Abstract
Heterogeneous photocatalysts was a promising material for removing organic pollutants. Titanium dioxide (TiO2) was a suitable photocatalyst for its cost efficiency and high stability to reduce various pollutants. Enhancing TiO2 photocatalyst performance by doping with changed metals or non-metal ions and organic compounds have been reviewed. These methods could enhance photoelectrochemical activity via: (i) by a donor of electrons via electron-donor agents that would produce particular defects in TiO2 structure and capture transporters of charge; (ii) by reducing recombination rate of the charge transporters and increasing degradation of pollutants. This study investigates the modification approaches of TiO2 that comprise methods for overcoming the essential TiO2 restrictions and enhancing the photocatalytic degradation of organic pollutants. Consequently, it emphasized on the current progress of modified-TiO2 used for different pollutants in ambient conditions. Amendment techniques, such as inorganic and organic parts as doping, are studied. The reported experimental results obtained with the photocatalytic oxidation process for degrading organic pollutants were also collected and assessed.
Funding source: National Research Foundation of Korea (NRF) 10.13039/501100003725
Funding source: Ministry of Science, ICT and Future Planning 10.13039/501100003621
Award Identifier / Grant number: 2009-0082580
Award Identifier / Grant number: NRF-2020R1A2C2004192
Funding source: Korea Institute for Advancement of Technology (KIAT) 10.13039/501100003661
Funding source: Ministry of Trade, Industry, and Energy, Republic of Korea 10.13039/501100003052
Award Identifier / Grant number: P0002019
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2009-0082580). This work was supported by the Mid-Level Researcher National Project of the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea (NRF-2020R1A2C2004192), and partly by the Competency Development Program for Industry Specialists of the Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry, and Energy, Republic of Korea (P0002019).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abbad, S.; Guergouri, K.; Gazaout, S.; Djebabra, S.; Zertal, A.; Barille, R.; Zaabat, M. Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J. Environ. Chem. Eng. 2020, 8, 103718; https://doi.org/10.1016/j.jece.2020.103718.Search in Google Scholar
Alhamdain, A. A. S.; Al-hadi hasan, Z. A. Spectroscopic studies and thermal analysis of new azo dyes ligands and their complexes with some transition of metal ions. Baghdad Sci. J. 2016, 13, 511–523.10.21123/bsj.2016.13.3.0511Search in Google Scholar
Alhamdain, A. A. S.; Hamoodah, R. G. Transition metal complexes with tridentate ligand: preparation, spectroscopic characterization, thermal analysis and structural studies. Baghdad Sci. J. 2016, 13, 770–781.10.21123/bsj.13.4.770-781Search in Google Scholar
Al Zoubi, W.; Ko, Y. G. Freestanding anticorrosion hybrid materials based on coordination interaction between metal-quinoline compounds and TiO2-MgO film. J. Colloid Interface Sci. 2020a, 565, 86–95; https://doi.org/10.1016/j.jcis.2020.01.017.Search in Google Scholar
Al Zoubi, W.; Ko, Y. G. Enhanced chemical stability and boosted photoactivity by transition metal doped-crosslinked polymer-inorganic materials. J. Mol. Liq. 2020b, 303, 112700; https://doi.org/10.1016/j.molliq.2020.112700.Search in Google Scholar
Al Zoubi, W.; Kamil, P.; Fatimah, S.; Nashrah, N.; Ko, Y. G. Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Prog. Mater. Sci. 2020a, 112, 100663; https://doi.org/10.1016/j.pmatsci.2020.100663.Search in Google Scholar
Al Zoubi, W.; Kamil, M. P.; Yang, H. W.; Ko, Y. G. Electron-donor and acceptor agents responsible for surface modification optimizing electrochemical performance. ACS Appl. Mater. Interfaces 2017, 9, 28967–28979; https://doi.org/10.1021/acsami.7b05773.Search in Google Scholar
Al Zoubi, W.; Kim, M. J.; Kim, Y. G.; Ko, Y. G. Dual-functional crosslinked polymer-inorganic materials for robust electrochemical performance and antibacterial activity. Chem. Eng. J. 2020b, 392, 123654; https://doi.org/10.1016/j.cej.2019.123654.Search in Google Scholar
Al Zoubi, W.; Kim, M. J.; Yoon, D. K.; Al-Hamdani, A. A. S.; Kim, Y. G.; Ko, Y. G. Effect of organic compounds and rough inorganic layer formed by plasma electrolytic oxidation on photocatalytic performance. J. Alloys Compd. 2020c, 823, 153787; https://doi.org/10.1016/j.jallcom.2020.153787.Search in Google Scholar
Al Zoubi, W.; Ko, Y. G. Flowerlike organic-inorganic coating responsible for extraordinary corrosion resistance via self-assembly of an organic compound. ACS Sustain. Chem. Eng. 2018, 6, 3546–3555; https://doi.org/10.1021/acssuschemeng.7b03870.Search in Google Scholar
Al Zoubi, W.; Ko, Y. G. Self-assembly of hierarchical N-heterocycles-inorganic materials into three-dimensional structure for superior corrosion protection. Chem. Eng. J. 2019, 356, 850–856; https://doi.org/10.1016/j.cej.2018.09.089.Search in Google Scholar
Al Zoubi, W.; Yoon, D. K.; Kim, Y. G.; Ko, Y. G. Fabrication of organic-inorganic hybrid materials on metal surface for optimizing electrochemical performance. J. Colloid Interface Sci. 2020d, 573, 31–44; https://doi.org/10.1016/j.jcis.2020.03.117.Search in Google Scholar
Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. Effect of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex sensitized TiO2 on visible light reactivity in aqueous suspensions. J. Phys. Chem. B 2004, 108, 14093–14101; https://doi.org/10.1021/jp047777p.Search in Google Scholar
Baghriche, O.; Rtimi, S.; Pulharin, C.; Sanjines, R.; Kiwi, J. Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light. ACS Appl. Mater. Interfaces 2012, 4, 5234–5240; https://doi.org/10.1021/am301153j.Search in Google Scholar
Bhardwaj, S.; Dogra, D.; Pal, B.; Sing, S. Photodeposition time dependent growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation. Sol. Energy 2019, 194, 618–627; https://doi.org/10.1016/j.solener.2019.10.055.Search in Google Scholar
Cheng, X.; Shang, Y.; Cui, Y.; Shi, R.; Zhu, Y.; Yang, P. Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2(B) nanobelts decorated with CdS nanoparticles. Solid State Sci. 2020, 99, 106075; https://doi.org/10.1016/j.solidstatesciences.2019.106075.Search in Google Scholar
Cho, Y.; Choi, W.; Lee, C.-H.; Hyeon, T.; Lee, H.-I. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol. 2001, 35, 966–970; https://doi.org/10.1021/es001245e.Search in Google Scholar
Chu, S.; Zheng, X.; Kong, F.; Wu, G.; Luo, L.; Guo, Y.; Liu, H.; Wang, Y.; Yu, H.; Zou, Z. Architecture of Cu2O@TiO2 core-shell heterojunction and photodegradation for 4-nitrophenol under simulated sunlight irradiation. Mater. Chem. Phys. 2011, 129, 1184–1188; https://doi.org/10.1016/j.matchemphys.2011.06.004.Search in Google Scholar
Du, Y. B.; Zhang, L.; Ruan, M.; Niu, C. G.; Wen, X. J.; Liang, C.; Zhang, X. G.; Zhang, G. M. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity. Mater. Chem. Phys. 2018, 212, 69–77; https://doi.org/10.1016/j.matchemphys.2018.03.033.Search in Google Scholar
Fatimah, I.; Prakoso, N. I.; Sahroni, I.; Musawwa, M. M.; Sim, Y. L.; Kooli, F.; Muraza, O. Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon 2019, 5, 02766; https://doi.org/10.1016/j.heliyon.2019.e02766.Search in Google Scholar
Kim, W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H.-J.; Choi, W. Tin-porphyrin sensitized TiO2 for the production H2 under visible light. Energy Environ. Sci. 2010, 3, 1789–1795; https://doi.org/10.1039/c0ee00205d.Search in Google Scholar
Khan, M. E.; Khan, M. M.; Min, B. K.; Cho, M. H. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 2018, 8, 1723; https://doi.org/10.1038/s41598-018-19617-2.Search in Google Scholar
Khan, M. E.; Khan, M. M.; Min, B. K.; Cho, M. H. Recent progress of metal-graphene nanostructure in photocatalysis. Nanoscale 2018, 10, 9427–9440; https://doi.org/10.1039/c8nr03500h.Search in Google Scholar
Kong, M.; Liu, Q.; Jiang, L.; Tong, W.; Yang, J.; Ren, S.; Li, J.; Tian, Y. K+ deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of No with NH3: effect of vanadium content. Chem. Eng. J. 2019, 370, 518–526; https://doi.org/10.1016/j.cej.2019.03.156.Search in Google Scholar
Lalitha, K.; Sadanandam, G.; Kumari, V. D.; Subrahmanyam, M.; Sreedhar, B.; Hebalkar, N. Y. Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J. Phys. Chem. C 2010, 114, 22181–22189; https://doi.org/10.1021/jp107405u.Search in Google Scholar
Lee, H.; Kim, B. J.; Park, Y. K.; Kim, J. S.; Jung, S. C. Assessment of photocatalytic performance of Fe/N-TiO2 photocatalysts prepared by liquid phase plasma process. Catal. Today 2020, 355, 435–442; https://doi.org/10.1016/j.cattod.2019.07.008.Search in Google Scholar
Li, W.; Ding, H.; Ji, H.; Dai, W.; Guo, J.; Du, G. Photocatalytic degradation of tetracycline hydrochloride via a CdS-TiO2 heterostructure composite under visible light irradiation. Nanomaterials 2018, 8, 415; https://doi.org/10.3390/nano8060415.Search in Google Scholar
Li, G.; Hu, K.; Yi, C.; Knappenberger, K. L.Jr; Meyer, G. J.; Gorelsky, S. I.; Shatruk, M. Panchromatic light harvesting and hot electron injection by Ru(II) dipyrrinates on a TiO2 surface. J. Phys. Chem. C 2013, 117, 17399–17411; https://doi.org/10.1021/jp404670z.Search in Google Scholar
Li, L.; Yu, X.; Xu, L.; Zhao, Y. Fabrication of a novel type visible-light-driven heterojunction photocatalyst metal-porphyrinic metal organic framework coupled with PW12/TiO2. Chem. Eng. J. 2020, 386, 123955; https://doi.org/10.1016/j.cej.2019.123955.Search in Google Scholar
Lingmei, L.; Yang, W.; Li, Q.; Gao, S.; Shang, J. K. Synthesis of Cu2O nanospheres decorated with TiO2 nanoislands, their enhanced photoactivity stability under visible light illumination, and their post-illumination catalytic memory. ACS Appl. Mater. Interfaces 2014, 6, 5629–5639.10.1021/am500131bSearch in Google Scholar
Liu, Y.; Niu, H.; Gu, W.; Cai, X.; Mao, B.; Li, D.; Shi, W. In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visible-light photoctalytic H2 production. Chem. Eng. J. 2018, 339, 117–124; https://doi.org/10.1016/j.cej.2018.01.124.Search in Google Scholar
Mekasuwandumrong, O.; Jantarasorn, N.; Panpranot, J.; Ratova, M.; Kelly, P.; Praserthdam, P. Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4. Ceram. Int. 2019, 45, 22961–22971; https://doi.org/10.1016/j.ceramint.2019.07.340.Search in Google Scholar
Min, Z.; Wang, X.; Li, Y.; Jiang, J.; Li, J.; Qian, D.; Li, J. A highly efficient visible-light-responding Cu2O-TiO2/g-C3N4 photocatalyst for instantaneous discolorations of organic dyes. Mater. Lett. 2017, 193, 18–21; https://doi.org/10.1016/j.matlet.2017.01.083.Search in Google Scholar
Mureseanu, M.; Chivu, V.; Osiac, M.; Ciobanu, M.; Bucur, C.; Parvulescu, V.; Cioatera, N. New photoactive mesoporous Ce-modified TiO2 for simultaneous wastewater treatment and electric power generation. Catal. Today 2020; https://doi.org/10.1016/j.cattod.2020.09.035.Search in Google Scholar
Nisha, V.; Palantavida, S.; Vijayan, B. K. Visible light photoactivity of 2D nanocomposites of CdS-TiO2 and CdS-TiO2-rGO. Mater. Today 2020; https://doi.org/10.1016/j.matpr.2020.05.373.Search in Google Scholar
Onkani, S. P.; Diagboys, P. N.; Mtunzi, F. M.; Klink, M. J.; Olu-Owolabi, B. I.; Pakade, V. Comparative study of photocatalytic degradation of 2-chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J. Environ. Manag. 2020, 260, 110145; https://doi.org/10.1016/j.jenvman.2020.110145.Search in Google Scholar
Ou, W.; Pan, J.; Liu, Y.; Li, S.; Li, H.; Zhao, W.; Wang, J.; Song, C.; Zhang, Y.; Li, C. Two-dimensional ultrathin MoS2-modified black Ti3 +-TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production. J. Energy Chem. 2020, 43, 188–194; https://doi.org/10.1016/j.jechem.2019.08.020.Search in Google Scholar
Park, S. Y.; Han, K.; O’Neill, D. B.; Mul, G. Stability of Ag@SiO2 core-shell particles in conditions of photocatalytic overall water splitting. J. Energy Chem. 2017, 26, 309–314; https://doi.org/10.1016/j.jechem.2016.12.010.Search in Google Scholar
Park, Y.; Lee, S. H.; Kang, S. O.; Choi, W. Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light. Chem. Commun. 2010, 46, 2477–2479; https://doi.org/10.1039/b924829c.Search in Google Scholar
Patrick, B.; Kamat, P. Photoelectrochemistry in semiconductor particulate systems. 17. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited into zinc oxide colloids. J. Phys. Chem. 1992, 96, 1423–1428; https://doi.org/10.1021/j100182a072.Search in Google Scholar
Patrocinio, A. O. T.; Frin, K. P.; Murakami Iha, N. Y. Alkali metal and zinc complexes of a bridging 2,5-diamino-1,4-benzoquinonediimine ligand. Inorg. Chem. 2013, 52, 5889–5896; https://doi.org/10.1021/ic3028572.Search in Google Scholar
Qin, J.; Wang, J.; Yang, J.; Hu, Y.; Fu, M.; Ye, D. Metal organic framework derivative-TiO2 composite as efficient and durable photocatalyst for the degradation of toluene. Appl. Catal. B 2020, 267, 118667; https://doi.org/10.1016/j.apcatb.2020.118667.Search in Google Scholar
Reidy, D. J.; Holmes, J. D.; Morris, M. A. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J. Eur. Ceram. Soc. 2006, 26, 1527–1534; https://doi.org/10.1016/j.jeurceramsoc.2005.03.246.Search in Google Scholar
Sboui, M.; Nsib, M. F.; Rayes, A.; Swaminathan, M.; Houas, A. TiO2-PANI/Cork composite: a new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. J. Environ. Sci. 2017, 60, 3–13; https://doi.org/10.1016/j.jes.2016.11.024.Search in Google Scholar
Shang, Q.; Gao, S.; Dai, G.; Ren, J.; Wang, D. Structure and photocatalytic activity of Ti3+self-doped TiO2 flower shaped nanospheres. Surf. Interfaces 2020, 18, 100426; https://doi.org/10.1016/j.surfin.2019.100426.Search in Google Scholar
Sharma, A.; Liu, N.; Ma, Q.; Zheng, H.; Kawazoe, N.; Chen, G.; Yang, Y. PEG assisted P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst with enhanced elimination of emerging organic pollutants in salinity condition under solar light illumination. Chem. Eng. J. 2020, 385, 287–294; https://doi.org/10.1016/j.cej.2019.123765.Search in Google Scholar
Sheng, Y.; Wei, Z.; Miao, H.; Yao, W.; Li, H.; Zhu, Y. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem. Eng. J. 2019, 370, 287–294; https://doi.org/10.1016/j.cej.2019.03.197.Search in Google Scholar
Tran, T. H.; Bui, B. D.; Kang, F.; Wang, Y. F.; Liu, S. H.; Cao, C. M.; You, S. J.; Chang, G. M.; Pham, P. V. SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere 2019, 215, 323–332; https://doi.org/10.1016/j.chemosphere.2018.10.033.Search in Google Scholar
Tzeng, J. H.; Weng, C. H.; Lin, Y. H.; Huang, S. M.; Yen, L. T.; Anotai, J.; Lin, Y. T. Synthesis, characterization, and visible light induced photoactivity of tourmaline-N-TiO2 composite for photooxidation of ethylene. J. Ind. Eng. Chem. 2019, 80, 376–384; https://doi.org/10.1016/j.jiec.2019.08.017.Search in Google Scholar
Wang, H.; Liu, R. P.; Li, Y. T.; Lü, X. J.; Wang, Q.; Zhao, S. Q.; Yuan, K. J.; Cui, Z. M.; Li, X.; Xin, S.; Zhang, R.; Lei, M.; Lin, Z. Q. Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2018, 2, 337–348; https://doi.org/10.1016/j.joule.2017.11.016.Search in Google Scholar
Wang, M. Q.; Wang, X. G. P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative. Sol. Energy Mater. Sol. Cells 2007, 91, 1782–1787; https://doi.org/10.1016/j.solmat.2007.06.006.Search in Google Scholar
Zhang, Y.; Li, Q.; Gao, Q.; Wan, S.; Yao, P.; Zhu, X. Preparation of Ag/β-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light. Appl. Catal. B Environ. 2020, 267, 118715; https://doi.org/10.1016/j.apcatb.2020.118715.Search in Google Scholar
Zhao, W.; Sun, Y.; Castellano, F. N. Visible-light induced water detoxification catalyzed by PtII dye sensitized titania. J. Am. Chem. Soc. 2008, 130, 12566–12567; https://doi.org/10.1021/ja803522v.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston