Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 14, 2021

A review on TiO2-based composites for superior photocatalytic activity

  • Wail Al Zoubi EMAIL logo , Abbas Ali Salih Al-Hamdani , Baek Sunghun and Young Gun Ko

Abstract

Heterogeneous photocatalysts was a promising material for removing organic pollutants. Titanium dioxide (TiO2) was a suitable photocatalyst for its cost efficiency and high stability to reduce various pollutants. Enhancing TiO2 photocatalyst performance by doping with changed metals or non-metal ions and organic compounds have been reviewed. These methods could enhance photoelectrochemical activity via: (i) by a donor of electrons via electron-donor agents that would produce particular defects in TiO2 structure and capture transporters of charge; (ii) by reducing recombination rate of the charge transporters and increasing degradation of pollutants. This study investigates the modification approaches of TiO2 that comprise methods for overcoming the essential TiO2 restrictions and enhancing the photocatalytic degradation of organic pollutants. Consequently, it emphasized on the current progress of modified-TiO2 used for different pollutants in ambient conditions. Amendment techniques, such as inorganic and organic parts as doping, are studied. The reported experimental results obtained with the photocatalytic oxidation process for degrading organic pollutants were also collected and assessed.


Corresponding author: Wail Al Zoubi and Young Gun Ko, Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea, E-mail: wwailalzoubi@yahoo.com (W. Al Zoubi) and younggun@ynu.ac.kr (Y. G. Ko)

Funding source: National Research Foundation of Korea (NRF) 10.13039/501100003725

Funding source: Ministry of Science, ICT and Future Planning 10.13039/501100003621

Award Identifier / Grant number: 2009-0082580

Award Identifier / Grant number: NRF-2020R1A2C2004192

Funding source: Korea Institute for Advancement of Technology (KIAT) 10.13039/501100003661

Funding source: Ministry of Trade, Industry, and Energy, Republic of Korea 10.13039/501100003052

Award Identifier / Grant number: P0002019

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2009-0082580). This work was supported by the Mid-Level Researcher National Project of the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea (NRF-2020R1A2C2004192), and partly by the Competency Development Program for Industry Specialists of the Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry, and Energy, Republic of Korea (P0002019).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbad, S.; Guergouri, K.; Gazaout, S.; Djebabra, S.; Zertal, A.; Barille, R.; Zaabat, M. Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J. Environ. Chem. Eng. 2020, 8, 103718; https://doi.org/10.1016/j.jece.2020.103718.Search in Google Scholar

Alhamdain, A. A. S.; Al-hadi hasan, Z. A. Spectroscopic studies and thermal analysis of new azo dyes ligands and their complexes with some transition of metal ions. Baghdad Sci. J. 2016, 13, 511–523.10.21123/bsj.2016.13.3.0511Search in Google Scholar

Alhamdain, A. A. S.; Hamoodah, R. G. Transition metal complexes with tridentate ligand: preparation, spectroscopic characterization, thermal analysis and structural studies. Baghdad Sci. J. 2016, 13, 770–781.10.21123/bsj.13.4.770-781Search in Google Scholar

Al Zoubi, W.; Ko, Y. G. Freestanding anticorrosion hybrid materials based on coordination interaction between metal-quinoline compounds and TiO2-MgO film. J. Colloid Interface Sci. 2020a, 565, 86–95; https://doi.org/10.1016/j.jcis.2020.01.017.Search in Google Scholar

Al Zoubi, W.; Ko, Y. G. Enhanced chemical stability and boosted photoactivity by transition metal doped-crosslinked polymer-inorganic materials. J. Mol. Liq. 2020b, 303, 112700; https://doi.org/10.1016/j.molliq.2020.112700.Search in Google Scholar

Al Zoubi, W.; Kamil, P.; Fatimah, S.; Nashrah, N.; Ko, Y. G. Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Prog. Mater. Sci. 2020a, 112, 100663; https://doi.org/10.1016/j.pmatsci.2020.100663.Search in Google Scholar

Al Zoubi, W.; Kamil, M. P.; Yang, H. W.; Ko, Y. G. Electron-donor and acceptor agents responsible for surface modification optimizing electrochemical performance. ACS Appl. Mater. Interfaces 2017, 9, 28967–28979; https://doi.org/10.1021/acsami.7b05773.Search in Google Scholar

Al Zoubi, W.; Kim, M. J.; Kim, Y. G.; Ko, Y. G. Dual-functional crosslinked polymer-inorganic materials for robust electrochemical performance and antibacterial activity. Chem. Eng. J. 2020b, 392, 123654; https://doi.org/10.1016/j.cej.2019.123654.Search in Google Scholar

Al Zoubi, W.; Kim, M. J.; Yoon, D. K.; Al-Hamdani, A. A. S.; Kim, Y. G.; Ko, Y. G. Effect of organic compounds and rough inorganic layer formed by plasma electrolytic oxidation on photocatalytic performance. J. Alloys Compd. 2020c, 823, 153787; https://doi.org/10.1016/j.jallcom.2020.153787.Search in Google Scholar

Al Zoubi, W.; Ko, Y. G. Flowerlike organic-inorganic coating responsible for extraordinary corrosion resistance via self-assembly of an organic compound. ACS Sustain. Chem. Eng. 2018, 6, 3546–3555; https://doi.org/10.1021/acssuschemeng.7b03870.Search in Google Scholar

Al Zoubi, W.; Ko, Y. G. Self-assembly of hierarchical N-heterocycles-inorganic materials into three-dimensional structure for superior corrosion protection. Chem. Eng. J. 2019, 356, 850–856; https://doi.org/10.1016/j.cej.2018.09.089.Search in Google Scholar

Al Zoubi, W.; Yoon, D. K.; Kim, Y. G.; Ko, Y. G. Fabrication of organic-inorganic hybrid materials on metal surface for optimizing electrochemical performance. J. Colloid Interface Sci. 2020d, 573, 31–44; https://doi.org/10.1016/j.jcis.2020.03.117.Search in Google Scholar

Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. Effect of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex sensitized TiO2 on visible light reactivity in aqueous suspensions. J. Phys. Chem. B 2004, 108, 14093–14101; https://doi.org/10.1021/jp047777p.Search in Google Scholar

Baghriche, O.; Rtimi, S.; Pulharin, C.; Sanjines, R.; Kiwi, J. Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light. ACS Appl. Mater. Interfaces 2012, 4, 5234–5240; https://doi.org/10.1021/am301153j.Search in Google Scholar

Bhardwaj, S.; Dogra, D.; Pal, B.; Sing, S. Photodeposition time dependent growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation. Sol. Energy 2019, 194, 618–627; https://doi.org/10.1016/j.solener.2019.10.055.Search in Google Scholar

Cheng, X.; Shang, Y.; Cui, Y.; Shi, R.; Zhu, Y.; Yang, P. Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2(B) nanobelts decorated with CdS nanoparticles. Solid State Sci. 2020, 99, 106075; https://doi.org/10.1016/j.solidstatesciences.2019.106075.Search in Google Scholar

Cho, Y.; Choi, W.; Lee, C.-H.; Hyeon, T.; Lee, H.-I. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol. 2001, 35, 966–970; https://doi.org/10.1021/es001245e.Search in Google Scholar

Chu, S.; Zheng, X.; Kong, F.; Wu, G.; Luo, L.; Guo, Y.; Liu, H.; Wang, Y.; Yu, H.; Zou, Z. Architecture of Cu2O@TiO2 core-shell heterojunction and photodegradation for 4-nitrophenol under simulated sunlight irradiation. Mater. Chem. Phys. 2011, 129, 1184–1188; https://doi.org/10.1016/j.matchemphys.2011.06.004.Search in Google Scholar

Du, Y. B.; Zhang, L.; Ruan, M.; Niu, C. G.; Wen, X. J.; Liang, C.; Zhang, X. G.; Zhang, G. M. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity. Mater. Chem. Phys. 2018, 212, 69–77; https://doi.org/10.1016/j.matchemphys.2018.03.033.Search in Google Scholar

Fatimah, I.; Prakoso, N. I.; Sahroni, I.; Musawwa, M. M.; Sim, Y. L.; Kooli, F.; Muraza, O. Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon 2019, 5, 02766; https://doi.org/10.1016/j.heliyon.2019.e02766.Search in Google Scholar

Kim, W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H.-J.; Choi, W. Tin-porphyrin sensitized TiO2 for the production H2 under visible light. Energy Environ. Sci. 2010, 3, 1789–1795; https://doi.org/10.1039/c0ee00205d.Search in Google Scholar

Khan, M. E.; Khan, M. M.; Min, B. K.; Cho, M. H. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 2018, 8, 1723; https://doi.org/10.1038/s41598-018-19617-2.Search in Google Scholar

Khan, M. E.; Khan, M. M.; Min, B. K.; Cho, M. H. Recent progress of metal-graphene nanostructure in photocatalysis. Nanoscale 2018, 10, 9427–9440; https://doi.org/10.1039/c8nr03500h.Search in Google Scholar

Kong, M.; Liu, Q.; Jiang, L.; Tong, W.; Yang, J.; Ren, S.; Li, J.; Tian, Y. K+ deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of No with NH3: effect of vanadium content. Chem. Eng. J. 2019, 370, 518–526; https://doi.org/10.1016/j.cej.2019.03.156.Search in Google Scholar

Lalitha, K.; Sadanandam, G.; Kumari, V. D.; Subrahmanyam, M.; Sreedhar, B.; Hebalkar, N. Y. Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J. Phys. Chem. C 2010, 114, 22181–22189; https://doi.org/10.1021/jp107405u.Search in Google Scholar

Lee, H.; Kim, B. J.; Park, Y. K.; Kim, J. S.; Jung, S. C. Assessment of photocatalytic performance of Fe/N-TiO2 photocatalysts prepared by liquid phase plasma process. Catal. Today 2020, 355, 435–442; https://doi.org/10.1016/j.cattod.2019.07.008.Search in Google Scholar

Li, W.; Ding, H.; Ji, H.; Dai, W.; Guo, J.; Du, G. Photocatalytic degradation of tetracycline hydrochloride via a CdS-TiO2 heterostructure composite under visible light irradiation. Nanomaterials 2018, 8, 415; https://doi.org/10.3390/nano8060415.Search in Google Scholar

Li, G.; Hu, K.; Yi, C.; Knappenberger, K. L.Jr; Meyer, G. J.; Gorelsky, S. I.; Shatruk, M. Panchromatic light harvesting and hot electron injection by Ru(II) dipyrrinates on a TiO2 surface. J. Phys. Chem. C 2013, 117, 17399–17411; https://doi.org/10.1021/jp404670z.Search in Google Scholar

Li, L.; Yu, X.; Xu, L.; Zhao, Y. Fabrication of a novel type visible-light-driven heterojunction photocatalyst metal-porphyrinic metal organic framework coupled with PW12/TiO2. Chem. Eng. J. 2020, 386, 123955; https://doi.org/10.1016/j.cej.2019.123955.Search in Google Scholar

Lingmei, L.; Yang, W.; Li, Q.; Gao, S.; Shang, J. K. Synthesis of Cu2O nanospheres decorated with TiO2 nanoislands, their enhanced photoactivity stability under visible light illumination, and their post-illumination catalytic memory. ACS Appl. Mater. Interfaces 2014, 6, 5629–5639.10.1021/am500131bSearch in Google Scholar

Liu, Y.; Niu, H.; Gu, W.; Cai, X.; Mao, B.; Li, D.; Shi, W. In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visible-light photoctalytic H2 production. Chem. Eng. J. 2018, 339, 117–124; https://doi.org/10.1016/j.cej.2018.01.124.Search in Google Scholar

Mekasuwandumrong, O.; Jantarasorn, N.; Panpranot, J.; Ratova, M.; Kelly, P.; Praserthdam, P. Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4. Ceram. Int. 2019, 45, 22961–22971; https://doi.org/10.1016/j.ceramint.2019.07.340.Search in Google Scholar

Min, Z.; Wang, X.; Li, Y.; Jiang, J.; Li, J.; Qian, D.; Li, J. A highly efficient visible-light-responding Cu2O-TiO2/g-C3N4 photocatalyst for instantaneous discolorations of organic dyes. Mater. Lett. 2017, 193, 18–21; https://doi.org/10.1016/j.matlet.2017.01.083.Search in Google Scholar

Mureseanu, M.; Chivu, V.; Osiac, M.; Ciobanu, M.; Bucur, C.; Parvulescu, V.; Cioatera, N. New photoactive mesoporous Ce-modified TiO2 for simultaneous wastewater treatment and electric power generation. Catal. Today 2020; https://doi.org/10.1016/j.cattod.2020.09.035.Search in Google Scholar

Nisha, V.; Palantavida, S.; Vijayan, B. K. Visible light photoactivity of 2D nanocomposites of CdS-TiO2 and CdS-TiO2-rGO. Mater. Today 2020; https://doi.org/10.1016/j.matpr.2020.05.373.Search in Google Scholar

Onkani, S. P.; Diagboys, P. N.; Mtunzi, F. M.; Klink, M. J.; Olu-Owolabi, B. I.; Pakade, V. Comparative study of photocatalytic degradation of 2-chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J. Environ. Manag. 2020, 260, 110145; https://doi.org/10.1016/j.jenvman.2020.110145.Search in Google Scholar

Ou, W.; Pan, J.; Liu, Y.; Li, S.; Li, H.; Zhao, W.; Wang, J.; Song, C.; Zhang, Y.; Li, C. Two-dimensional ultrathin MoS2-modified black Ti3 +-TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production. J. Energy Chem. 2020, 43, 188–194; https://doi.org/10.1016/j.jechem.2019.08.020.Search in Google Scholar

Park, S. Y.; Han, K.; O’Neill, D. B.; Mul, G. Stability of Ag@SiO2 core-shell particles in conditions of photocatalytic overall water splitting. J. Energy Chem. 2017, 26, 309–314; https://doi.org/10.1016/j.jechem.2016.12.010.Search in Google Scholar

Park, Y.; Lee, S. H.; Kang, S. O.; Choi, W. Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light. Chem. Commun. 2010, 46, 2477–2479; https://doi.org/10.1039/b924829c.Search in Google Scholar

Patrick, B.; Kamat, P. Photoelectrochemistry in semiconductor particulate systems. 17. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited into zinc oxide colloids. J. Phys. Chem. 1992, 96, 1423–1428; https://doi.org/10.1021/j100182a072.Search in Google Scholar

Patrocinio, A. O. T.; Frin, K. P.; Murakami Iha, N. Y. Alkali metal and zinc complexes of a bridging 2,5-diamino-1,4-benzoquinonediimine ligand. Inorg. Chem. 2013, 52, 5889–5896; https://doi.org/10.1021/ic3028572.Search in Google Scholar

Qin, J.; Wang, J.; Yang, J.; Hu, Y.; Fu, M.; Ye, D. Metal organic framework derivative-TiO2 composite as efficient and durable photocatalyst for the degradation of toluene. Appl. Catal. B 2020, 267, 118667; https://doi.org/10.1016/j.apcatb.2020.118667.Search in Google Scholar

Reidy, D. J.; Holmes, J. D.; Morris, M. A. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J. Eur. Ceram. Soc. 2006, 26, 1527–1534; https://doi.org/10.1016/j.jeurceramsoc.2005.03.246.Search in Google Scholar

Sboui, M.; Nsib, M. F.; Rayes, A.; Swaminathan, M.; Houas, A. TiO2-PANI/Cork composite: a new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. J. Environ. Sci. 2017, 60, 3–13; https://doi.org/10.1016/j.jes.2016.11.024.Search in Google Scholar

Shang, Q.; Gao, S.; Dai, G.; Ren, J.; Wang, D. Structure and photocatalytic activity of Ti3+self-doped TiO2 flower shaped nanospheres. Surf. Interfaces 2020, 18, 100426; https://doi.org/10.1016/j.surfin.2019.100426.Search in Google Scholar

Sharma, A.; Liu, N.; Ma, Q.; Zheng, H.; Kawazoe, N.; Chen, G.; Yang, Y. PEG assisted P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst with enhanced elimination of emerging organic pollutants in salinity condition under solar light illumination. Chem. Eng. J. 2020, 385, 287–294; https://doi.org/10.1016/j.cej.2019.123765.Search in Google Scholar

Sheng, Y.; Wei, Z.; Miao, H.; Yao, W.; Li, H.; Zhu, Y. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem. Eng. J. 2019, 370, 287–294; https://doi.org/10.1016/j.cej.2019.03.197.Search in Google Scholar

Tran, T. H.; Bui, B. D.; Kang, F.; Wang, Y. F.; Liu, S. H.; Cao, C. M.; You, S. J.; Chang, G. M.; Pham, P. V. SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere 2019, 215, 323–332; https://doi.org/10.1016/j.chemosphere.2018.10.033.Search in Google Scholar

Tzeng, J. H.; Weng, C. H.; Lin, Y. H.; Huang, S. M.; Yen, L. T.; Anotai, J.; Lin, Y. T. Synthesis, characterization, and visible light induced photoactivity of tourmaline-N-TiO2 composite for photooxidation of ethylene. J. Ind. Eng. Chem. 2019, 80, 376–384; https://doi.org/10.1016/j.jiec.2019.08.017.Search in Google Scholar

Wang, H.; Liu, R. P.; Li, Y. T.; Lü, X. J.; Wang, Q.; Zhao, S. Q.; Yuan, K. J.; Cui, Z. M.; Li, X.; Xin, S.; Zhang, R.; Lei, M.; Lin, Z. Q. Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2018, 2, 337–348; https://doi.org/10.1016/j.joule.2017.11.016.Search in Google Scholar

Wang, M. Q.; Wang, X. G. P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative. Sol. Energy Mater. Sol. Cells 2007, 91, 1782–1787; https://doi.org/10.1016/j.solmat.2007.06.006.Search in Google Scholar

Zhang, Y.; Li, Q.; Gao, Q.; Wan, S.; Yao, P.; Zhu, X. Preparation of Ag/β-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light. Appl. Catal. B Environ. 2020, 267, 118715; https://doi.org/10.1016/j.apcatb.2020.118715.Search in Google Scholar

Zhao, W.; Sun, Y.; Castellano, F. N. Visible-light induced water detoxification catalyzed by PtII dye sensitized titania. J. Am. Chem. Soc. 2008, 130, 12566–12567; https://doi.org/10.1021/ja803522v.Search in Google Scholar

Received: 2020-10-30
Accepted: 2021-01-04
Published Online: 2021-01-14
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.3.2023 from https://www.degruyter.com/document/doi/10.1515/revic-2020-0025/html
Scroll Up Arrow