Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 4, 2018

The roles of radio-functional natural chemicals for the development of cancer radiation therapy

Lei Jiang ORCID logo and Hitoshi Iwahashi

Abstract

Ionizing radiation (IR) targeted at killing cancer cells also damages normal human cells and tissues through oxidative stress. Thus, the practical treatment of cancer using radiation therapy (RT) is sometimes limited because of the acute side effects in individual patients. In addition, some radioresistant cancers are difficult to treat with limited doses of IR, which leads to treatment failure. Natural chemicals that have unique physiological functions and low toxicity offer significant advantages for the development of new radiation therapies. Natural chemicals can counteract the oxidative damage caused by IR during RT because of their strong antioxidant ability. Certain natural chemicals can also serve as radiosensitizers that can enhance the cancer-killing effects. This review article discusses the main roles of radio-functional natural chemicals in the development of cancer RT.


Corresponding author: Mr. Lei Jiang, United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan, Phone/Fax: +81 080 5103 7458

  1. Research funding: Authors state no funding involved.

  2. Conflict of interest: Authors state no conflict of interest.

  3. Informed consent: Informed consent is not applicable.

  4. Ethical approval: The conducted research is not related to either human or animal use.

References

1. Mozumder A, Hatano Y. Charged particle and photon interactions with matter: chemical, physicochemical, and biological consequences with applications. New York, NY: Marcel Dekker; 2004.Search in Google Scholar

2. Petrucci RH, Harwood WS, Herring GF, Madura JD. General chemistry: principles and modern applications. Upper Saddle River, NJ: Pearson Prentice Hall; 2007.Search in Google Scholar

3. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012;9(3):193–9.10.7150/ijms.3635Search in Google Scholar

4. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. New York, NY: Lippincott Williams & Wilkins; 2006.Search in Google Scholar

5. Hovdenak N, Fajardo LF, Hauer-Jensen M. Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. Int J Radiat Oncol Biol Phys 2000;48(4):1111–7.10.1016/S0360-3016(00)00744-6Search in Google Scholar

6. Hovdenak N, Karlsdottir Á, Sørbye H, Dahl O. Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. Acta Oncol 2003;42(7):741–8.10.1080/02841860310011302Search in Google Scholar PubMed

7. Camphausen K, Tofilon PJ. Combining radiation and molecular targeting in cancer therapy. Cancer Biol Ther 2004;3(3):247–50.10.4161/cbt.3.3.544Search in Google Scholar

8. Najafi M, Shirazi A, Motevaseli E, Rezaeyan AH, Salajegheh A, Rezapoor S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacol 2017;25(4):403–13.10.1007/s10787-017-0332-5Search in Google Scholar PubMed

9. Kabakov AE, Kudryavtsev VA, Gabai VL. Hsp90 inhibitors as promising agents for radiotherapy. J Mol Med 2010;88(3): 241–7.10.1007/s00109-009-0562-0Search in Google Scholar PubMed

10. Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cells 2005;8(2):99–110.10.1016/j.ccr.2005.06.016Search in Google Scholar PubMed

11. Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Prasad J, et al. Radioprotection by plant products: present status and future prospects. Phytother Res 2005;19(1):1–22.10.1002/ptr.1605Search in Google Scholar PubMed

12. Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Microb Biotechnol 2011;4(6):687–99.10.1111/j.1751-7915.2010.00221.xSearch in Google Scholar PubMed PubMed Central

13. Mitra S, Dash R. Natural products for the management and prevention of breast cancer. Evid Based Complement Alternat Med 2018;2018:8324696.10.1155/2018/8324696Search in Google Scholar PubMed PubMed Central

14. Hosseinimehr SJ. Beneficial effects of natural products on cells during ionizing radiation. Rev Environ Health 2014;29(4):341–53.10.1515/reveh-2014-0037Search in Google Scholar PubMed

15. Jagetia GC, Reddy TK. Modulation of radiation-induced alteration in the antioxidant status of mice by naringin. Life Sci 2005;77(7):780–94.10.1016/j.lfs.2005.01.015Search in Google Scholar PubMed

16. Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 2005;212(2–3):116–23.10.1016/j.tox.2005.04.016Search in Google Scholar PubMed

17. Oladi M, Sazgarnia A, Nasiri MR, Amrollahi M, Parhiz H, Ramezani M. In vivo time-dependent radio-protective effect of lycopene against whole-body gamma radiation in mice. Iran Red Crescent Med J 2017;19(2):e19624.10.5812/ircmj.19624Search in Google Scholar

18. Oh JY, Fernando IP, Jeon YJ. Potential applications of radioprotective phytochemicals from marine algae. Algae 2016;3(14):403–14.10.4490/algae.2016.31.12.1Search in Google Scholar

19. Archana PR, Nageshwar RB, Satish RB. Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integr Cancer Ther 2011;10(4):374–83.10.1177/1534735410387421Search in Google Scholar PubMed

20. Abedi SM, Yarmand F, Motallebnejad M, Seyedmajidi M, Moslemi D, Bijani A, et al. Radioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats. Iran J Pharm Res 2016;15(4):861–6.Search in Google Scholar

21. Abedi SM, Yarmand F, Motallebnejad M, Seyedmajidi M, Moslemi D, Ashrafpour M, et al. Vitamin E protects salivary glands dysfunction induced by ionizing radiation in rats. Arch Oral Biol 2015;60(9):1403–9.10.1016/j.archoralbio.2015.06.003Search in Google Scholar PubMed

22. Hosseinimehr SJ, Ghaffari-Rad V, Rostamnezhad M, Ghasemi A, Allahverdi Pourfallah T, Shahani S. Radioprotective effect of chicory seeds against genotoxicity induced by ionizing radiation in human normal lymphocytes. Cell Mol Biol 2015;61(4):46–50.Search in Google Scholar

23. Mohammad MK, Mohamed MI, Zakaria AM, Abdul Razak HR, Saad WM. Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose x-ray in mice. Biomed Res Int 2014;2014:512834.10.1155/2014/512834Search in Google Scholar PubMed PubMed Central

24. Thyagarajan A, Sahu RP. Potential contributions of antioxidants to cancer therapy: immunomodulation and radiosensitization. Integr Cancer Ther 2018;17(2):210–6.10.1177/1534735416681639Search in Google Scholar PubMed PubMed Central

25. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005;7(3):211–7.10.1016/j.ccr.2005.02.013Search in Google Scholar PubMed

26. Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 2011;11(6):438–48.10.1038/nrc3069Search in Google Scholar PubMed PubMed Central

27. Huether G. The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia 1993;49(8):665–70.10.1007/BF01923948Search in Google Scholar PubMed

28. Mihandoost E, Shirazi A, Mahdavi SR, Aliasgharzadeh A. Can melatonin help us in radiation oncology treatments? Biomed Res Int 2014;2014:578137.10.1155/2014/578137Search in Google Scholar PubMed PubMed Central

29. Slominski AT, Hardeland R, Zmijewski MA, Slominski RM, Reiter RJ, Paus R. Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol Metab 2008;19(1):17–24.10.1016/j.tem.2007.10.007Search in Google Scholar PubMed

30. Malhotra P, Adhikari M, Mishra S, Singh S, Kumar P, Singh SK, et al. N-Acetyl Tryptophan Glucopyranoside (NATG) as a countermeasure against gamma radiation-induced immunosuppression in murine macrophage J774A.1 cells. Free Radic Res 2016;50(11):1265–78.10.1080/10715762.2016.1235788Search in Google Scholar PubMed

31. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18(5):309–24.10.1038/nri.2017.142Search in Google Scholar PubMed

32. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell 2014;159(4):709–13.10.1016/j.cell.2014.10.039Search in Google Scholar PubMed PubMed Central

33. Bezerra DP, Pessoa C, de Moraes MO, Saker-Neto N, Silveira ER, Costa-Lotufo LV. Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci 2013;48(3):453–63.10.1016/j.ejps.2012.12.003Search in Google Scholar PubMed

34. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013;75:685–705.10.1146/annurev-physiol-030212-183653Search in Google Scholar PubMed PubMed Central

35. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nature Rev Molec Cell Biol 2014;15:482–96.10.1038/nrm3823Search in Google Scholar PubMed

36. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 2016;530:184–9.10.1038/nature16932Search in Google Scholar

37. Kim MH. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem 2003;89(3):529–38.10.1002/jcb.10543Search in Google Scholar

38. Osada M, Imaoka S, Funae Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1α protein. FEBS Lett 2004;575(1–3):59–63.10.1016/j.febslet.2004.08.036Search in Google Scholar

39. Lim H, Park H, Kim HP. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem Pharmacol 2015;96(4):337–48.10.1016/j.bcp.2015.06.013Search in Google Scholar

40. Perrott KM, Wiley CD, Desprez PY, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience 2017;39:161–73.10.1007/s11357-017-9970-1Search in Google Scholar

41. Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging 2016;8(11):2915–26.10.18632/aging.101100Search in Google Scholar

42. Schosserer M, Grillari J, Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol 2017;7:278.10.3389/fonc.2017.00278Search in Google Scholar

43. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med 1995;18(6):1033–77.10.1016/0891-5849(94)00209-3Search in Google Scholar

44. Fan S, Meng Q, Xu J, Jiao Y, Zhao L, Zhang X, et al. DIM (3,3′-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. PNAS 2013;110(46):18650–55.10.1073/pnas.1308206110Search in Google Scholar PubMed PubMed Central

45. Pejin B, Stanimirovic B, Djordjevic N, Hegedis A, Karaman I, Horvatović M, et al. In vitro radioprotective activity of the bryozoan hyalinella punctata. Asian J Chem 2013;25(8):4713–14.10.14233/ajchem.2013.14917Search in Google Scholar

46. Nguyen TN, Saleem RS, Luderer MJ, Hovde S, Henry RW, Tepe JJ. Radioprotection by hymenialdisine-derived checkpoint kinase 2 inhibitors. ACS Chem Biol 2012;7(1):172–84.10.1021/cb200320cSearch in Google Scholar PubMed

47. Pommier Y, Sordet O, Rao VA, Zhang H, Kohn KW. Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Curr Pharm Des 2005;11(22):2855–72.10.2174/1381612054546716Search in Google Scholar PubMed

48. Hosseinimehr SJ. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov Today 2010;15(21–22): 907–18.10.1016/j.drudis.2010.09.005Search in Google Scholar PubMed

49. Park E, Ahn GN, Lee NH, Kim JM, Yun JS, Hyun JW, et al. Radioprotective properties of eckol against ionizing radiation in mice. FEBS Lett 2008;582(6):925–30.10.1016/j.febslet.2008.02.031Search in Google Scholar PubMed

50. Wardman P. Chemical radiosensitizers for use in radiotherapy. Clin Oncol 2007;19(6):397–417.10.1016/j.clon.2007.03.010Search in Google Scholar PubMed

51. Liu Q, He X, Liu Y, Du B, Wang X, Zhang W, et al. NADPH oxidase-mediated generation of reactive oxygen species: a new mechanism for X-ray-induced HeLa cell death. Biochem Biophys Res Commun 2008;377(3):775–9.10.1016/j.bbrc.2008.10.067Search in Google Scholar PubMed

52. Takahashi J, Misawa M, Murakami M, Mori T, Nomura K, Iwahashi H. 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor mode. Springerplus 2013;2:602.10.1186/2193-1801-2-602Search in Google Scholar PubMed PubMed Central

53. Takahashi J, Murakami M, Mori T, Iwahashi H. Verification of radiodynamic therapy by medical linear accelerator using a mouse melanoma tumor model. Sci Rep 2018; 8:2728.10.1038/s41598-018-21152-zSearch in Google Scholar PubMed PubMed Central

54. Labay E, Mauceri HJ, Efimova EV, Flor AC, Sutton HG. Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers. Oncotarget 2016;7(23):33919–33.10.18632/oncotarget.8984Search in Google Scholar PubMed PubMed Central

55. Choi JY, Cho HJ, Hwang SG, Kim WJ, Kim JI, Um HD, et al. Podophyllotoxin acetate enhances g-ionizing radiation-induced apoptotic cell death by stimulating the ROS/p38/caspase pathway. Biomed Pharmacother 2015;70:111–8.10.1016/j.biopha.2014.12.038Search in Google Scholar PubMed

56. Ueta K, Yamamoto J, Tanaka T, Nakano Y, Kitagawa T, Nishizawa S, et al. 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. Int J Mol Med 2017;39(2):387–98.10.3892/ijmm.2016.2841Search in Google Scholar

57. Yoneda T, Nonoguchi N, Ikeda N, Yagi R, Kawabata S, Furuse M, et al. Spectral radiance of protoporphyrin ix fluorescence and its histopathological implications in 5-aminolevulinic acid-guided surgery for glioblastoma. Photomed Laser Surg 2018;36(5):266–72.10.1089/pho.2017.4384Search in Google Scholar

58. Toyama M, Mori T, Takahashi J, Iwahashi H. Luteolin as reactive oxygen generator by X-ray and UV irradiation. J Rad Phys Chem 2018;146:11–8.10.1016/j.radphyschem.2017.12.022Search in Google Scholar

59. Surovtseva YV, Jairam V, Salem AF, Sundaram RK, Bindra RS, Herzon SB. Characterization of cardiac glycoside natural products as potent inhibitors of DNA double-strand break repair by a whole-cell double immunofluorescence assay. J Am Chem Soc 2016;138(11):3844–55.10.1021/jacs.6b00162Search in Google Scholar

60. Jiang XD, Qiao Y, Dai P, Wu J, Song DA, Li SQ, et al. Preliminary clinical study of weekly recombinant human endostatin as a hypoxic tumour cell radiosensitiser combined with radiotherapy in the treatment of NSCLC. Clin Transl Oncol 2012;14(6):465–70.10.1007/s12094-012-0825-zSearch in Google Scholar

61. Zhang Q, Zhang C, Yang X, Yang B, Wang J, Kang Y, et al. Berberine inhibits the expression of hypoxia induction factor-1alpha and increases the radiosensitivity of prostate cancer. Diagn Pathol 2014;9:98.10.1186/1746-1596-9-98Search in Google Scholar

62. Huang M, Zhang H, Liu T, Tian D, Gu L, Zhou M. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway. Mol Cancer Ther 2013;12(2):184–94.10.1158/1535-7163.MCT-12-0425Search in Google Scholar

63. García-Rubiño ME, Lozano-López C, Campos JM. Inhibitors of cancer stem cells. Anticancer Agents Med Chem 2016;16(10):1230–9.10.2174/1871520616666160330104715Search in Google Scholar

64. Tishler RB, Schiff P, Geard CR, Hall E. Taxol: a novel radiation sensitizer. Int J Radiat Oncol Biol Phys 1992;22(3):613–7.10.1016/0360-3016(92)90888-OSearch in Google Scholar

65. Sinclair WK. Cyclic X-Ray responses in mammalian cells in vitro. Radiat. Res 2012;178(2):112–24.10.2307/3572419Search in Google Scholar

66. Liu CY, Liao HF, Shih SC, Lin SC, Chang WH, Chu CH, et al. Colchicine sensitizes human hepatocellular carcinoma cells to damages caused by radiation. World J Gastroenterol 2005;11(27):4237–40.10.3748/wjg.v11.i27.4237Search in Google Scholar PubMed PubMed Central

67. Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting mitosis in cancer: emerging strategies. Mol Cell 2015;60(4):524–36.10.1016/j.molcel.2015.11.006Search in Google Scholar PubMed

68. Sherr CJ, Bartek J. Cell cycle – targeted cancer therapies. Annu Rev Cancer Biol 2017;1:41–57.10.1146/annurev-cancerbio-040716-075628Search in Google Scholar

69. Malik A, Sultana M, Qazi A, Qazi MH, Parveen G, Waquar S, et al. Role of natural radiosensitizers and cancer cell radioresistance: an update. Anal Cell Pathol (Amst) 2016;2016:6146595.10.1155/2016/6146595Search in Google Scholar PubMed PubMed Central

Received: 2018-09-16
Accepted: 2018-11-13
Published Online: 2018-12-04
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston