrication and cellular response. Ceram. Int. 38: 4421–4435, in Google Scholar

Tian, J., Zhao, Z., Kumar, A., Boughton, R.I., and Liu, H. (2014). Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 43: 6920–6937, in Google Scholar PubMed

Tian, Z.R., Voigt, J.A., Liu, J., McKenzie, B., and Xu, H. (2003). Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 125: 12384–12385, in Google Scholar PubMed

Tobajas, M., Belver, C., and Rodriguez, J.J. (2017). Degradation of emerging pollutants in water under solar irradiation using novel TiO2 -ZnO/clay nanoarchitectures. Chem. Eng. J. 309: 596–606, in Google Scholar

Tsui, L.K., Homma, T., and Zangari, G. (2013). Photocurrent conversion in anodized TiO2 nanotube arrays: effect of the water content in anodizing solutions. J. Phys. Chem. C 117: 6979–6989, in Google Scholar

Tsuji, E., Taguchi, Y., Aoki, Y., Hashimoto, T., Skeldon, P., Thompson, G., and Habazaki, H. (2014). Morphological control of anodic crystalline TiO2 nanochannel films for use in size-selective photocatalytic decomposition of organic molecules. Appl. Surf. Sci. 301: 500–507, in Google Scholar

Tsvetkov, N., Larina, L., Kang, J.K., and Shevaleevskiy, O. (2020). Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance. Nanomaterials 10: 296, in Google Scholar PubMed PubMed Central

Valden, M., Lai, X., and Goodman, D.W. (1998). Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281: 1647–1650, in Google Scholar PubMed

Velempini, T., Prabakaran, E., and Pillay, K. (2021). Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water — a review. Mater. Today Chem. 19: 100380, in Google Scholar

Wei, J., Liu, J., Dang, Y., Xu, K., and Zhou, Y. (2013). A review of nanostructured TiO2 application in Li-ion batteries. Adv. Mater. Res. 750–752: 301–306, in Google Scholar

Waghmode, B., Husain, Z., Joshi, M., Sathaye, S., Patil, K., and Malkhede, D. (2016). Synthesis and study of calixarene-doped polypyrrole-TiO2/ZnO composites: antimicrobial activity and electrochemical sensors. J. Polym. Res. 23: 35, in Google Scholar

Wang, D., Liu, Y., Yu, B., Zhou, F., and Liu, W. (2009). TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance. Chem. Mater. 21: 1198–1206, in Google Scholar

Wang, D., Zhang, X., Sun, P., Lu, S., Wang, L., Wang, C., and Liu, Y. (2014a). Photoelectrochemical water splitting with rutile TiO2 nanowires array: synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles. Electrochim. Acta 130: 290–295, in Google Scholar

Wang, H., Guo, Z., Wang, S., and Liu, W. (2014b). One-dimensional titania nanostructures: synthesis and applications in dye-sensitized solar cells. Thin Solid Films 558: 1–19, in Google Scholar

Wang, M., Sun, L., Cai, J., Huang, P., Su, Y., and Lin, C. (2013a). A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity. J. Mater. Chem. 1: 12082–12087, in Google Scholar

Wang, M., Ioccozia, J., Sun, L., Lin, C., and Lin, Z. (2014c). Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy Environ. Sci. 7: 2182–2202, in Google Scholar

Wang, X., Li, W., Xiao, Y., Zhu, L., and Liu, X. (2013b). ZnO-TiO2 composite material prepared by sol-gel method to treat pharmaceutical wastewater. Appl. Mech. Mater. 361–363: 736–739, in Google Scholar

Wang, X., Li, Z., Shi, J., and Yu, Y. (2014d). One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114: 9346–9384, in Google Scholar PubMed

Xia, B.Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H. (2003). One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15: 353–389, in Google Scholar

Xie, Y.L., Li, Z.X., Xu, Z.G., and Zhang, H.L. (2011). Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications. Electrochem. Commun. 13: 788–791, in Google Scholar

Xu, F., Lu, Y., Xie, Y., and Liu, Y. (2009). Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution. Mater. Des. 30: 1704–1711, in Google Scholar

Xu, F., Mei, J., Li, X., Sun, Y., Wu, D., Gao, Z., Zhang, Q., and Jiang, K. (2017). Heterogeneous three-dimensional TiO2/ZnO nanorod array for enhanced photoelectrochemical water splitting properties. J. Nanoparticle Res. 19: 297, in Google Scholar

Xu, L., Liao, Q., Zhang, J., Ai, X., and Xu, D. (2007). Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods. J. Phys. Chem. 111: 4549–4552, in Google Scholar

Xu, X., Wang, J., Tian, J., Wang, X., Dai, J., and Liu, X. (2011). Hydrothermal and post-heat treatments of TiO2/ZnO composite powder and its photodegradation behavior on methyl orange. Ceram. Int. 37: 2201–2206, in Google Scholar

Xue, B., Liang, Y., Donglai, L., Eryong, N., Congli, S., Huanhuan, F., Jingjing, X., Yong, J., Zhifeng, J., and Xiaosong, S. (2011). Electrodeposition from ZnO nano-rods to nano-sheets with only zinc nitrate electrolyte and its photoluminescence. Appl. Surf. Sci. 257: 10317–10321, in Google Scholar

Yamabi, S. and Imai, H. (2002). Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12: 3773–3778, in Google Scholar

Yang, H.Y., Yu, S.F., Lau, S.P., Zhang, X., Sun, D.D., and Jun, G. (2009b). Direct growth of ZnO nanocrystals onto the surface of porous TiO2 nanotube arrays for highly efficient and recyclable photocatalysts. Small 5: 2260–2264, in Google Scholar PubMed

Yang, J., Ma, D., Li, Y., Zhang, P., Mi, H., Deng, L., Sun, L., and Ren, X. (2017a). Atomic layer deposition of amorphous oxygen-deficient TiO2-x on carbon nanotubes as cathode materials for lithium-air batteries. J. Power Sources 360: 215–220, in Google Scholar

Yang, J., Mi, H., Luo, S., Li, Y., Zhang, P., Deng, L., Sun, L., and Ren, X. (2017b). Atomic layer deposition of TiO2 on nitrogen-doped carbon nanofibers supported Ru nanoparticles for flexible Li-O2 battery: a combined DFT and experimental study. J. Power Sources 368: 88–96, in Google Scholar

Yang, M., Shrestha, N.K., and Schmuki, P. (2009a). Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. Electrochem. Commun. 11: 1908–1911, in Google Scholar

Yao, B.D., Chan, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.Y., and Wang, N. (2003). Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett. 82: 281–283, in Google Scholar

Yao, S., Feng, X., Lu, J., Zheng, Y., Wang, X., and Wang, L.-N. (2018). Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes. Nanotechnology 29: 244003, in Google Scholar PubMed

Yilmaz, C. and Unal, U. (2016). Effect of Zn(NO 3)2 concentration in hydrothermal-electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods. Appl. Surf. Sci. 368: 456–463, in Google Scholar

Yoon, S., Kim, J., Yoo, B., and Lim, J.-H. (2016). Electrochemical synthesis of nanostructured materials for solar energy conversion. Light, energy and the environment. OSA. Technical. Digest. PTh4A.1 in Google Scholar

Yoshida, T., Komatsu, D., Shimokawa, N., and Minoura, H. (2004). Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films 451–452: 166–169, in Google Scholar

Yu, J. and Wang, B. (2010). Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B. Environ. 94: 295–302, in Google Scholar

Yu, X., Lin, D., Li, P., and Su, Z. (2017). Recent advances in the synthesis and energy applications of TiO2-graphene nanohybrids. Sol. Energy Mater. Sol. Cells 172: 252–269, in Google Scholar

Yuan, S., Chen, C., Raza, A., Song, R., Zhang, T.J., Pehkonen, S.O., and Liang, B. (2017). Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation. Chem. Eng. J. 328: 497–510, in Google Scholar

Zaitsev, S.V., Vaschilin, V.S., Kolesnik, V.V., Limarenko, M.V., Prokhorenkov, D.S., and Evtushenko, E.I. (2019). Effect of the temperature of photonic annealing on the structural and optical properties of ZnO films synthesized by dual magnetron-assisted sputtering. Semiconductors 53: 255–259, in Google Scholar

Zangari, G. (2018). Fundamentals of electrodeposition. In: Wandelt, K. (Ed.), Encycl. interfacial chem. surf. sci. electrochem. Surface science and electrochemistry. Elsevier, Bonn, Germany, pp. 141–160.10.1016/B978-0-12-409547-2.11700-7Search in Google Scholar

Zhang, D., Gu, X., Jing, F., Gao, F., Zhou, J., and Ruan, S. (2015). High performance ultraviolet detector based on TiO2/ZnO heterojunction. J. Alloys Compd. 618: 551–554, in Google Scholar

Zhang, Q. and Cao, G. (2011). Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6: 91–109, in Google Scholar

Zhang, R., Liu, X., Xiong, Z., Huang, Q., Yang, X., Yan, H., Ma, J., Feng, Q., and Shen, Z. (2018). Novel micro/nanostructured TiO2/ZnO coating with antibacterial capacity and cytocompatibility. Ceram. Int. 44: 9711–9719, in Google Scholar

Zhang, Y.X., Li, G.H., Jin, Y.X., Zhang, Y., Zhang, J., and Zhang, L.D. (2002). Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365: 300–304, in Google Scholar

Zhang, Z., Yuan, Y., Liang, L., Cheng, Y., Shi, G., and Jin, L. (2008). Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J. Hazard Mater. 158: 517–522, in Google Scholar

Zhang, X., Chen, G., Li, W., and Wu, D. (2019a). Preparation and photocathodic protection properties of ZnO/TiO2 heterojunction film under simulated solar light. Materials. 12: 3856. in Google Scholar

Zhang, Z., Xu, P., Zhang, H., Shen, A., and Zhao, Y. (2019b). Flexible three-dimensional titanium-dioxide-based hollow nanoflower arrays for advanced lithium-ion battery anodes. ACS Appl. Energy Mater. 2: 5744–5752, in Google Scholar

Zhou, M., Wu, B., Zhang, X., Cao, S., Ma, P., Wang, K., Fan, Z., and Su, M. (2020). Preparation and UV photoelectric properties of aligned ZnO–TiO2 and TiO2–ZnO core–shell structured heterojunction nanotubes. ACS Appl. Mater. Interfaces 12: 38490–38498, in Google Scholar

Zhou, W., Liu, H., Boughton, R.I., Du, G., Lin, J., Wang, J., and Liu, D. (2010). One-dimensional single-crystalline Ti-O based nanostructures: properties, synthesis, modifications and applications. J. Mater. Chem. 20: 5993–6008, in Google Scholar

Zhou, X., Nguyen, N.T., Özkan, S., and Schmuki, P. (2014). Anodic TiO2 nanotube layers: why does self-organized growth occur. A mini review. Electrochem. Commun. 46: 157–162, in Google Scholar

Zhu, H., Haidry, A.A., Wang, Z., and Ji, Y. (2021). Improved acetone sensing characteristics of TiO2 nanobelts with Ag modification. J. Alloys Compd. 887: 161312, in Google Scholar

Znaidi, L. (2010). Sol-gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 174: 18–30, in Google Scholar

Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M.Y., and Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 27: 629–637,<629::AID-SIA551>3.0.CO;2-0.10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0Search in Google Scholar

Received: 2021-12-15
Accepted: 2022-06-03
Published Online: 2022-08-29

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.3.2023 from
Scroll Up Arrow