Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter November 30, 2016

Inaccurate official assessment of radiofrequency safety by the Advisory Group on Non-ionising Radiation

  • Sarah J. Starkey EMAIL logo


The Advisory Group on Non-ionising Radiation (AGNIR) 2012 report forms the basis of official advice on the safety of radiofrequency (RF) electromagnetic fields in the United Kingdom and has been relied upon by health protection agencies around the world. This review describes incorrect and misleading statements from within the report, omissions and conflict of interest, which make it unsuitable for health risk assessment. The executive summary and overall conclusions did not accurately reflect the scientific evidence available. Independence is needed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the group that set the exposure guidelines being assessed. This conflict of interest critically needs to be addressed for the forthcoming World Health Organisation (WHO) Environmental Health Criteria Monograph on Radiofrequency Fields. Decision makers, organisations and individuals require accurate information about the safety of RF electromagnetic signals if they are to be able to fulfil their safeguarding responsibilities and protect those for whom they have legal responsibility.


The International Commission on Non-Ionizing Radiation Protection (ICNIRP) set international exposure guidelines for radiofrequency (RF) electromagnetic fields in 1998 (1). Conclusions from subsequent ICNIRP reviews have supported the guidelines. Within the United Kingdom (UK), Public Health England (PHE) commission scientific reviews by the Advisory Group on Non-ionising Radiation (AGNIR) to assess the safety of RF fields. AGNIR reviews, along with PHE in-house assessments of exposures, form the basis of PHE’s advice on the safety of RF signals. This guides the UK government, organisations and decision makers when assessing the safety of wireless devices and infrastructure. The latest AGNIR review (2) has also been relied upon by health protection agencies around the world, including the Australian Radiation Protection and Nuclear Safety Agency (3) and Health Canada (4).

The majority of the global population absorb RF radiation on a daily basis from smartphones, tablet computers, body-worn devices, Wi-Fi and Bluetooth transmitters, cordless phones, base stations, wireless utility meters and other transmitters. For public health to be protected, decisions need to be based on accurate information. The AGNIR report is considered here for conflicts of interest and scientific accuracy.

Conflicts of interest

PHE stated, “The 2012 AGNIR report considered whether there was evidence for health effects occurring in relation to exposures below the ICNIRP levels” (5). At the time of writing the report, the chairman of AGNIR was also chair of the ICNIRP standing committee on epidemiology. Currently, six members of AGNIR and three members of PHE or its parent organisation, the Department of Health (DH), are or have been part of ICNIRP (Table 1). When the group charged with assessing whether there is evidence of health effects occurring at exposures below current ICNIRP values have members who are responsible for setting the guidelines, it introduces a conflict of interest. How can AGNIR report that the scientific literature contains evidence of harmful effects below the current guidelines when several of them are responsible for those guidelines? PHE provide the official advice on the safety of wireless signals within the UK, but having members in ICNIRP introduces a conflict of interest which could prevent them from acknowledging adverse effects below ICNIRP guidelines.

Table 1:

AGNIR in 2012 and 2016 and membership of ICNIRP, PHE or DH.

AGNIR 2012AGNIR 2016
Swerdlow A.J. (Chair)ICNIRP Chair of standing committee on epidemiologySwerdlow A.J. (Chair)formerly ICNIRP
Conney S.W.DHConney S.W.DH
Coulton L.A.Coulton L.A.
Duck F.A.Duck F.A.ICNIRP
Feychting M.ICNIRPFeychting M.Vice-Chair ICNIRP
Haggard P.Haggard P.
Lomas D.J.Lomas D.
Noble D.
Maslanyj M.P.HPAMaslanyj M.P.PHE
Meara J.R.HPAMeara J.R.PHE
Peyman A.HPAPeyman A.PHE
Powers H.
Rhodes L.
Rubin G.J.Rubin G.J.
Sienkiewicz Z.J.ICNIRP, HPASienkiewicz Z.J.ICNIRP, PHE
Tedstone A.PHE
Young A.

PHE was formerly known as the Health Protection Agency, HPA. PHE is part of the Department of Health, DH.

PHE (the then Health Protection Agency) responded to the report with “The Health Protection Agency welcomes this comprehensive and critical review of scientific studies prepared by the independent Advisory Group on Non-ionising Radiation” (6). The implication was that an independent group had produced the report and presented it to PHE. However, at the time of writing, 43% of those in AGNIR were from PHE or the DH (2) (Table 1). PHE had misleadingly welcomed the report which they were involved in preparing.

Scientific accuracy

The executive summary of the AGNIR report included “Taken together, these studies provide no evidence of health effects of RF field exposures below internationally accepted guideline levels” [page 3 of the report (2)] and “the evidence considered overall has not demonstrated any adverse health effects of RF field exposures below internationally accepted guideline levels” [page 4 (2)]. Accuracy is vital when most people only read the executive summary and overall conclusions from a 348-page report and national and international public health decisions and exposures are based on them. These conclusions did not accurately reflect the evidence, as described in examples below.

(a) Studies were omitted, included in other sections but without any conclusions, or conclusions left out; (b) evidence was dismissed and ignored in conclusions; (c) there were incorrect statements. Terms such as ‘convincing’ or ‘consistent’ were used to imply that there was no evidence. Some examples fall into more than one category.

(a) Studies omitted, included in other sections but without any conclusions, or conclusions left out

Only 7 studies were included in the section on reactive oxygen species [ROS; page 94 (2); Figure 1]. These were summarised by “production of reactive oxygen species (ROS) were increased in some studies, but not others” [page 106 (2)]. At least a further 30 studies relevant to ROS or the possible resulting damaging state of oxidative stress were included throughout the report, but with no reference to ROS or oxidative stress within the main text for 16 of these (listed in Supplementary Information, SI) and no mention of this subject in any other summaries or conclusions. At least 40 studies were omitted (using AGNIR restriction to the English language; identified from PubMed and EMF-Portal databases or references within the papers; SI). If these had been included, 79% of studies (61 out of 77) would have demonstrated evidence of significantly increased ROS or oxidative stress in response to RF fields (Figure 1; SI). By only including a few of the available studies, not referring to many scattered throughout the report and not mentioning ROS or oxidative stress in any conclusions or the executive summary, this important area of research was misrepresented. Oxidative stress is a toxic state which can lead to cellular DNA, RNA, protein or lipid damage (7), (8), is accepted as a major cause of cancer (7), as well as being implicated in many reproductive, central nervous system, cardiovascular, immune and metabolic disorders (7), (8), (9), (10), (11), (12), (13), (14).

Figure 1: Comparison of the number of studies included in the AGNIR report with those that could have been, for ROS, oxidative stress or male fertility.(A) studies included in the ROS section; (B) studies scattered throughout the report on ROS or oxidative stress (but with no summary or conclusion); (C) studies which could have been included for ROS or oxidative stress; (D) studies included on male fertility in the cellular studies chapter; (E) studies included on male fertility in animal studies; (F) studies included on male fertility in humans (in vivo); (G) studies which could have been included for male fertility. Dark shading indicates evidence of significant increase of ROS or oxidative stress, adverse effect on male fertility or altered male testosterone concentrations in response to a radiofrequency field; light shading indicates no significant increase of ROS or oxidative stress, adverse effect on male fertility or altered male testosterone concentrations. Studies are listed in SI.
Figure 1:

Comparison of the number of studies included in the AGNIR report with those that could have been, for ROS, oxidative stress or male fertility.

(A) studies included in the ROS section; (B) studies scattered throughout the report on ROS or oxidative stress (but with no summary or conclusion); (C) studies which could have been included for ROS or oxidative stress; (D) studies included on male fertility in the cellular studies chapter; (E) studies included on male fertility in animal studies; (F) studies included on male fertility in humans (in vivo); (G) studies which could have been included for male fertility. Dark shading indicates evidence of significant increase of ROS or oxidative stress, adverse effect on male fertility or altered male testosterone concentrations in response to a radiofrequency field; light shading indicates no significant increase of ROS or oxidative stress, adverse effect on male fertility or altered male testosterone concentrations. Studies are listed in SI.

The conclusion for male fertility studies in animals was “A substantial number of studies have investigated the effects of RF fields on testicular function, principally in rats, and most report large, obvious effects. However, these results are largely uninterpretable due to inadequate dosimetry or other shortcomings in the studies, and thus are unsuitable for the purposes of health risk assessment. One well-conducted study reported no effects on testicular function in rats exposed to 848 MHz CDMA signals” [page 191 (2)]. For male fertility in humans (in vivo), it was concluded, “The evidence on the effect of RF fields on sperm quality is still weak and the addition of the two new studies does not allow reliable evaluation of the presence or absence of a health effect. Some suggestive positive results, although not convincing, give justification for further studies with improved methods. The evidence on effects on male subfertility is very limited, and allows no conclusions”.

At least 22 studies on male fertility were omitted (AGNIR restriction to the English language; identified from PubMed or EMF-Portal databases or references within the papers; listed in SI). Considering those identified as included throughout the report (excluding three subsequently retracted, SI), 78% of studies (18 out of 23) described significant adverse effects on sperm, male reproductive organs or changes in male testosterone concentrations (SI). If the 22 references identified as omitted had also been included, this would have been 35 out of 45, 78% (Figure 1; SI). Isolating small samples of evidence in chapters on cells, animals or humans (Figure 1) may have made it easier to dismiss significant effects on male reproductive health. Inaccurately, in the overall and executive summaries, the evidence for adverse effects on male fertility disappeared: “Despite many studies investigating effects on male fertility, there is no convincing evidence that low level exposure results in any adverse outcomes on testicular function” [page 192 (2)] and for humans, in vivo, “The limited available data on other non-cancer outcomes show no effects of RF field exposure” [page 4 (2)]. The term ‘convincing’ is subjective and can erroneously imply that there is no evidence. The human data on male fertility did not show “no effects of RF field exposure”.

Some studies, mostly those which had tested signals from real mobile devices, were dismissed as uninterpretable because they had not described the dosimetry, the process of determining internal electromagnetic quantities relating to exposure in tissues, in enough detail. Limited descriptions restrict possible interpretations, but do not make them uninterpretable. If the question is ‘do mobile phone signals damage male fertility?’, real phone signals are highly relevant because they allow possible effects of the complex patterns of fields to which humans are exposed to be investigated. ICNIRP only accept thermal effects of RF fields and focus on average energy absorbed. Highly controlled, simulated signals with descriptions of overall specific absorption rates (SARs) are suited to the assessment of temperature rises in cells or tissues. Real signals make it more difficult to measure average energy, but have characteristics which controlled, simulated signals lack. The complex field patterns, with variable peak field strengths and intervals between transmissions, may influence biology in ways that controlled, simulated patterns cannot, but they are not represented by time-averaged, duty factor reductions of described energy absorption. Responses to RF fields can be greater for intermittent exposures than continuous (15), (16) and depend upon the pulse characteristics for the same average power (17). Effects can be dependent on frequency, modulation, signal strength (intensity windows), durations of exposure and polarisation (18), (19). For the nervous system, complex signals from real devices may modulate neuronal activity, similar to endogenous electric field ephaptic (non-synaptic) coupling in the brain (20). There is evidence that endogenous electric fields feedback to modulate neuronal activity (21). Fields with amplitudes similar to those found in vivo, applied to neocortical brain slices, modulated and entrained neuronal spiking activity (21). Irregular patterns of fields with complex dynamics, which mimicked in vivo fluctuations, entrained neuronal activity more strongly than sine waves (21). There are valid reasons for testing the effects of signals from real mobile devices, and dismissing these limited and misrepresented the evidence.

The summary for neurocognitive effects in humans stated, “Studies of cognitive function and human performance do not suggest acute effects of exposure to RF fields from mobile phones and base stations” [page 226 (2)]. But acute detrimental effects on cognition were omitted from the report (22), (23), (24), (25) or mentioned in different sections (26), (27), (28), (29). Increased errors during a memory task (26), slowed performance (27) or decreased accuracy in a cognitive test (28) were reported in the electroencephalogram (EEG) section [pages 209–213 (2)]; slowed performance in cognitive tests (29) were reported under sleep [page 215 (2)]. Omitting the studies which found effects in the relevant section led to an incorrect conclusion.

For symptoms in humans, “Sufferers differ in terms of the type of symptoms that they report, the speed with which symptoms develop and the types of electromagnetic field that appear to be problematic” [page 232 (2)]. Acute provocation studies in humans expose all subjects to the same short electromagnetic signal to see whether they all respond with the same immediate symptoms. If the speed with which symptoms develop and types of trigger differ between individuals, then in a group overall a lack of significance might be expected for identical acute provocations, but this does not mean that some individuals cannot respond to certain fields given adequate exposure durations, intervals between provocations and low background electromagnetic fields, as has been reported (30), (31). The executive summary concluded, “The evidence suggests that RF field exposures below guideline levels do not cause acute symptoms in humans” [page 3 (2)], without explaining limitations.

Many of the longer-term observational studies described significant associations of RF exposures with symptoms, albeit with limitations in study designs: “While some, though by no means all, of the studies reviewed above appear to suggest an association between mobile phone use and symptoms…” [page 245 (2)], followed by “almost all of the studies share a fundamental methodological problem which makes it difficult to draw any firm conclusions from them: these studies relied upon the participants’ own descriptions of their mobile phone usage as the exposure variable for their analysis and on self-description of symptoms while knowing exposure status” (2). Longer-term studies on symptoms were omitted from the executive summary.

No mention was made of the World Health Organization (WHO) International Agency for Research on Cancer (IARC) classification of RF fields as a possible human carcinogen in 2011, which was based on limited evidence supporting carcinogenicity below ICNIRP guideline values (32).

(b) Evidence dismissed and ignored in conclusions

For in vitro membrane effects, the report showed that all studies included (seventeen (33), (34), (35), (36), (37), (38), (39), (40), (41), (42), (43), (44), (45), (46), (47), (48), (49); non-blood-brain barrier (BBB)) described significant responses to RF signals except for one, which had tested extremely high powers, far greater than ICNIRP guidelines, that heated the tissue [250–3600 W/kg time-averaged SAR (50); pages 102 and 103 (2)]. This heating study had reported an effect, an in vitro recoverable decrease in population spike amplitude in the hippocampus in response to the RF signal, but no effect on long-term potentiation (50). The report text also mentioned that Falzone et al. had found no changes to the cell membrane [(51), page 101 (2)], but they had measured markers of apoptosis, programmed cell death, not direct effects on membranes; this paper was not included in the table of studies on membrane effects. The membrane studies were weakly dismissed: “In general, most studies report finding effects on cell membranes when exposures are made at mobile phone frequencies. However, the effects reported are varied and, although the majority find effects, neither is this unanimous nor does it necessarily provide supporting evidence of a consistent effect. The variety of cellular systems and exposures makes comparisons of the effects on the cell membrane problematic and without independent replication it is difficult to assess the robustness or even the validity of the findings.” Studies had looked at a range of effects and all, below high power heating, reported significant changes, strengthening the validity of the findings.

For direct effects on proteins, 15 out of 16 studies listed found significant effects of RF fields [pages 103–105 (2); (52), (53), (54), (55), (56), (57), (58), (59), (60), (61), (62), (63), (64), (65), (66), (67) effect; (53) no effect]. The conclusion was “In general, most of the studies that have investigated changes in protein function or structure due to exposure to RF fields have found effects. However, at the present time the effects have not been demonstrated to be robust by independent replication; so although the concept of a direct effect of RF field exposure on protein structure is interesting, further research is needed to establish if this is a real phenomenon.” Ninety-four percent of the studies listed on direct effects on proteins, from 14 different groups, found significant effects, but the conclusion was turned around to imply that these may not be real.

Where replications have been undertaken they do not support the original findings. This continued lack of robust evidence makes the possibility of an effect of RF fields on cells more unlikely” [page 105 (2)]. An effect on cells is not unlikely when there were significant effects in all of the relevant studies on membranes (excluding BBB), all of the studies except one on direct protein effects, the majority of the studies on oxidative stress or male fertility, all of the included in vitro genotoxicity studies on epithelial cells [see c; page 84 (2)] and 47% of in vitro genotoxicity studies which could have been included in the report (see c; SI).

Studies on cell membranes and direct effects on proteins mostly found effects of RF field exposure. However, no conclusions can be made as there are no common patterns of exposure conditions or types of effects caused by the exposure” [page 106 (2)]. Out of 33 studies on direct effects on proteins or cell membranes, 32 described significant effects of RF signals below high power heating, but these disappeared in the conclusions.

By the end of the report, the conclusion on cellular studies had incorrectly become “There are now several hundred studies in the published literature that have looked for effects on isolated cells or their components when exposed to RF fields. None has provided robust evidence for an effect” [page 318 (2)].

A summary for human brain EEG recordings stated, “the EEG studies published since 2003 do provide some evidence that RF fields could influence brain function, and this should remain an area of interest” [page 226 (2)]. Many EEG studies (awake or asleep subjects) reported changes in electrical field potential oscillations, evoked responses or interhemispheric coupling, but these were dismissed: “it remains unclear whether these RF effects, if they exist, are material to human health or not”. Electrical field potential oscillations can synchronise activity of local networks (21) or propagate signals over large regions, controlling brain developmental processes, including neurogenesis, apoptosis, neuronal migration, differentiation and network formation (68). Oscillations have been linked with active processing or inhibition of cognitive functions (69) and cyclic modulations of neuronal excitability (21). References available at the time of the report describing behavioural problems (70), (71), (72) and changed psychomotor performance (73) associated with pre-natal or childhood RF exposures, cell death and reduced cell numbers in the brain (74), (75), (76), (77), (78), (79), (80), (81), (82), (83) and cognitive inhibition (22), (23), (24), (25), (26), (27), (28), (29), (78), (79), (84), (85), (86), (87), (88) supported the possibility that RF-induced changes in electrical activity could contribute to altered brain development or cognition.

The executive summary included “There has been no consistent evidence of effects on the brain, nervous system or the blood-brain barrier, on auditory function, or on fertility and reproduction” [page 3 (2)]. The term ‘consistent’ dismissed areas for which the majority of studies had found adverse effects, such as male fertility. Of the studies included in the report on pregnancy and development, which quantified effects of pre-natal or early neonatal RF exposures on neuronal cell numbers in the developing brain [pages 184–187 (2)], four found significant decreases: pyramidal cells in the rat hippocampus (74), granule cells in the rat dentate gyrus (75), Purkinje cells in the mouse cerebellum (76) and a transient increase in neurogenesis of the subventricular zone following 8 h of RF exposure over 2 days, but a long-lasting decrease in neurogenesis following a 24 h exposure over 3 days (77), measured from proliferating cells in the rat rostral migratory stream. One study described no effect on neuronal numbers in the mouse hippocampus (89). Whilst not all reported effects, the studies supported RF exposures decreasing neuronal numbers in the brain during pre-natal and early neonatal development at least in some circumstances (74), (75), (76), (77). The executive summary misleadingly implied that because not all studies reported the same effects, RF signals have no effect.

The AGNIR report suggested that symptoms in humans may be caused by people’s perception of being exposed, rather than the actual electromagnetic fields [page 246 (2)]. Imagining a signal to be present is unlikely to explain all responses, particularly symptoms reported in response to RF signals under blind or double-blind conditions (30), (31), (90). Many other studies support biological responses being related to the electromagnetic signal, including evidence from cultured cells, in vitro preparations, animals, plants or asleep humans, none of which reacted with significant changes because they imagined that RF signals were present. That living things can respond to low power RF signals is now supported by a large body of research.

(c) Incorrect statements

For child development [page 260 (2)], maternal mobile phone use during pregnancy was associated with behavioural problems in children at the age of 7 (70), (71) and lower psychomotor performance was described for children of mothers who had the highest mobile phone use during pregnancy (73). The report said, “these results are only suggestive of an effect, rather than being conclusive evidence of one”. Increased conduct problems were reported in 8–17-year-olds with the highest quartile of RF exposures (72) [page 250 (2)]. As studies suggested an effect on child development, the executive summary incorrectly stated, “data on other non-cancer outcomes show no effects of RF field exposure” [page 4 (2)].

For risks of brain tumours or acoustic neuromas in humans, “the similar results of all investigators except the Hardell group, with no methodological inferiorities in these other investigatorsstudies overall, suggest that the results of the Hardell group are the problematic ones” [page 308 (2)]. However, some significantly increased risks of brain tumours or acoustic neuromas were described in Hardell and non-Hardell studies [pages 282–306 (2), (91)], although non-Hardell significant data were omitted from the data tables and only mentioned in the text. For example, for gliomas with an ipsilateral mobile phone use of ≥1640 cumulative hours (ages 30–59), the international Interphone study reported a significant odds ratio (95% confidence interval) of 1.96 (1.22–3.16) and Hardell et al. reported a significant odds ratio of 2.32 (1.14–4.73) (91). Had the data tables included results for ipsilateral exposures, duration of use and more detail of the pooled Interphone studies, it would have been clearer that significantly increased risks had been reported. “With no methodological inferiorities in these other investigators studies” was incorrect. The Interphone study did not take cordless phone use into account in the analysis for mobile phones (91); the Danish cohort study misclassified corporate mobile phone users as non-users, as well as those who took subscriptions out after 1995 (92).

The comment in the executive summary, “the accumulating evidence on cancer risks, notably in relation to mobile phone use, is not definitive, but overall is increasingly in the direction of no material effect of exposure” [page 4 (2)], was misleading. Significant risks were most common for ipsilateral exposures, latencies of 10 years or more since first use or the highest cumulative hours of use (2), (91). If anything, as use increased, the evidence increasingly pointed towards possible risks.

The executive summary stated for cells in vitro: “In particular, there has been no convincing evidence that RF fields cause genetic damage or increase the likelihood of cells becoming malignant” [page 3 (2)] and in the chapter on cellular studies: “Results from studies using other cell types are also contradictory. Epithelial cells exposed to” [page 86 (2)]. However, all in vitro studies included on epithelial cells [four, one retracted, page 84 (2), (93), (94), (95)], from more than one laboratory, found damage to DNA or chromosomal aberrations in response to RF signals. Forty-six percent of genotoxicity studies identified as included in the report (36 out of 78; SI) described evidence for genotoxicity in response to RF fields, but at least 40 genotoxicity studies were omitted (SI). If these had been included, 52% (61 out of 118) of genotoxicity studies overall and 47% of in vitro (36 out of 76) would have described evidence for genotoxicity (SI; AGNIR restriction to the English language; identified from PubMed and EMF-Portal databases). AGNIR found the genotoxicity evidence unconvincing, but a more accurate conclusion could have been that RF signals appear to be genotoxic under certain circumstances, but not others.

For the immune system [page 174 (2)], a Russian study was included (96), which mostly replicated earlier Russian studies and a French one which did not (97). The conclusion was “it is clear that the results of the original Soviet studies have not been confirmed”. It was not clear, as the report also referred to the Russian study with “These results do not appear to be identical to the original, although they do show the same tendency. Results of ELISA reinforced this conclusion. Grigoriev and colleagues also reported that very few pregnant animals receiving serum from exposed animals gave birth to live animals (4 out of 12), which is also supportive of the previous results”.

The report described cognitive performance of RF-exposed and sham-exposed Alzheimer’s disease-like transgenic mice (98) [pages 144–147 (2)]. However, there were no shams in the study, as controls were housed in a separate room without a Faraday cage; exposed mice (two 1 h exposures per day, 918 MHz, SAR 0.25 W/kg) were continuously housed within a Faraday cage for up to 9 months (98). Cognitive improvements in the exposed groups compared to controls may have been the result of long-term protection from environmental electromagnetic fields by the Faraday cage. Because background man-made electromagnetic fields may alter experimental results and are often present in experimental environments, they ought to be described in the Methods section for all biological studies, but are often omitted, as in this paper. The AGNIR report conclusions [page 318 (2)] described this as a well-performed study, whilst other effects of RF signals on cognition were dismissed as inconsistent. Varied responses might indicate dependency upon physiological or experimental conditions and do not automatically justify ignoring evidence.


Decisions about involuntary, continuous and widespread RF exposures in schools, hospitals, workplaces and public and private spaces in the UK and around the world have been made based upon inaccurate conclusions of the AGNIR report. Published in 2012, it continues to be used to justify RF exposures and dismiss concerns about possible adverse effects on health, well-being or development.

The denial of the existence of adverse effects of RF fields below ICNIRP guidelines in the AGNIR report conclusions is not supported by the scientific evidence. Studies have, as described as examples in this review, reported damage to male reproductive health, proteins and cellular membranes, increased oxidative stress, cell death and genotoxicity, altered electrical brain activity and cognition, increased behavioural problems in children and risks of some cancers. For future official RF reports, it is important to check that conclusions accurately reflect available evidence before decisions which impact on public health are made based on the executive summary and overall conclusions.

The involvement of ICNIRP scientists in the misleading report calls into question the basis and validity of the international exposure guidelines. To protect public health, we need accurate official assessments of whether there are adverse effects of RF signals below current international ICNIRP guidelines, independent of the group who set the guidelines.

The anticipated WHO Environmental Health Criteria Monograph on Radiofrequency Fields, due in 2017, is being prepared by a core group and additional experts (99), with 50% of those named, being, or having been, members of AGNIR or ICNIRP (Table 2). Considering the importance of the Monograph for worldwide public health and the inaccuracies described here, independence from AGNIR would increase confidence in the report findings. Independence from ICNIRP is necessary to remove the conflict of interest when effects below ICNIRP exposure guidelines are being assessed.

Table 2:

Named contributors to the WHO Environmental Health Criteria Monograph on Radiofrequency Fields [(99), in preparation] and membership of ICNIRP or AGNIR.

Core group
Feychting M.Vice-Chair ICNIRP, AGNIR
Oftedal G.ICNIRP
van Rongen E.Chair ICNIRP
Scarfi M.R.
Zmirou D.
Additional experts
Aicardi G.
Challis L.Formerly AGNIR
Curcio G.
Hug K.
Juutilainen J.ICNIRP
Lagorio S.
Loughran S.ICNIRP
McNamee J.
Naarala J.
Peyman A.AGNIR
Schoemaker M.
Selmaoui B.
de Sèze R.ICNIRP
Sienkiewicz Z.J.ICNIRP, AGNIR
Simko M.
Zeni O.

Schools, hospitals, employers, organisations and individuals have legal responsibilities to safeguard the health, safety, well-being and development of children, employees and members of the public. But they are unable to fulfil their legal responsibilities when they have been provided with inaccurate information and the evidence of possible harm has been covered up.

Individuals and organisations who/that have made decisions about the often compulsory exposures of others to wireless RF communication signals may be unaware of the physical harm that they may have caused, and may still be causing, because they have not been accurately informed of the risks. This has been a safeguarding failure and the health of some children or adults may have been damaged as a result. To prevent further possible harm, restrictions on exposures are required, particularly for children, pregnant women and individuals with medical conditions. All children in schools and care environments need protection from the potential harmful effects of RF exposures and not, as is now often the case, a compulsory use of wireless devices in the classroom. Children may unjustly face losing their human right to an education if they do not want to absorb RF fields every day at school and no alternative environments are available. Attention also needs to be given to the provision of safe working environments for employees and safe public spaces, particularly where exposures are involuntary.

PHE and AGNIR had a responsibility to provide accurate information about the safety of RF fields. Unfortunately, the report suffered from an incorrect and misleading executive summary and overall conclusions, inaccurate statements, omissions and conflict of interest. Public health and the well-being of other species in the natural world cannot be protected when evidence of harm, no matter how inconvenient, is covered up.

  1. Conflict of interest statement: The author states no conflict of interest.

  2. Ethical approval: The conducted research is not related to either human or animal use.


1. International Commission on Non-Ionizing Radiation Protection. ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300GHz). Health Phys 1998;74(4):494–522.Search in Google Scholar

2. Report of the Advisory Group on Non-ionising Radiation. Health Effects from Radiofrequency Electromagnetic Fields. RCE-20, ISBN 978-0-85951-714-0, 2012. Available at: in Google Scholar

3. Report by the ARPANSA Radiofrequency Expert Panel. Review of Radiofrequency Health Effects Research – Scientific Literature 2000 – 2012. ISSN: 0157-1400, 2014. Available at: in Google Scholar

4. Demers P, Findlay R, Foster K, Kolb B, Moulder J, et al. A Review of Safety Code 6 (2013): Health Canada’s Safety Limits for Exposure to Radiofrequency Fields. ISBN: 978-1-928140-00-9, 2014. Available at: in Google Scholar

5. Public Health England. Reference 15/12/lh/488, 2015. Available at: in Google Scholar

6. HPA response to the 2012 AGNIR report on the health effects from radiofrequency electromagnetic fields. 2012. Available at: in Google Scholar

7. Katakwar P, Metgud R, Naik S, Mittal R. Oxidative stress marker in oral cancer: a review. J Cancer Res Ther 2016;12(2):438–46.10.4103/0973-1482.151935Search in Google Scholar PubMed

8. Kong Q, Lin CL. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci 2010;67(11):1817–29.10.1007/s00018-010-0277-ySearch in Google Scholar PubMed PubMed Central

9. Duhig K, Chappell LC, Shennan AH. Oxidative stress in pregnancy and reproduction. Obstet Med 2016;9(3):113–6.10.1177/1753495X16648495Search in Google Scholar PubMed PubMed Central

10. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed (Yazd) 2016;14(4):231–40.10.29252/ijrm.14.4.231Search in Google Scholar

11. Carvalho AN, Firuzi O, Gama MJ, van Horssen J, Saso L. Oxidative stress and antioxidants in neurological diseases: is there still hope? Curr Drug Targets 2016;[Epub ahead of print].10.2174/1389450117666160401120514Search in Google Scholar PubMed

12. Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 2016;148:183–93.10.1016/j.lfs.2016.02.002Search in Google Scholar PubMed

13. Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2009;2(5):259–69.10.4161/oxim.2.5.9441Search in Google Scholar PubMed PubMed Central

14. Cristani M, Speciale A, Saija A, Gangemi S, Minciullo PL, et al. Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation. Curr Med Chem 2016;[Epub ahead of print].10.2174/0929867323666160902154748Search in Google Scholar PubMed

15. Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger H. Non-thermal DNA breakage by mobile-phone radiation (1800MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 2005;583(2):178–83.10.1016/j.mrgentox.2005.03.006Search in Google Scholar PubMed

16. Remondini D, Nylund R, Reivinen J, Poulletier de Gannes F, Veyret B, et al. Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics 2006;6(17):4745–54.10.1002/pmic.200500896Search in Google Scholar PubMed

17. Oscar KJ, Hawkins TD. Microwave alteration of the blood-brain barrier system of rats. Brain Res 1977;126(2):281–93.10.1016/0006-8993(77)90726-0Search in Google Scholar

18. Belyaev IY. Dependence of non-thermal biological effects of microwaves on physical and biological variables: implications for reproducibility and safety standards. Eur J Oncol Library 2010;5(1):187–217.Search in Google Scholar

19. Blackman C. Cell phone radiation: evidence from ELF and RF studies supporting more inclusive risk identification and assessment. Pathophysiology 2009;16(2–3):205–16.10.1016/j.pathophys.2009.02.001Search in Google Scholar PubMed

20. Scholkmann, F. Two emerging topics regarding long-range physical signalling in neurosystems: membrane nanotubes and elelctromagnetic fields. J Integr Neurosci 2015;14(2):135–53.10.1142/S0219635215300115Search in Google Scholar PubMed

21. Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron 2010;67(1):129–43.10.1016/j.neuron.2010.06.005Search in Google Scholar PubMed PubMed Central

22. Eliyahu I, Luria R, Hareuveny R, Margaliot M, Meiran N, et al. Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans. Bioelectromagnetics 2006;27(2):119–26.10.1002/bem.20187Search in Google Scholar PubMed

23. Luria R, Eliyahu I, Hareuveny R, Margaliot M, Meiran N. Cognitive effects of radiation emitted by cellular phones: the influence of exposure side and time. Bioelectromagnetics 2009;30(3):198–204.10.1002/bem.20458Search in Google Scholar PubMed

24. Maier R, Greter SE, Maier N. Effects of pulsed electromagnetic fields on cognitive processes – a pilot study on pulsed field interference with cognitive regeneration. Acta Neurol Scand 2004;110(1):46–52.10.1111/j.1600-0404.2004.00260.xSearch in Google Scholar PubMed

25. Papageorgiou CC, Hountala CD, Maganioti AE, Kyprianou MA, Rabavilas AD, et al. Effects of wi-fi signals on the p300 component of event-related potentials during an auditory hayling task. J Integr Neurosci 2011;10(2):189–202.10.1142/S0219635211002695Search in Google Scholar PubMed

26. Krause CM, Haarala C, Sillanmäki L, Koivisto M, Alanko K, et al. Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory task: a double blind replication study. Bioelectromagnetics 2004;25(1):33–40.10.1002/bem.10143Search in Google Scholar PubMed

27. Regel SJ, Gottselig JM, Schuderer J, Tinguely G, Rétey JV, et al. Pulsed radio frequency radiation affects cognitive performance and the waking electroencephalogram. Neuroreport 2007a;18(8):803–7.10.1097/WNR.0b013e3280d9435eSearch in Google Scholar PubMed

28. Leung S, Croft RJ, McKenzie RJ, Iskra S, Siber B, et al. Effects of 2G and 3G mobile phones on performance and electrophysiology in adolescents, young adults and older adults. Clin Neurophysiol 2011;122(11):2203–16.10.1016/j.clinph.2011.04.006Search in Google Scholar

29. Regel S, Tinguely G, Schuderer J, Adam M, Kuster N, et al. Pulsed radio-frequency electromagnetic fields: dose-dependent effects on sleep, the sleep EEG and cognitive performance. J Sleep Res 2007b;16(3):253–8.10.1111/j.1365-2869.2007.00603.xSearch in Google Scholar

30. Havas M, Marrongelle J, Pollner B, Kelley E, Rees CRG, et al. Provocation study using heart rate variability shows microwave radiation from 2.4 GHz cordless phone affects autonomic nervous system. Eur J Oncol Library 2010;5(2):273–300.Search in Google Scholar

31. Rea WJ, Pan Y, Fenyves EJ, Sujisawa I, Suyama H, et al. Electromagnetic field sensitivity. J Bioelectricity 1991;10(1–2):241–56.10.3109/15368379109031410Search in Google Scholar

32. Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 2011;12(7):624–6.10.1016/S1470-2045(11)70147-4Search in Google Scholar

33. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril 2009;92(4):1318–25.10.1016/j.fertnstert.2008.08.022Search in Google Scholar PubMed

34. Aly AA, Cheema MI, Tambawala M, Laterza R, Zhou E, et al. Effects of 900-MHz radio frequencies on the chemotaxis of human neutrophils in vitro. IEEE Trans Biomed Eng 2008;55(2 pt 1):795–7.10.1109/TBME.2007.912636Search in Google Scholar PubMed

35. Cervellati F, Franceschetti G, Lunghi L, Franzellitti S, Valbonesi P, et al. Effect of high-frequency electromagnetic fields on trophoblastic connexins. Reprod Toxicol 2009;28(1):59–65.10.1016/j.reprotox.2009.03.010Search in Google Scholar PubMed

36. Chen Q, Zeng QL, Lu DQ, Chiang H. Millimeter wave exposure reverses TPA suppression of gap junction intercellular communication in HaCaT human keratinocytes. Bioelectromagnetics 2004;25(1):1–4.10.1002/bem.10140Search in Google Scholar PubMed

37. Crouzier D, Perrin A, Torres G, Dabouis V, Debouzy JC. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae). Pathol Biol 2009;57(3):245–51.10.1016/j.patbio.2007.12.003Search in Google Scholar PubMed

38. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 2009;4(7):e6446.10.1371/journal.pone.0006446Search in Google Scholar PubMed PubMed Central

39. Del Vecchio G, Giuliani A, Fernandez M, Mesirca P, Bersani F, et al. Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells. Neurosci Lett 2009;455(3):173–7.10.1016/j.neulet.2009.03.061Search in Google Scholar PubMed

40. Erogul O, Oztas E, Yildirim I, Kir T, Aydur E, et al. Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch Med Res 2006;37(7):840–3.10.1016/j.arcmed.2006.05.003Search in Google Scholar PubMed

41. Falzone N, Huyser C, Fourie F, Toivo T, Leszczynski D, et al. In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa. Bioelectromagnetics 2008;29(4):268–76.10.1002/bem.20390Search in Google Scholar PubMed

42. Gaber MH, Abd El Halim N, Khalil WA. Effect of microwave radiation on the biophysical properties of liposomes. Bioelectromagnetics 2005;26(3):194–200.10.1002/bem.20064Search in Google Scholar PubMed

43. Mahrour N, Pologea-Moraru R, Moisescu MG, Orlowski S, Levêque P, et al. In vitro increase of the fluid-phase endocytosis induced by pulsed radiofrequency electromagnetic fields: importance of the electric field component. Biochim Biophys Acta 2005;1668(1):126–37.10.1016/j.bbamem.2004.11.015Search in Google Scholar PubMed

44. Mohammadzadeh M, Mobasheri H, Arazm F. Electromagnetic field (EMF) effects on channel activity of nanopore OmpF protein. Eur Biophys J 2009;38(8):1069–78.10.1007/s00249-009-0511-4Search in Google Scholar PubMed

45. Moisescu MG, Leveque P, Verjus MA, Kovacs E, Mir LM. 900 MHz modulated electromagnetic fields accelerate the clathrin-mediated endocytosis pathway. Bioelectromagnetics 2009;30(3):222–30.10.1002/bem.20463Search in Google Scholar PubMed

46. Stankiewicz W, Dabrowski MP, Kubacki R, Sobiczewska E, Szmigielski S. Immunotropic influence of 900 MHz microwave GSM signal on human blood immune cells activated in vitro. Electromagn Biol Med 2006;25(1):45–51.10.1080/15368370600572961Search in Google Scholar PubMed

47. Szabo I, Kappelmayer J, Alekseev SI, Ziskin MC. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 2006;27(3):233–44.10.1002/bem.20202Search in Google Scholar PubMed

48. Xu S, Ning W, Xu Z, Zhou S, Chiang H, et al. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett 2006;398(3):253–57.10.1016/j.neulet.2006.01.004Search in Google Scholar PubMed

49. Zhadobov M, Sauleau R, Vié V, Himdi M, Le Coq L, et al. Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Trans Microw Theory Tech 2006;54(6):2534–42.10.1109/TMTT.2006.875811Search in Google Scholar

50. Pakhomov AG, Doyle J, Stuck BE, Murphy MR. Effects of high power microwave pulses on synaptic transmission and long term potentiation in hippocampus. Bioelectromagnetics 2003;24(3):174–81.10.1002/bem.10079Search in Google Scholar PubMed

51. Falzone N, Huyser C, Franken DR, Leszczynski D. Mobile phone radiation does not induce pro-apoptosis effects in human spermatozoa. Radiat Res 2010;174(2):169–76.10.1667/RR2091.1Search in Google Scholar PubMed

52. Belyaev IY, Hillert L, Protopopova M, Tamm C, Malmgren LO, et al. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 2005;26(3):173–84.10.1002/bem.20103Search in Google Scholar PubMed

53. Bismuto E, Mancinelli F, d’Ambrosio G, Massa R. Are the conformational dynamics and the ligand binding properties of myoglobin affected by exposure to microwave radiation? Eur Biophys J 2003;32(7):628–34.10.1007/s00249-003-0310-2Search in Google Scholar PubMed

54. Bormusov E, Andley UP, Sharon N, Schächter L, Lahav A, et al. Non-thermal electromagnetic radiation damage to lens epithelium. Open Opthalmol J 2008;2:102–6.10.2174/1874364100802010102Search in Google Scholar PubMed PubMed Central

55. Céspedes O, Ueno S. Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics 2009;30(5):336–42.10.1002/bem.20488Search in Google Scholar PubMed

56. Céspedes O, Inomoto O, Kai S, Nibu Y, Yamaguchi T, et al. Radio frequency magnetic field effects on molecular dynamics and iron uptake in cage proteins. Bioelectromagnetics 2010;31(4):311–7.10.1002/bem.20564Search in Google Scholar PubMed

57. Copty AB, Neve-Oz Y, Barak I, Golosovsky M, Davidov D. Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophys J 2006;91(4):1413–23.10.1529/biophysj.106.084111Search in Google Scholar PubMed PubMed Central

58. Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007;405(3):559–68.10.1042/BJ20061653Search in Google Scholar PubMed PubMed Central

59. George DF, Bilek MM, McKenzie DR. Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding. Bioelectromagnetics 2008;29(4):324–30.10.1002/bem.20382Search in Google Scholar PubMed

60. Mancinelli F, Caraglia M, Abbruzzese A, d’Ambrosio G, Massa R, et al. Non-thermal effects of electromagnetic fields at mobile phone frequency on the refolding of an intracellular protein: myoglobin. J Cell Biochem 2004;93(1):188–96.10.1002/jcb.20164Search in Google Scholar PubMed

61. Mousavy SJ, Riazi GH, Kamarei M, Aliakbarian H, Sattarahmady N, et al. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int J Biol Macromol 2009;44(3):278–85.10.1016/j.ijbiomac.2009.01.001Search in Google Scholar PubMed

62. Ramundo-Orlando A, Liberti M, Mossa G, D’Inzeo G. Effects of 2.45 GHz microwave fields on liposomes entrapping glycoenzyme ascorbate oxidase: evidence for oligosaccharide side chain involvement. Bioelectromagnetics 2004;25(5):338–45.10.1002/bem.10203Search in Google Scholar PubMed

63. Sandu DD, Goiceanu IC, Ispas A, Creanga I, Miclaus S, et al. A preliminary study on ultra high frequency electromagnetic fields on black locust chlorophylls. Acta Biol Hung 2005;56(1–2):109–17.10.1556/ABiol.56.2005.1-2.11Search in Google Scholar PubMed

64. Schrader T, Münter K, Kleine-Ostmann T, Schmid E. Spindle disturbances in human-hamster hybrid (AL) cells induced by mobile communication frequency range signals. Bioelectromagnetics 2008;29(8):626–39.10.1002/bem.20428Search in Google Scholar PubMed

65. Sukhotina I, Streckert JR, Bitz AK, Hansen VW, Lerchl A. 1800 MHz electromagnetic field effects on melatonin release from isolated pineal glands. J Pineal Res 2006;40(1):86–91.10.1111/j.1600-079X.2005.00284.xSearch in Google Scholar PubMed

66. Vukova T, Atanassov A, Ivanov R, Radicheva N. Intensity-dependent effects of microwave electromagnetic fields on acetylcholinesterase activity and protein conformation in frog skeletal muscles. Med Sci Monit 2005;11(2):BR50–6.Search in Google Scholar

67. Weissenborn R, Diederichs K, Welte W, Maret G, Gisler T. Non-thermal microwave effects on protein dynamics? An X-ray diffraction study on tetragonal lysozyme crystals. Acta Crystallogr D Biol Crystallogr 2005;61(2):163–72.10.1107/S0907444904030902Search in Google Scholar PubMed

68. Kilb W, Kirischuk S, Luhmann HJ. Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci 2011;34(10):1677–86.10.1111/j.1460-9568.2011.07878.xSearch in Google Scholar PubMed

69. Palva S, Palva JM. Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front Psychol 2011;2:204.10.3389/fpsyg.2011.00204Search in Google Scholar PubMed PubMed Central

70. Divan HA, Kheifets L, Obel C, Olsen J. Prenatal and postnatal exposure to cell phone use and behavioural problems in children. Epidemiology 2008;19(4):523–9.10.1097/EDE.0b013e318175dd47Search in Google Scholar PubMed

71. Divan HA, Kheifets L, Obel C, Olsen J. Cell phone use and behavioural problems in young children. J Epidemiol Community Health 2012;66(6):524–9.10.1136/jech.2010.115402Search in Google Scholar PubMed

72. Thomas S, Heinrich S, Kühnlein A, Radon K. The association between socioeconomic status and exposure to mobile telecommunication networks in children and adolescents. Bioelectromagnetics 2010;31(1):20–7.10.1097/01.ede.0000362216.98114.4fSearch in Google Scholar

73. Vrijheid M, Martinez D, Forns J, Guxens M, Julvez J, et al. Prenatal exposure to cell phone use and neurodevelopment at 14 months. Epidemiology 2010;21(2):259–62.10.1097/EDE.0b013e3181cb41e0Search in Google Scholar PubMed

74. Bas O, Odaci E, Mollaoglu H, Ucok K, Kaplan S. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health 2009a;25(6):377–84.10.1177/0748233709106442Search in Google Scholar PubMed

75. Odaci E, Bas O, Kaplan S. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res 2008;1238:224–9.10.1016/j.brainres.2008.08.013Search in Google Scholar PubMed

76. Rağbetli MC, Aydinlioğlu A, Koyun N, Rağbetli C, Bektas S, et al. The effect of mobile phone on the number of Purkinje cells: a stereological study. Int J Radiat Biol 2010;86(7):548–54.10.3109/09553001003734527Search in Google Scholar PubMed

77. Orendáčová J, Raceková E, Orendác M, Martonciková M, Saganová K, et al. Immunohistochemical study of postnatal neurogenesis after whole-body exposure to electromagnetic fields: evaluation of age- and dose-related changes in rats. Cell Mol Neurobiol 2009;29(6–7):981–90.10.1007/s10571-009-9385-3Search in Google Scholar PubMed

78. Li M, Wang Y, Zhang Y, Zhou Z, Yu Z. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. J Radiat Res 2008;49(2):163–70.10.1269/jrr.07063Search in Google Scholar PubMed

79. Narayanan SN, Kumar RS, Potu BK, Nayak S, Bhat PG, et al. Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats. Ups J Med Sci 2010;115(2):91–6.10.3109/03009730903552661Search in Google Scholar PubMed PubMed Central

80. Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 2003;111(7):881–3.10.1289/ehp.6039Search in Google Scholar PubMed PubMed Central

81. Zhu Y, Gao F, Yang X, Shen H, Liu W, et al. The effect of microwave emission from mobile phones on neuron survival in rat central nervous system. Prog Electromagn Res (PIER) 2008;82:287–98.10.2528/PIER08022813Search in Google Scholar

82. Bas O, Odaci E, Kaplan S, Acer N, Ucok K, et al. 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res 2009b;1265:178–85.10.1016/j.brainres.2009.02.011Search in Google Scholar

83. Sonmez OF, Odaci E, Bas O, Kaplan S. Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900MHz electromagnetic field. Brain Res 2010;1356:95–101.10.1016/j.brainres.2010.07.103Search in Google Scholar

84. Chaturvedi CM, Singh VP, Singh P, Basu P, Singaravel M. 2.45 GHz (CW) microwave irradiation alters circadian organization, spatial memory, DNA structure in the brain cells and blood cell counts of male mice, Mus musculus. Prog Electromag Res B 2011;29:23–42.10.2528/PIERB11011205Search in Google Scholar

85. Narayanan SN, Kumar RS, Potu BK, Nayak S, Mailankot M. Spatial memory performance of Wistar rats exposed to mobile phone. Clinics (Sao Paulo) 2009;64(3):231–4.10.1590/S1807-59322009000300014Search in Google Scholar

86. Nittby H, Grafström G, Tian DP, Malmgren L, Brun A, et al. Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 2008;29(3)219–32.10.1002/bem.20386Search in Google Scholar

87. Kolodynski AA, Lolodynska VV. Motor and psychological functions of school children living in the area of the Skrunda Radio Location Station in Latvia. Sci Total Environ 1996;180(1):87–93.10.1016/0048-9697(95)04924-XSearch in Google Scholar

88. Fragopoulou AF, Miltiadous P, Stamatakis A, Stylianopoulou F, Koussoulakos SL, et al. Whole body exposure with GSM 900MHz affects spatial memory in mice. Pathophysiology 2010;17(3):179–87.10.1016/j.pathophys.2009.11.002Search in Google Scholar PubMed

89. Rağbetli MC, Aydinlioğlu A, Koyun N, Rağbetli C, Karayel M. Effect of prenatal exposure to mobile phone on pyramidal cell numbers in the mouse hippocampus: a stereological study. Int J Neurosci 2009;119(7):1031–41.10.1080/00207450802324812Search in Google Scholar PubMed

90. Riddervold IS, Pedersen GF, Andersen NT, Pedersen AD, Andersen JB, et al. Cognitive function and symptoms in adults and adolescents in relation to rf radiation from UMTS base stations. Bioelectromagnetics 2008;29(4):257–67.10.1002/bem.20388Search in Google Scholar PubMed

91. Hardell L, Carlberg M, Hansson Mild K. Re-analysis of risk for glioma in relation to mobile telephone use: comparison with the results of the Interphone international case-control study. Int J Epidemiol 2011;40(4):1126–8.10.1093/ije/dyq246Search in Google Scholar PubMed

92. Leszczynski D. Response to Frei P, Poulsen AH, Johansen C, Olsen JH, Steding-Jessen M, et al. Use of mobile phones and risk of brain tumours: update of Danish cohort study. Br Med J 2011;343:d6387. Available at: in Google Scholar PubMed PubMed Central

93. Shckorbatov YG, Pasiuga VN, Kolchigin NN, Grabina VA, Batrakov DO, et al. The influence of differently polarised microwave radiation on chromatin in human cells. Int J Radiat Biol 2009;85(4):322–9.10.1080/09553000902781113Search in Google Scholar PubMed

94. Lixia S, Yao K, Kaijun W, Degiang L, Huajun H, et al. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res 2006;602(1–2):135–42.10.1016/j.mrfmmm.2006.08.010Search in Google Scholar PubMed

95. Yao K, Wu W, Wang K, Ni S, Ye P, et al. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol Vis 2008;14:964–9.Search in Google Scholar

96. Grigoriev YG, Grigoriev OA, Ivanov AA, Lyaginskaya AM, Merkulov AV, et al. Confirmation studies of Soviet research on immunological effects of microwaves: Russian immunology results. Bioelectromagnetics 2010;31(8):589–602.10.1002/bem.20605Search in Google Scholar PubMed

97. de Gannes FP, Taxile M, Duleu S, Hurtier A, Haro E, et al. A confirmation study of Russian and Ukrainian data on effects of 2450 MHz microwave exposure on immunological processes and teratology in rats. Radiat Res 2009;172(5):617–24.10.1667/RR1541.1Search in Google Scholar PubMed

98. Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 2010;19(1):191–210.10.3233/JAD-2010-1228Search in Google Scholar PubMed

99. van Deventer E. Update on WHO EMF Activities. ICNIRP Workshop, Cape Town, South Africa, 2016. Available at: in Google Scholar

Supplementary Material:

The online version of this article (DOI: 10.1515/reveh-2016-0060) offers supplementary material, available to authorized users.

Received: 2016-9-30
Accepted: 2016-10-16
Published Online: 2016-11-30
Published in Print: 2016-12-1

©2016, Sarah J. Starkey, published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.12.2023 from
Scroll to top button