Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 22, 2013

Metalloid Sn clusters: properties and the novel synthesis via a disproportionation reaction of a monohalide

Claudio Schrenk and Andreas Schnepf

Abstract

Metalloid cluster compounds of tin of the general formulae SnnRm with n>m (R=organic ligand), where beside ligand-bound tin atoms also “naked” tin atoms, that only bind to other tin atoms, are present, represent a novel class of cluster compounds in tin chemistry. As the “naked” tin atoms inside these clusters exhibit an oxidation state of 0, the average oxidation state of the tin atoms within such metalloid tin clusters is in between 0 and 1. Thus, these cluster compounds may be seen as intermediates on the way to the elemental state. Therefore, interesting properties are expected for these compounds, which might complement results from nanotechnology. During the last years, different syntheses of such novel cluster compounds have been introduced, leading to several metalloid tin cluster compounds, which exhibit new and partly unusual structure and bonding properties. In this review, recent results in this novel field of group 14 chemistry are discussed, whereby special attention is focused on the novel synthetic route applying a disproportionation reaction of metastable Sn(I) halides.


Corresponding author: Andreas Schnepf, Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany, e-mail:

References

Balasubramanian, K. Spectroscopic properties and potential energy curves of tin chloride (SnCl): comparison with lead chloride (PbCl). J. Molecular Spectr.1988, 132, 280–283.Search in Google Scholar

Barnett, J. D.; Bean, V. E.; Hall, H. T. X-ray diffraction studies on tin to 100 kilobars. J. Appl. Phys.1966, 37, 875.Search in Google Scholar

Barr, D.; Clegg, W.; Mulvey, R. E.; Snaith, R. Crystal structures of (Ph2C:NLi·NC5H5)4 and [ClLi·O:P(NMe2)3]4: discrete tetrameric pseudocubane clusters with bridging of trilithium triangles by nitrogen and by chlorine atoms. Chem. Commun.1984, 20, 79–80.Search in Google Scholar

Breher, F. Stretching bonds in main group element compounds – borderlines between biradicals and closed-shell species. Coord. Chem. Rev.2007, 251, 1007–1043.Search in Google Scholar

Brynda, M; Herber, R.; Hitchcock, P. B.; Lappert, M. F.; Nowik, I.; Power, P. P.; Protchenko, A. V.; Ruzicka, A.; Steiner, J. Higher nuclearity group 14 metalloid clusters: [Sn9{Sn(NRR′)}6]. Angew. Chem.2006, 118, 4439–4443; Angew. Chem. Int. Ed.200645, 4333–4337.Search in Google Scholar

Chapman, D. J.; Sevov, S. C. Tin-based organo-Zintl ions: alkylation and alkenylation of Sn94-. Inorg. Chem.2008, 47, 6009–6013.Search in Google Scholar

Corrigan, J. F.; Fuhr, O.; Fenske, D. Metal chalcogenide clusters on the border between molecules and materials. Adv. Mater.2009, 21, 1867–1871.Search in Google Scholar

Debrov, N.; Oger, E.; Rapps, T.; Kelting, R.; Schooss, D.; Weis, P.; Kappes, M. M.; Ahlrichs, R. Structures of tin cluster cations Sn3+ to Sn15+. J. Chem. Phys.2010, 133, 224302.Search in Google Scholar

Desgreniers, S.; Vohra, Y. K.; Ruoff, A. L. Tin at high pressure: an energy-dispersive x-ray-diffraction study to 120 GPa. Phys. Rev. B1989, 39, 10359–10361.Search in Google Scholar

Ecker, A.; Weckert, E.; Schnöckel, H. Synthesis and structural characterization of an Al77 cluster. Nature1997, 387, 379–381.Search in Google Scholar

Eichler, B. E.; Power, P. P. Synthesis and characterization of [Sn8(2,6-Mes2C6H3)4] (Mes=2,4,6-Me3C6H2): a main group metal cluster with a unique structure. Angew. Chem.2001, 113, 818–819; Angew. Chem. Int. Ed.2001, 40, 796–797.10.1002/1521-3773(20010216)40:4<796::AID-ANIE7960>3.0.CO;2-5Search in Google Scholar

Fässler, T. F. The renaissance of homoatomic nine-atom polyhedra of the heavier carbon-group elements Si-Pb. Coord. Chem. Rev.2001, 215, 347–377.Search in Google Scholar

Fukawa, T.; Lee, V. Y.; Nakamoto, M.; Sekiguchi, A. Tetrakis(di-tert- butylmethylsilyl)distannene and its anion radical. J. Am. Chem. Soc.2004, 126, 11758–11759.Search in Google Scholar

Gilman, H.; Smith, C. L. Tetrakis(trimethylsilyl)silane. J. Organomet. Chem.1967, 8, 245–253.Search in Google Scholar

Grimme, S.; Huenerbein, R.; Ehrlich, S. On the importance of the dispersion energy for the thermodynamic stability of molecules. Chem. Phys. Chem.2011, 12, 1258–1261.Search in Google Scholar

Henke, F.; Schenk, C.; Schnepf, A. [Si(SiMe3)3]6Ge18M(M=Zn, Cd, Hg): neutral metalloid cluster compounds of germanium as highly soluble building blocks for a supramolecular chemistry. Dalton Trans.2009, 42, 9141–9145.Search in Google Scholar

Holleman, A. F.; Wiberg, E. Lehrbuch der Anorganischen Chemie; 102nd Edition. Wiberg, N., Wiberg, E., Holleman, A, Eds. De Gruyter & Co.: Berlin, 2007; pp. 1002–1041.10.1515/9783110177701Search in Google Scholar

Hull, M. W.; Sevov, S. C. Addition of alkenes to deltahedral Zintl clusters by reaction with alkynes: synthesis and structure of [Fc-CH=CH-Ge9-CH=CH-Fc]2-, an organo-Zintl-organometallic anion. Angew. Chem.2007, 119, 6815–6818; Angew. Chem. Int. Ed.2007, 46, 6695–6698.10.1002/anie.200701950Search in Google Scholar

Hull, M. W.; Sevov, S. C. Functionalization of nine-atom deltahedral Zintl ions with organic substituents: detailed studies of the reactions. J. Am. Chem. Soc.2009, 131, 9026–9037.Search in Google Scholar

Ito, Y.; Lee, V. Y.; Gornitzka, H.; Goedecke, C.; Frenking, G.; Sekiguchi, A. Spirobis(pentagerma[1.1.1]propellane): a stable tetraradicaloid. J. Am. Chem. Soc.2013, 135, 6770–6773.Search in Google Scholar

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science2007, 318, 430–433.Search in Google Scholar

Klinkhammer, K. W.; Schwarz, W. Bis(hypersilyl)tin and bis(hypersilyl)lead, two electron- rich carbene homologs. Angew. Chem.1995, 107, 1448–1451; Angew. Chem. Int. Ed.1995, 34, 1334–1336.10.1002/anie.199513341Search in Google Scholar

Klinkhammer, K. W.; Fässler, T. F.; Grützmacher, H. The formation of heteroleptic carbene homologs by ligand exchange. Synthesis of the first plumbanediyl dimer. Angew. Chem.1998, 110, 114–116; Angew. Chem. Int. Ed.1998, 37, 124–126.10.1002/(SICI)1521-3773(19980202)37:1/2<124::AID-ANIE124>3.0.CO;2-CSearch in Google Scholar

Kocak, F. S.; Zavalij, P. Y.; Lam, Y.-F.; Eichhorn, B. W. Substituent-dependent exchange mechanisms in highly fluxional RSn93- anions. Chem. Commun.2009, 45, 4197–4199.Search in Google Scholar

Kocak, F. S.; Downing, D. O.; Zavalij, P.; Lam, Y.-F.; Vedernikov, N.; Eichhorn, B. Surprising acid/base and ion-sequestration chemistry of Sn94-: HSn93-, Ni@HSn93-, and the Sn93- ion revisited. J. Am. Chem. Soc.2012, 134, 9733–9740.Search in Google Scholar

Koch, K.; Schnepf, A.; Schnöckel, H. The stepwise fragmentation and modification of a structurally well-defined metalloid cluster in the gas-phase – from Ge9R3 (R=Si(SiMe3)3) to Ge9 and Ge9Si. Z. Anorg. Allg. Chem.2006, 632, 1710–1716.Search in Google Scholar

Köppe, R.; Schnepf, A. Synthese von germanium(I)bromid. Ein erster schritt zu neuen clusterverbindungen des germaniums? Z. Anorg. All. Chem.2002, 628, 2914–2918.Search in Google Scholar

Lechtken, A.; Debrov, N.; Ahlrichs, R.; Kappes, M. M.; Schooss, D. Tin cluster anions (Snn-, n=18, 20, 23, and 25) comprise dimers of stable subunits. J. Chem. Phys.2010, 132, 211102.Search in Google Scholar

Linti, G.; Köstler, W.; Piotrowski, H.; Rodig, A. A silatetragallane – classical heterobicyclopentane or closo-polyhedron? Angew. Chem. 1998, 110, 2331–2333; Angew. Chem. Int. Ed.1998,37, 2209–2211.10.1002/(SICI)1521-3773(19980904)37:16<2209::AID-ANIE2209>3.0.CO;2-3Search in Google Scholar

Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem.2010, 122, 1780–1803; Angew. Chem. Int. Ed.2010, 49, 1736–1758.10.1002/anie.200902483Search in Google Scholar

Mitzel, N. W.; Lustig, C. Crystal structure of a lithium chloride cubane cluster solvated by diethyl ether. Z. Naturforsch. B, 2001, 56, 443–445.Search in Google Scholar

Nied, D.; Klopper, W.; Breher, F. Pentagerma[1.1.1]propellane: a combined experimental and quantum chemical study on the nature of the interactions between the bridgehead atoms. Angew. Chem.2009, 121, 1439–1444; Angew. Chem. Int. Ed.2009, 48, 1411–1416.10.1002/anie.200805289Search in Google Scholar

Oger, E.; Kelting, R.; Weis, P.; Lechtken, A.; Schooss, D.; Crawford, N. R. M.; Ahlrichs, R.; Kappes, M. M. Small tin cluster anions: transition from quasispherical to prolate structures. J. Chem. Phys.2009, 130, 124305.Search in Google Scholar

Ozin, G. A.; Arsenault, A. C.; Cademartiri, L. Nanochemistry; 2nd Edition; RSC Publishing: Cambridge, 2009.Search in Google Scholar

Pacher, A.; Schrenk, C.; Schnepf, A. Sn(I) halides: novel binary compounds of tin and their application in synthetic chemistry. J. Organomet. Chem.2010, 695, 941–944.Search in Google Scholar

Power, P. P. Bonding and reactivity of heavier group 14 element alkyne analogues. Organometallics, 2007, 26, 4362–4372.10.1021/om700365pSearch in Google Scholar

Power, P. P. Main-group elements as transition metals. Nature2010, 463, 171–177.10.1038/nature08634Search in Google Scholar

Prabusankar, G.; Kempter, A.; Gemel, C.; Schröter, M.-K.; Fischer, R. A. [Sn17{GaCl(ddp)}4]: a high-nuclearity metalloid tin cluster trapped by electrophilic gallium ligands. Angew. Chem.2008, 120, 7344–7347; Angew. Chem. Int. Ed.200847, 7234–7237.Search in Google Scholar

Purath, A.; Köppe, R.; Schnöckel, H. [Al7{N(SiMe3)2}6]-: a first step towards aluminum metal formation by disproportionation. Angew. Chem.1999, 111, 3114-3116; Angew. Chem. Int. Ed.1999, 38, 2926–2928.10.1002/(SICI)1521-3773(19991004)38:19<2926::AID-ANIE2926>3.0.CO;2-BSearch in Google Scholar

Qian, H.; Zhu, Y.; Jin, R. Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc. Nat. Acad. Sci.2012, 109, 696–700.Search in Google Scholar

Renner, G.; Kircher, P.; Huttner, G.; Rutsch, P.; Heinze, K. Efficient syntheses of the complete set of compounds [{(OC)5M}6E6]2- (M=Cr, Mo, W; E=Ge, Sn) – structure and redox behaviour of the octahedral clusters [Ge6]2- and [Sn6]2-Eur. J. Inorg. Chem.2001, 2001, 973–980.Search in Google Scholar

Richards, A. F.; Brynda, M.; Olmstead, M. M.; Power, P. P. Characterization of Ge5R4 (R=CH(SiMe3)2, C6H3-2,6-Mes2): germanium clusters of a new structural type with singlet biradical character. Organometallics2004, 23, 2841–2844.Search in Google Scholar

Richards, A. F.; Eichler, B. E.; Brynda, M.; Olmstead, M. M.; Power, P. P. Metal-rich, neutral and cationic organotin clusters. Angew. Chem.2005, 117, 2602–2605; Angew. Chem. Int. Ed.2005, 44, 2546–2549.10.1002/anie.200500117Search in Google Scholar

Rivard, E.; Steiner, J.; Fettinger, J. C.; Giuliani, J. R.; Augustine, M. P.; Power, P. P. Convergent syntheses of [Sn7{C6H3-2,6-(C6H3-2,6-iPr2)2}2]: a cluster with a rare pentagonal bipyramidal motif. Chem. Commun.2007, 4919–4921.Search in Google Scholar

Schiemenez, B.; Huttner, G. The first octahedral Zintl ion: Sn62- as a ligand in [Sn6{Cr(CO)5}6]2-. Angew. Chem. 1993, 105, 295–296; Angew. Chem., Int. Ed.1993, 32, 297–298.Search in Google Scholar

Schenk, C.; Schnepf, A. [AuGe18{Si(SiMe3)3}6]-: a soluble Au-Ge cluster on the way to a molecular cable? Angew. Chem.2007, 119, 5408–5410; Angew. Chem. Int. Ed.200746, 5314–5316.Search in Google Scholar

Schenk, C.; Schnepf, A. Ge14[Ge(SiMe3)3]5Li3(THF)6: the largest metalloid cluster compound of Germanium: on the way to fullerene-like compounds? Chem. Commun.2008, 44, 4643–4645.Search in Google Scholar

Schenk, C.; Henke, F.; Santigo, G.; Krossing, I.; Schnepf, A. [Si(SiMe3)3]6Ge18M (M=Cu, Ag, Au): metalloid cluster compounds as unusual building blocks for a supramolecular chemistry. Dalton Trans.2008, 33, 4436–4441.Search in Google Scholar

Schenk, C.; Henke, F.; Neumaier, M.; Olzmann, M.; Schnöckel H.; Schnepf, A. Reaktionen des metalloiden clusteranions {Ge9[Si(SiMe3)3]3}- in der gas phase. Oxidations- und reduktionsschritte geben einblicke in den bereich zwischen metalloiden clustern und Zintl-ionen. Z. Anorg. allg. Chem.2010, 636, 1173–1182.Search in Google Scholar

Schenk, C.; Kracke, A.; Fink, K.; Kubas, A.; Klopper, W.; Neumaier, M.; Schnöckel, H.; Schnepf, A. The formal combination of three singlet biradicaloid entities to a singlet hexaradicaloid metalloid Ge14[Si(SiMe3)3]5Li3(THF)6 cluster. J. Am. Chem. Soc.2011, 133, 2518–2524.Search in Google Scholar

Schenk, C.; Henke, F.; Schnepf, A. Ge12[FeCp(CO)2]8[FeCpCO]2 – a Ge12 core resembles the arrangement of the high pressure modification germanium(II). Angew. Chem.2013, 125, 1883–1887; Angew. Chem. Int. Ed.2013, 52, 1834–1838.10.1002/anie.201207224Search in Google Scholar

Schnepf, A. Ge(I) Bromide: a new source for germanium cluster compounds. Phosphorus Sulfur Silicon Relat. Elem. 2004, 179, 695–698.Search in Google Scholar

Schnepf, A. On the redox chemistry of Ge(I) bromide. Eur. J. Inorg. Chem.2005, 11, 2120–2123.Search in Google Scholar

Schnepf, A. {Ge10Si[Si(SiMe3)3]4(SiMe3)2Me}-: A Ge10Si framework reveals a structural transition onto elemental germanium. Chem. Commun.2007a, 43, 192–194.Search in Google Scholar

Schnepf, A. Metalloid group 14 cluster compounds: an introduction and perspectives to this novel group of cluster compounds. Chem. Soc. Rev.2007b, 36, 745–758.Search in Google Scholar

Schnepf, A.; Schnöckel, H. Synthesis and structure of a Ga84R204- Cluster – a link between metalloid clusters and fullerenes? Angew. Chem.2001, 113, 734–737; Angew. Chem. Int. Ed.2001, 40, 712–715.Search in Google Scholar

Schnepf, A.; Schnöckel, H. Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew. Chem.2002a, 114, 3682–3704; Angew. Chem. Int. Ed.2002a, 41, 3532–3554.Search in Google Scholar

Schnepf, A.; Schnöckel, H. Nanostructural element modifications: synthesis and structure of elementoid gallium clusters. In Group 13 Chemistry – From Fundamentals to Application, ACS Symposium Series Nr. 822. Shapiro, P. Y.; Atwood, D. A., Eds. American Chemical Society, Washington DC, 2002b; pp. 154–167.10.1021/bk-2002-0822.ch011Search in Google Scholar

Schnepf, A.; Schenk, C. Na6[Ge10{Fe(CO)4}8]·18 THF: a centaur polyhedron of germanium atoms. Angew. Chem.2006, 118, 5499–5502; Angew. Chem. Int. Ed.2006, 45, 5373–5376.10.1002/anie.200600928Search in Google Scholar

Schnepf, A.; Stößer, G.; Schnöckel, H. Synthesis, structure and bonding of a molecular metalloid Ga19-cluster anion. J. Am. Chem. Soc.2000, 122, 9178–9181.Search in Google Scholar

Schnepf, A.; Jee, B.; Schnöckel, H.; Weckert, E.; Meents, A.; Lübbert, D.; Herrling, E.; Pilawa B. Preparation and precise structural determination of a second Ga84 cluster compound. A first hint for cluster doping and its fundamental consequences in the field of chemistry and physics of nanoscaled metalloid cluster material. Inorg. Chem.2003, 42, 7731–7733.Search in Google Scholar

Schnöckel, H. Metalloid Al- and Ga-clusters: a novel dimension in organometallic chemistry linking the molecular and the solid-state areas? Dalton Trans.2005, 20, 3131–3136.Search in Google Scholar

Schnöckel, H. Structures and properties of metalloid Al and Ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. Chem. Rev.2010, 110, 4125–4163.Search in Google Scholar

Schrenk, C.; Schnepf, A. Sn3[Si(SiMe3)3)]4: first insight into the mechanism of the disproportion of a tin monohalide gives access to the shortest double bond in tin. Chem. Commun.2010, 46, 6756–6758.Search in Google Scholar

Schrenk, C.; Schnepf, A. {Sn10Si(SiMe3)2[Si(SiMe3)3]4}2-: cluster enlargement via degradation of labile ligands. Main Group Metal Chem. accepted.Search in Google Scholar

Schrenk, C.; Köppe, R.; Schellenberg, I.; Pöttgen, R.; Schnepf, A. Synthesis of tin(I)bromide. A novel binary halide for synthetic chemistry. Z. Anorg. Allg. Chem.2009, 635, 1541–1548.Search in Google Scholar

Schrenk, C.; Schellenberg, I.; Pöttgen, R.; Schnepf, A. The formation of a metalloid Sn10[Si(SiMe3)3]6 cluster compound and its relation to the α↔β tin phase transition. Dalton Trans.2010, 39, 1872–1876.Search in Google Scholar

Schrenk, C.; Kubas, A.; Fink, K.; Schnepf, A. Sn4Si[Si(SiMe3)3]4 [SiMe3]2: a model compound for the unexpected first-order transition from a singlet biradicaloid to a classical bonded molecule. Angew. Chem.2011, 123, 7411–7415; Angew. Chem. Int. Ed.201150, 7237–7277.Search in Google Scholar

Schrenk, C.; Helmlinger, J.; Schnepf, A. {Sn10[Si(SiMe3)3]5}-: an anionic metalloid tin cluster from an isolable Sn(I) halide solution. Z. Anorg. allg. Chem.2012a, 638, 589–593.Search in Google Scholar

Schrenk, C.; Winter, F.; Pöttgen, R.; Schnepf, A. {Sn9[Si(SiMe3)3]2}2-: a metalloid tin cluster compound with a Sn9 core of oxidation state zero. Inorg. Chem.2012b, 51, 8583–8588.Search in Google Scholar

Sita, L. R.; Kinoshita, I. Octakis(2,6-diethylphenyl)octastannacubane. Organometallics1990, 9, 286–2867.Search in Google Scholar

Sita, L. R.; Kinoshita, I. Decakis(2,6-diethylphenyl)decastanna[5]prismane: characterization and molecular structure. J. Am. Chem. Soc.1991, 113, 1856–1857.Search in Google Scholar

Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. Access to a stable Si2N2 four-membered ring with non-Kekulé singlet biradical character from a disilyne. J. Am. Chem. Soc.2011, 133, 12478–12481.Search in Google Scholar

Ugrinov, A.; Sevov, S. C. [Ph2Bi-(Ge9)-BiPh2]2-: a deltahedral Zintl ion functionalized by exo-bonded ligands. J. Am. Chem. Soc.2002, 124, 2442–2443.Search in Google Scholar

Ugrinov, A.; Sevov, S. C. Derivatization of deltahedral Zintl ions by nucleophilic addition: [Ph-Ge9-SbPh2]2- and [Ph2Sb-Ge9-Ge9-SbPh2]4-. J. Am. Chem. Soc.2003, 125, 14059–14064.Search in Google Scholar

Ugrinov, A.; Sevov, S. C. Rationally functionalized deltahedral Zintl ions: synthesis and characterization of [Ge9-ER3]3-, [R3E-Ge9-ER3]2-, and [R3E-Ge9-Ge9-ER3]4- (E=Ge, Sn; R=Me, Ph). Chem. Eur. J.2004, 10, 3727–3733.10.1002/chem.200400130Search in Google Scholar

Vollet, J.; Hartig, J. R.; Schnöckel, H. Al50C120H180: a pseudofullerene shell of 60 carbon atoms and 60 methyl groups protecting a cluster core of 50 aluminum atoms. Angew. Chem.2004, 116, 3248–3252; Angew. Chem. Int. Ed. 2004, 43, 3186–3189.10.1002/anie.200453754Search in Google Scholar

Vollet, J.; Stösser, G.; Schnöckel, H. New structures of low valent Al hypersilanides: a negatively charged isomer with a closo-Al4Si-structure potentially indicates a new entry in polyhedral AlmSin-frameworks. Inorg. Chim. Acta, 2007, 360, 1298–1304.Search in Google Scholar

Wade, K. Structural and bonding patterns in cluster chemistry. Adv. Inorg. Chem. Radiochem.1976, 18, 1–66.Search in Google Scholar

Wang, X.; Peng, Y.; Olmstead, M. M.; Fettinger, J. C.; Power, P. P. An unsymmetric oxo/imido-bridged germanium-centered singlet diradicaloid. J. Am. Chem. Soc.2009, 131, 14164–14165.Search in Google Scholar

Wang, X.; Peng, Y.; Zhu, Z.; Fettinger, J. C.; Power, P. P.; Guo, J.; Nagase, S. Synthesis and characterization of two of the three isomers of a germanium-substituted bicyclo[2.2.0]hexane diradicaloid: stretching the Ge-Ge bond. Angew. Chem.2010, 122, 4697–4701; Angew. Chem. Int. Ed.2010, 49, 4593–4597.10.1002/anie.201001086Search in Google Scholar

Wiberg, N.; Lerner, H.-W.; Vasisht, S.-K.; Wagner, S.; Karaghiosoff, K.; Nöth, H.; Ponikwar, W. Tetrasupersilyl-tristannaallene and -tristannacyclopropene (tBu3Si)4Sn3. Isomers with the shortest Sn=Sn double bonds to date. Eur. J. Inorg. Chem.1999a, 1211–1218.Search in Google Scholar

Wiberg, N.; Lerner, H.-W.; Wagner, S.; Nöth, H.; Seifert, T. On an octastannanediide R*6Sn8[Na(THF)2]2 and the possible existence of an octastannane R*6Sn8. Z. Naturforsch. B1999b, 54, 877–880.10.1515/znb-1999-0709Search in Google Scholar

Yang, P. Chemistry and physics of silicon nanowire. Dalton Trans.2008, 33, 4387–4391.Search in Google Scholar

Received: 2013-8-19
Accepted: 2013-9-12
Published Online: 2013-10-22
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin Boston