Accessible Unlicensed Requires Authentication Published by De Gruyter May 24, 2019

Rare earth nanofluorides: synthesis using ionic liquids

Miroslava Guricová, Jan Pinc, Juraj Malinčik, Jakub Rak, Martin Kuchař and Vilém Bartůněk


This review presents a comprehensive summary of the research progress on the synthesis of rare earth fluoride nanomaterials using the most common methods of synthesis. Special focus is on syntheses utilising ionic liquids, which is a new and promising way of preparing nanomaterials without the use of dangerous organic solvents (toxic, flammable, or combustive). Rare earth fluoride nanoparticles can be obtained with a high yield, purity, and crystallinity, and with different morphologies and luminescent properties depending on the selected method of synthesis.


This work was funded by the Ministry of the Interior of the Czech Republic (project VG20172020056).


Aebischer, A.; Hostettler, M.; Hauser, J.; Krämer, K.; Weber, T.; Güdel, H. U.; Bürgi, H.-B. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew. Chem. Int. Edit.2006, 45, 2802–2806.10.1002/anie.200503966 Search in Google Scholar

Bartůněk, V.; Rak, J.; Král, V.; Smrčková, O. Simple one-step preparation of cerium trifluoride nanoparticles. J. Fluorine Chem.2011, 132, 298–301.10.1016/j.jfluchem.2011.02.009 Search in Google Scholar

Bartůněk, V.; Jakeš, V.; Král, V.; Rak, J. Lanthanum trifluoride nanoparticles prepared using ionic liquids. J. Fluorine Chem.2012, 135, 358–361.10.1016/j.jfluchem.2011.09.003 Search in Google Scholar

Bartůněk, V.; Rak, J.; Pelánková, B.; Sofer, Z.; Ulbrich, P.; Kuchař, M.; Král, V. Preparation and luminescent properties of cubic potassium-erbium fluoride nanoparticles. J. Fluorine Chem.2013a, 156, 363–366.10.1016/j.jfluchem.2013.07.020 Search in Google Scholar

Bartůněk, V.; Rak, J.; Sofer, Z.; Král, V. Nano-crystals of various lanthanide fluorides prepared using the ionic liquid bmimPF6. J. Fluorine Chem.2013b, 149, 13–17.10.1016/j.jfluchem.2013.01.035 Search in Google Scholar

Bartůněk, V.; Pinc, J.; Ulbrich, P.; Rak, J.; Pelánková, B.; Král, V.; Kuchař, M.; Ježek, P.; Engstová, H.; Smolková, K. Tunable rapid microwave synthesis of up-converting hexagonal NaYx Gdy Ybz Er(1−xyz)F4 nanocrystals in large quantity. J. Fluor. Chem.2015, 178, 56–60.10.1016/j.jfluchem.2015.06.021 Search in Google Scholar

Bartunek, V.; Dobrovolny, K.; Svecova, M.; Matejka, P.; Sida, P.; Pokorny, P.; Kuchar, M.; Cerna, E. Obtaining black carbon – a simple method for the safe removal of mineral components from soils and archaeological layers. Archaeometry2017, 59, 346–355.10.1111/arcm.12262 Search in Google Scholar

Batsanova, L. R. Rare-earth fluorides. Russ. Chem. Rev. 1971, 40, 465.10.1070/RC1971v040n06ABEH001932 Search in Google Scholar

Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale2010, 2, 1358–1374.2084552410.1039/b9nr00377k Search in Google Scholar

Blackwell, H. E. Out of the oil bath and into the oven-microwave-assisted combinatorial chemistry heats up. Org. Biomol. Chem.2003, 1, 1251–1255.1292965210.1039/b301432k Search in Google Scholar

Brunton, G. The crystal structure of [beta]-KCeF4. Acta Crystallogr. B1969, 25, 600–602.10.1107/S0567740869002639 Search in Google Scholar

Bühler, G.; Feldmann, C. Microwave-assisted synthesis of luminescent LaPO4:Ce,Tb nanocrystals in ionic liquids. Angew. Chem. Int. Ed.2006, 45, 4864–4867.10.1002/anie.200600244 Search in Google Scholar

Bukhalova, G. A.; Litovskaya, N. A.; Lyutsedarskii, V. A. Phase diagrams of binary systems of PrF3 and alkali-metal fluorides, magnetochemical investigation of Pr fluorocomplexes. Izv. Akad. Nauk SSSR, Neorg. Mater.1969, 5, 425–428. Search in Google Scholar

Bünzli, J.-C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev.2010, 110, 2729–2755.2015163010.1021/cr900362e Search in Google Scholar

Cao, C.; Yang, H. K.; Chung, J. W.; Moon, B. K.; Choi, B. C.; Jeong, J. H.; Kim, K. H. Hydrothermal synthesis and optical properties of Eu3+ doped NaREF4 (RE=Y, Gd), LnF3 (Ln=Y, La), and YF3 1.5NH3 micro/nanocrystals. Mater. Res. Bull.2011, 46, 1553–1559.10.1016/j.materresbull.2011.06.026 Search in Google Scholar

Chen, D.; Yu, Y.; Huang, P.; Lin, H.; Shan, Z.; Wang, Y. Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Mater.2010, 58, 3035–3041.10.1016/j.actamat.2010.01.035 Search in Google Scholar

Cichos, J.; Karbowiak, M. Spectroscopic characterization of ligands on the surface of water dispersible NaGdF4:Ln(3+) nanocrystals. Appl. Surf. Sci.2012, 258, 5610–5618.10.1016/j.apsusc.2012.02.037 Search in Google Scholar

Corrêa, C. M.; Bizeto, M. A.; Camilo, F. F. Direct synthesis of silver nanoparticles in ionic liquid. J. Nanopart. Res.2016, 18, 1–10. Search in Google Scholar

Cybinska, J.; Lorbeer, C.; Mudring, A.-V. Phosphate protected fluoride nano-phosphors. J. Mater. Chem.2012, 22, 9505–9508.10.1039/c2jm15471d Search in Google Scholar

Dambournet, D.; Demourgues, A.; Tressaud, A. Microwave-Assisted Route Towards Fluorinated Nanomaterials. In Functionalized Inorganic Fluorides; John Wiley & Sons, Ltd: France, 2010; pp. 39–68. Search in Google Scholar

Dash, P.; Scott, R. W. J. One-pot synthesis of supported-nanoparticle materials in ionic liquid solvents. Mater. Lett.2011, 65, 7–9.10.1016/j.matlet.2010.09.031 Search in Google Scholar

Dekker, R.; Klunder, D. J. W.; Borreman, A.; Diemeer, M. B. J.; Wörhoff, K.; Driessen, A.; Stouwdam, J. W.; van Veggel, F. C. J. M. Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides. Appl. Phys. Lett.2004, 85, 6104–6106.10.1063/1.1840110 Search in Google Scholar

Diamente, P. R.; van Veggel, F. C. J. M. Water-soluble Ln3+-doped LaF3 nanoparticles: retention of strong luminescence and potential as biolabels. J. Fluoresc.2005, 15, 543–551.10.1007/s10895-005-2827-5 Search in Google Scholar

DiMaio, J. R.; Kokuoz, B.; Ballato, J. White light emissions through down-conversion of rare-earth doped LaF3 nanoparticles. Opt. Express2006, 14, 11412–11417.10.1364/OE.14.011412 Search in Google Scholar

Ding, K.; Miao, Z.; Liu, Z.; Zhang, Z.; Han, B.; An, G.; Miao, S.; Xie, Y. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J. Am. Chem. Soc.2007, 129, 6362–6363.10.1021/ja070809c Search in Google Scholar

Ding, M. Y.; Lu, C. H.; Ni, Y. R.; Xu, Z. Z. Rapid microwave-assisted flux growth of pure beta-NaYF4:Yb3+, Ln(3+) (Ln=Er, Tm, Ho) microrods with multicolor upconversion luminescence. Chem. Eng. J.2014, 241, 477–484.10.1016/j.cej.2013.10.045 Search in Google Scholar

Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem. Rev.2015, 115, 10725–10815.10.1021/acs.chemrev.5b0009126151155 Search in Google Scholar

Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.2002, 102, 3667–3692.10.1021/cr010338r12371898 Search in Google Scholar

Engelhardt, L. M.; Figgis, B. N. Magnetic susceptibility of Tm3+ and Yb3+ in cubic NaYF4. J. Chem. Soc. Chem. Comm. A1970, 415–417. Search in Google Scholar

Fedorov, P. P.; Rappo, A. V.; Spiridonov, F. M.; Sobolev, B. P. Phase diagram of NaF – YbF3 system. Russ. J. Inorg. Chem. (Translation of Zhurnal Neorganicheskoi Khimii)1983, 28, 420–422. Search in Google Scholar

Fedorov, P. P.; Luginina, A. A.; Kuznetsov, S. V.; Osiko, V. V. Nanofluorides. J. Fluorine Chem.2011, 132, 1012–1039.10.1016/j.jfluchem.2011.06.025 Search in Google Scholar

Fedorov, P. P.; Mayakova, M. N.; Kuznetsov, S. V.; Voronov, V. V.; Ermakov, R. P.; Samarina, K. S.; Popov, A. I.; Osiko, V. V. Co-precipitation of yttrium and barium fluorides from aqueous solutions. Mater. Res. Bull.2012, 47, 1794–1799.10.1016/j.materresbull.2012.03.027 Search in Google Scholar

Feng, W.; Yong, Z.; Xianping, F.; Minquan, W. One-pot synthesis of chitosan/LaF3:Eu3+ nanocrystals for bio-applications. Nanotechnology2006, 17, 1527.10.1088/0957-4484/17/5/060 Search in Google Scholar

Feofilov, S. P. Spectroscopy of dielectric nanocrystals doped by rare-earth and transition-metal ions. Phys. Solid State2002, 44, 1407.10.1134/1.1501329 Search in Google Scholar

Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Elsevier: Amsterdam, Netherlands, 1997. Search in Google Scholar

Grzyb, T.; Szczeszak, A.; Śniadecki, Z.; Idzikowski, B.; Lis, S. White and red emitting LaF3 nanocrystals doped with Eu2+ and Eu3+ ions: spectroscopic and magnetic studies. J. Alloys. Compd.2016, 686, 489–495.10.1016/j.jallcom.2016.06.019 Search in Google Scholar

Guo, H.; Guo, Y.; Noh, H. M.; Moon, B. K.; Park, S. H.; Jeong, J. H.; Kim, K. H. Elaboration, structure and luminescence of sphere-like CaF2:RE sub-microparticles by ionic liquids based hydrothermal process. J. Nanosci. Nanotechnol.2016, 16, 1146–1150.10.1166/jnn.2016.1080027398577 Search in Google Scholar

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Edit.2011, 50, 5808–5829.10.1002/anie.201005159 Search in Google Scholar

He, M.; Huang, P.; Zhang, C.; Chen, F.; Wang, C.; Ma, J.; He, R.; Cui, D. A general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system. Chem. Commun.2011a, 47, 9510–9512.10.1039/c1cc12886h Search in Google Scholar

He, M.; Huang, P.; Zhang, C.; Hu, H.; Bao, C.; Gao, G.; He, R.; Cui, D. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv. Funct. Mater.2011b, 21, 4470–4477.10.1002/adfm.201101040 Search in Google Scholar

He, M.; Huang, P.; Zhang, C. L.; Ma, J. B.; He, R.; Cui, D. X. Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system. Chem. Eur. J.2012, 18, 5954–5969.10.1002/chem.201102419 Search in Google Scholar

Hoppe, R.; Odenthal, R. M.; Ardashnikova, E. I.; Borzenkova, M. P.; Novoselova, A. V. Chapter 45: Rare earth fluorides. Russ. J. Inorg. Chem. (Translation of Zhurnal Neorganicheskoi Khimii)1980, 25, 833–836. Search in Google Scholar

Huber, G.; Heumann, E.; Sandrock, T.; Petermann, K. Luminescence and optical spectroscopy of condensed matter up-conversion processes in laser crystals. J. Lumin.1997, 72, 1–3. Search in Google Scholar

Itoh, H.; Hiromitsu, H.; Masashi, T.; Yasuo, S.; Yasukazu, A. Determination of solubility products of rare earth fluorides by fluoride ion-selective electrode. Bull. Chem. Soc. Jpn.1984, 57, 1689–1690.10.1246/bcsj.57.1689 Search in Google Scholar

Jacob, D. S.; Bitton, L.; Grinblat, J.; Felner, I.; Koltypin, Y.; Gedanken, A. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chem. Mater.2006, 18, 3162–3168.10.1021/cm060782g Search in Google Scholar

Jia, L.-P.; Zhang, Q.; Yan, B. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals. Mater. Res. Bull.2014, 55, 53–60.10.1016/j.materresbull.2014.04.007 Search in Google Scholar

Keller, C.; Schmutz, H. Uber Doppelfluoride der dreiwertige Lanthaniden und einiger Actiniden des typs NaMeF4. Z. Naturforsch. B 1964, 19b, 1080. Search in Google Scholar

Kong, D. Y.; Wang, Z. L.; Lin, C. K.; Quan, Z. W.; Li, Y. Y.; Li, C. X.; Lin, J.; Biofunctionalization of CeF3:Tb3+ nanoparticles. Nanotechnology2007, 18, 075601.10.1088/0957-4484/18/7/075601 Search in Google Scholar

Lezhnina, M. M.; Jüstel, T.; Kätker, H.; Wiechert, D. U.; Kynast, U. H. Efficient luminescence from rare-earth fluoride nanoparticles with optically functional shells. Adv. Funct. Mater.2006, 16, 935–942.10.1002/adfm.200500197 Search in Google Scholar

Li, C.; Lin, J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem.2010, 20, 6831–6847.10.1039/c0jm00031k Search in Google Scholar

Li, G.; Lai, Y.; Bao, W.; Li, L.; Li, M.; Gan, S.; Long, T.; Zou, L. Facile synthesis and luminescence properties of highly uniform YF3:Ln3+ (Ln=Eu, Tb, Ce, Dy) nanocrystals in ionic liquids. Powder Technol.2011a, 214, 211–217.10.1016/j.powtec.2011.08.012 Search in Google Scholar

Li, C.; Ma, P.; Yang, P.; Xu, Z.; Li, G.; Yang, D.; Peng, C.; Lin, J. Fine structural and morphological control of rare earth fluorides REF3 (RE=La-Lu, Y) nano/microcrystals: microwave-assisted ionic liquid synthesis, magnetic and luminescent properties. CrystEngComm.2011b, 13, 1003–1013.10.1039/C0CE00186D Search in Google Scholar

Li, X.; Gai, S.; Li, C.; Wang, D.; Niu, N.; He, F.; Yang, P. Monodisperse lanthanide fluoride nanocrystals: synthesis and luminescent properties. Inorg. Chem.2012, 51, 3963–3971.10.1021/ic200925v22409422 Search in Google Scholar

Li, X.; Zhang, F.; Zhao, D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev.2015, 44, 1346–1378.2505225010.1039/C4CS00163J Search in Google Scholar

Lifante, G.; Balaji, T.; MunozYague, A. Planar optical waveguides fabricated by molecular beam epitaxy of Pb-doped CaF2 layers. Appl. Phys. Lett.1997, 70, 2079–2081.10.1063/1.118956 Search in Google Scholar

Liu, C.; Wang, H.; Li, X.; Chen, D. Monodisperse, size-tunable and highly efficient β-NaYF4:Yb, Er (Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J. Mater. Chem.2009a, 19, 3546–3553.10.1039/b820254k Search in Google Scholar

Liu, C.; Wang, H.; Zhang, X.; Chen, D. Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence. J. Mater. Chem.2009b, 19, 489–496.10.1039/B815682D Search in Google Scholar

Liu, X.; Zhao, J.; Sun, Y.; Song, K.; Yu, Y.; Du, C.; Kong, X.; Zhang, H. Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chem. Commun.2009c, 6628–6630. Search in Google Scholar

Liu, Y.; Li, D.; Ma, Q.; Dong, X.; Xi, X.; Yu, W.; Wang, X.; Wang, J.; Liu, G. Er3+ doped BaYF5 nanofibers: facile construction technique, structure and upconversion luminescence. J. Mater. Sci-Mater. El.2016a, 27, 5277–5283.10.1007/s10854-016-4425-5 Search in Google Scholar

Liu, Y.; Li, D.; Ma, Q.; Yu, W.; Xi, X.; Dong, X.; Wang, J.; Liu, G. Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination. J. Mater. Sci-Mater. El.2016b, 27, 1–8. Search in Google Scholar

Lo, A. Y. H.; Sudarsan, V.; Sivakumar, S.; van Veggel, F.; Schurko, R. W. Multinuclear solid-state NMR spectroscopy of doped lanthanum fluoride nanoparticles. J. Am. Chem. Soc.2007, 129, 4687–4700.1738585810.1021/ja068604b Search in Google Scholar

Lorbeer, C.; Cybinska, J.; Mudring, A.-V. Facile preparation of quantum cutting GdF3: Eu3+ nanoparticles from ionic liquids. Chem. Commun.2010, 46, 571–573.10.1039/B919732J Search in Google Scholar

Lorbeer, C.; Cybińska, J.; Mudring, A.-V. Europium(III) fluoride nanoparticles from ionic liquids: structural, morphological, and luminescent properties. Cryst. Growth Des.2011a, 11, 1040–1048.10.1021/cg101140r Search in Google Scholar

Lorbeer, C.; Cybinska, J.; Zych, E.; Mudring, A. V. Highly doped alkaline earth nanofluorides synthesized from ionic liquids. Opt. Mater.2011b, 34, 336–340.10.1016/j.optmat.2011.04.019 Search in Google Scholar

Lorbeer, C.; Behrends, F.; Cybinska, J.; Eckert, H.; Mudring, A. V. Charge compensation in RE3+ (RE=Eu, Gd) and M+ (M=Li, Na, K) co-doped alkaline earth nanofluorides obtained by microwave reaction with reactive ionic liquids leading to improved optical properties. J. Mater. Chem. C2014, 2, 9439–9450.10.1039/C4TC01214C Search in Google Scholar

Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic liquids for nano- and microstructures preparation. Part 2: application in synthesis. Adv. Colloid Interfac.2016, 227, 1–52.10.1016/j.cis.2015.08.010 Search in Google Scholar

Ma, L.; Chen, W.-X.; Zheng, Y.-F.; Zhao, J.; Xu, Z. Microwave-assisted hydrothermal synthesis and characterizations of PrF3 hollow nanoparticles. Mater. Lett.2007, 61, 2765–2768.10.1016/j.matlet.2006.04.124 Search in Google Scholar

Ma, Z.; Yu, J.; Dai, S. Preparation of inorganic materials using ionic liquids. Adv. Mater.2010, 22, 261–285.2021768710.1002/adma.200900603 Search in Google Scholar

Macák, J. M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Edit.2005, 44, 2100–2102.10.1002/anie.200462459 Search in Google Scholar

Mader, H. S.; Kele, P.; Saleh, S. M.; Wolfbeis, O. S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol.2010, 14, 582–596.2082909810.1016/j.cbpa.2010.08.014 Search in Google Scholar

Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-D., You, L.-P.; Yan, C.-H. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc.2006, 128, 6426–6436.10.1021/ja060212h16683808 Search in Google Scholar

Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures – a review. Fluid Phase Equilibr.2004, 219, 93–98.10.1016/j.fluid.2004.02.003 Search in Google Scholar

Mioduski, T. Solubility equations for the ethylsulphates of trivalent Y, Pm, Pu, Am and Cm as determined by co-crystallization. J. Radioanal. Nucl. Chem.1988, 128, 351–358.10.1007/BF02205189 Search in Google Scholar

Mioduski, T.; Gumiński, C.; Zeng, D. IUPAC-NIST solubility data series. 100. Rare earth metal fluorides in water and aqueous systems. Part 1. Scandium group (Sc, Y, La). J. Phys. Chem. Ref. Data2014, 43, 013105.10.1063/1.4866773 Search in Google Scholar

Mioduski, T.; Gumiński, C.; Zeng, D. IUPAC-NIST solubility data series. 100. Rare earth metal fluorides in water and aqueous systems. Part 2. Light lanthanides (Ce–Eu). J. Phys. Chem. Ref. Data2015a, 44, 013102.10.1063/1.4903362 Search in Google Scholar

Mioduski, T.; Gumiński, C.; Zeng, D. IUPAC-NIST solubility data series. 100. Rare earth metal fluorides in water and aqueous systems. Part 3. Heavy lanthanides (Gd–Lu). J. Phys. Chem. Ref. Data2015b, 44, 023102.10.1063/1.4918371 Search in Google Scholar

Moses, W. W.; Derenzo, S. E.; Weber, M. J.; Ray-Chaudhuri, A. K.; Cerrina, F. Scintillation mechanisms in cerium fluoride. J. Luminesc.1994, 59, 89–100.10.1016/0022-2313(94)90026-4 Search in Google Scholar

Najdanovic-Visak, V.; Esperanca, J.; Rebelo, L. P. N.; da Ponte, M. N.; Guedes, H. J. R.; Seddon, K. R.; de Sousa, H. C.; Szydlowski, J. Pressure, isotope, and water co-solvent effects in liquid-liquid equilibria of (ionic liquid plus alcohol) systems. J. Phys. Chem. B2003, 107, 12797–12807.10.1021/jp034576x Search in Google Scholar

Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Edit.2001, 40, 4128–4158.10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S Search in Google Scholar

Nuria, O. N.; Manuel, O. An ionic liquid based synthesis method for uniform luminescent lanthanide fluoride nanoparticles. Nanotechnology2007, 18, 455606.10.1088/0957-4484/18/45/455606 Search in Google Scholar

Payrer, E. L.; Almeida, R. M.; Jimenez, C.; Szkutnik, P. D.; Deschanvres, J. L. Growth of lanthanide-doped YF3 thin films by pulsed liquid injection MOCVD: influence of deposition parameters on film microstructure. Surf. Coating Technol.2013, 230, 22–27.10.1016/j.surfcoat.2013.06.099 Search in Google Scholar

Rahman, P.; Green, M. The synthesis of rare earthfluoride based nanoparticles. Nanoscale2009, 1, 214–224.10.1039/b9nr00089e20644840 Search in Google Scholar

Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A. Synthesis of inorganic solids using microwaves. Chem. Adv. Mater.1999, 11, 882–895.10.1021/cm9803859 Search in Google Scholar

Reetz, M. T.; Maase, M.; Schilling, T.; Tesche, B. Computer image processing of transmission electron micrograph pictures as a fast and reliable tool to analyze the size of nanoparticles. J. Phys. Chem. B2000, 104, 8779–8781.10.1021/jp000328e Search in Google Scholar

Remy, H. Lehrbuch der anorganischen Chemie. Akademische Verlagsgesellschaft Geest & Portig K.-G.: Leipzig, 1961. Search in Google Scholar

Ribarik, G.; Ungar, T.; Gubicza, J. MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr.2001, 34, 669–676.10.1107/S0021889801011451 Search in Google Scholar

Roy, D. M.; Roy, R. Controlled massively defective crystalline solutions with the fluorite structure. J. Electrochem. Soc.1964, 111, 421–429.10.1149/1.2426145 Search in Google Scholar

Schadt, K.; Kerscher, B.; Thomann, R.; Mülhaupt, R. Structured semifluorinated polymer ionic liquids for metal nanoparticle preparation and dispersion in fluorous compartments. Macromolecules2013, 46, 4799–4804.10.1021/ma400551e Search in Google Scholar

Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun.2001, 2399–2407. Search in Google Scholar

Shen, J.; Sun, L.-D.; Yan, C.-H. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans.2008, 5687–5697.18941653 Search in Google Scholar

Sokolov, V. I.; Zvyagin, A. V.; Igumnov, S. M.; Molchanova, S. I.; Nazarov, M. M.; Nechaev, A. V.; Savelyev, A. G.; Tyutyunov, A. A.; Khaydukov, E. V.; Panchenko, V. Y. Determination of the refractive index of beta-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry. Opt. Spectrosc.2015, 118, 609–613.10.1134/S0030400X15040190 Search in Google Scholar

Stouwdam, J. W.; Hebbink, G. A.; Huskens, J.; van Veggel, F. C. J. M. Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mater.2003, 15, 4604–4616.10.1021/cm034495d Search in Google Scholar

Suyver, J. F.; Aebischer, A.; Biner, D.; Gerner, P.; Grimm, J.; Heer, S.; Krämer, K. W.; Reinhard, C.; Güdel, H. U. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater.2005, 27, 1111–1130.10.1016/j.optmat.2004.10.021 Search in Google Scholar

Tan, M. C.; Al-Baroudi, L.; Riman, R. E. Surfactant effects on efficiency enhancement of infrared-to-visible upconversion emissions of NaYF4:Yb-Er. ACS Appl. Mater. Interfaces2011, 3, 3910–3915.10.1021/am200768u21870851 Search in Google Scholar

Thoma, R. E.; Hebert, G. M.; Insley, H.; Weaver, C. F. Phase equilibria in the system sodium fluoride-yttrium fluoride. Inorg. Chem.1963, 2, 1005–1012.10.1021/ic50009a030 Search in Google Scholar

Uematsu, T.; Baba, M.; Oshima, Y.; Tsuda, T.; Torimoto, T.; Kuwabata, S. Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids. J. Am. Chem. Soc.2014, 136, 13789–13797.10.1021/ja506724w25210806 Search in Google Scholar

Walden, P. Molecular weights and electrical conductivity of several fused salts. Bull. Russ. Acad. Sci.1914, 8, 405–422. Search in Google Scholar

Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev.2009, 38, 976–989.10.1039/b809132n19421576 Search in Google Scholar

Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials2011, 32, 1110–1120.10.1016/j.biomaterials.2010.09.06920965564 Search in Google Scholar

Wasserscheid, P.; Keim, W. Ionic liquids – new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed.2000, 39, 3772–3789.10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5 Search in Google Scholar

Weller, P. F. Electrical and optical properties of rare earth doped cadmium fluoride single crystals. Inorg. Chem.1965, 4, 1545–1551.10.1021/ic50033a004 Search in Google Scholar

Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev.1999, 99, 2071–2084.10.1021/cr980032t11849019 Search in Google Scholar

Xu, J.-S.; Zhu, Y.-J. Microwave-assisted ionic liquid solvothermal rapid synthesis of hollow microspheres of alkaline earth metal fluorides (MF2, M=Mg, Ca, Sr). CrystEngComm.2012, 14, 2630–2634.10.1039/c2ce06619j Search in Google Scholar

Xu, Z.; Li, C.; Yang, P.; Zhang, C.; Huang, S.; Lin, J. Rare earth fluorides nanowires/nanorods derived from hydroxides: hydrothermal synthesis and luminescence properties. Cryst. Growth Des.2009, 9, 4752–4758.10.1021/cg900604j Search in Google Scholar

Yao, G.; Berry, M. T.; May, P. S.; Kilin, D. S. Optical properties of host material for phosphor computational modeling. Int. J. Quantum. Chem.2012, 112, 3889–3895.10.1002/qua.24292 Search in Google Scholar

Yasyrkina, D. S.; Kuznetsov, S. V.; Fedorov, P. P.; Voronov, V. V.; Ermakov, R. P.; Ryabova, A. V.; Pominova, D. V.; Baranchikov, A. E.; Ivanov, V. K.; Osiko, V. V. Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. J. Fluorine Chem.2014, 158, 60–64.10.1016/j.jfluchem.2013.11.009 Search in Google Scholar

You, F.; Wang, Y.; Lin, J.; Tao, Y. Hydrothermal synthesis and luminescence properties of NaGdF4:Eu. J. Alloys. Compd.2002, 343, 151–155.10.1016/S0925-8388(02)00203-7 Search in Google Scholar

Yuanfang, L.; Wei, C.; Shaopeng, W.; Joly, A. G.; Westcott, S.; Boon Kuan, W. X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+,Tb3+ water-soluble nanoparticles. J. Appl. Phys.2008, 103, 063105.10.1063/1.2890148 Search in Google Scholar

Zachariasen, W. H. Double fluorides of potassium or sodium with uranium, thorium or lanthanum. J. Am. Chem. Soc.1948, 70, 2147–2151.10.1021/ja01186a045 Search in Google Scholar

Zakaria, D.; Mahiou, R.; Avignant, D.; Zahir, M. Single-crystal structure refinement and luminescence analysis of β-NaEuF4. J. Alloys. Compd.1997, 257, 65–68.10.1016/S0925-8388(97)00016-9 Search in Google Scholar

Zakharova, B. S.; Reshetnikova, L. P.; Novoselova, A. V. A study of a part of a phase diagram of the system KF – NdF3. Dokl. Akad. Nauk.1974, 216, 451–454. Search in Google Scholar

Zeng, Y.; Wang, Y.; Xu, Y.; Song, Y.; Jiang, J.; Jin, Z. Pd nanoparticles in the thermoregulated ionic liquid and organic biphasic system: an efficient and recyclable catalyst for heck reaction. Catal. Lett.2013, 143, 200–205.10.1007/s10562-012-0919-9 Search in Google Scholar

Zhang, C.; Chen, J. Facile EG/ionic liquid interfacial synthesis of uniform RE3+ doped NaYF4 nanocubes. Chem. Commun.2010, 46, 592–594.10.1039/B919044A Search in Google Scholar

Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P. Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data2006, 35, 1475–1517.10.1063/1.2204959 Search in Google Scholar

Zhang, C.; Chen, J.; Zhou, Y.; Li, D. Ionic liquid-based “all-in-one” synthesis and photoluminescence properties of lanthanide fluorides. J. Phys. Chem. C2008, 112, 10083–10088.10.1021/jp802083q Search in Google Scholar

Zhang, T.; Guo, H.; Qiao, Y. M. Facile synthesis, structural and optical characterization of LnF(3):Re nanocrystals by ionic liquid-based hydrothermal process. J. Lumin.2009a, 129, 861–866.10.1016/j.jlumin.2009.03.011 Search in Google Scholar

Zhang, F.; Li, J.; Shan, J.; Xu, L.; Zhao, D. Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chem. Eur. J.2009b, 15, 11010–11019.10.1002/chem.200900861 Search in Google Scholar

Zhao, Q.; Xu, Z. H.; Sun, Y. G. Rare earth fluoride nano-/microstructures: hydrothermal synthesis, luminescent properties and applications. J. Nanosci. Nanotechnol.2014, 14, 1675–1692.2474944910.1166/jnn.2014.9132 Search in Google Scholar

Zhong, H. X.; Hong, J. M.; Cao, X. F.; Chen, X. T.; Xue, Z. L. Ionic-liquid-assisted synthesis of YF3 with different crystalline phases and morphologies. Mater. Res. Bull.2009, 44, 623–628.10.1016/j.materresbull.2008.06.028 Search in Google Scholar

Zhou, X. P.; Wang, Z. Q.; Li, S. S.; Shan, S. N.; Wang, X. Q. Formation and luminescence of sodium rare earth fluoride nanocrystals in the presence of chelators. J. Nanosci. Nanotechnol.2010, 10, 2193–2202.2035565510.1166/jnn.2010.2134 Search in Google Scholar

Received: 2018-08-21
Accepted: 2019-04-13
Published Online: 2019-05-24
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston