Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2021

Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review

  • Khalil Ahmad

    Khalil Ahmad completed his master in 2012 from “the Islamia University of Bahawalpur”. In 2014 joined Prof. Dr. Muhammad Ashfaq Research group and completed his MPhil in 2016 from same university. Further continued his study and enrolled as PhD student under supervision of Prof. Dr. Muhammad Ashfaq. His research interest is synthesis of MOFs, composite materials (for purification of water) and transition metal complexes (for biological studies) and he has published more than ten articles in peer reviewed journals.

    ORCID logo EMAIL logo
    , Habib-Ur-Rehman Shah

    Habib-Ur-Rehman Shah completed his master degree from Islamia University of Bahawalpur and also obtained Gold Medal in MSc. In MPhil he joined Prof. Dr. Muhammad Ashfaq research group and completed his degree in 2015. In 2017 he continued his PhD degree under supervision of Prof. Dr. Muhammad Ashfaq. His research area is MOFs and GO based composite for detection of environmental pollutants and synthesis of transition metal complexes. He has published more than five research articles in peer reviewed journals.

    ORCID logo
    , Muhammad Ashfaq

    Muhammad Ashfaq completed his MSc from Dera Ismael Khan University and PhD from the Islamia University of Bahawalpur. He served as Dean Faculty of Sciences, Chairman Department of Biochemistry and Biotechnology and the Chairman of Department of Chemistry the Islamia University of Bahawalpur for four years. His research field is synthesis of metal complexes (for biological studies), MOFs based composite for water purification. He has published more than hundred research articles in peer reviewed journals.

    EMAIL logo
    and Haq Nawaz

    Haq Nawaz He received his master’s degree in chemistry from the Islamia University of Bahawalpur, Punjab, Pakistan. He received his PhD degree from the Institute of Chemistry, University of Sao Paulo, Brazil in 2014. Then he joined Institute of Chemistry, Chinese Academy of Sciences as postdoctoral researcher. Currently, he is working at College of Material Science and Technology, Beijing Forestry University as research associate. Dr. Nawaz is working on biomass dissolution, chemical modification into smart fluorescent materials for multifunctional applications.

Abstract

Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.


Corresponding authors: Khalil Ahmad and Muhammad Ashfaq, Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, E-mail: (K. Ahmad), (M. Ashfaq)
Khalil Ahmad and Habib-Ur-Rehman Shah contributed equally to this work.

About the authors

Khalil Ahmad

Khalil Ahmad completed his master in 2012 from “the Islamia University of Bahawalpur”. In 2014 joined Prof. Dr. Muhammad Ashfaq Research group and completed his MPhil in 2016 from same university. Further continued his study and enrolled as PhD student under supervision of Prof. Dr. Muhammad Ashfaq. His research interest is synthesis of MOFs, composite materials (for purification of water) and transition metal complexes (for biological studies) and he has published more than ten articles in peer reviewed journals.

Habib-Ur-Rehman Shah

Habib-Ur-Rehman Shah completed his master degree from Islamia University of Bahawalpur and also obtained Gold Medal in MSc. In MPhil he joined Prof. Dr. Muhammad Ashfaq research group and completed his degree in 2015. In 2017 he continued his PhD degree under supervision of Prof. Dr. Muhammad Ashfaq. His research area is MOFs and GO based composite for detection of environmental pollutants and synthesis of transition metal complexes. He has published more than five research articles in peer reviewed journals.

Muhammad Ashfaq

Muhammad Ashfaq completed his MSc from Dera Ismael Khan University and PhD from the Islamia University of Bahawalpur. He served as Dean Faculty of Sciences, Chairman Department of Biochemistry and Biotechnology and the Chairman of Department of Chemistry the Islamia University of Bahawalpur for four years. His research field is synthesis of metal complexes (for biological studies), MOFs based composite for water purification. He has published more than hundred research articles in peer reviewed journals.

Haq Nawaz

Haq Nawaz He received his master’s degree in chemistry from the Islamia University of Bahawalpur, Punjab, Pakistan. He received his PhD degree from the Institute of Chemistry, University of Sao Paulo, Brazil in 2014. Then he joined Institute of Chemistry, Chinese Academy of Sciences as postdoctoral researcher. Currently, he is working at College of Material Science and Technology, Beijing Forestry University as research associate. Dr. Nawaz is working on biomass dissolution, chemical modification into smart fluorescent materials for multifunctional applications.

Acknowledgment

Authors are very grateful to the Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur for providing all facilities to complete this manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: No conflicts of interest were shown by the authors.

References

Agrawal, P. R.; Singh, N.; Kumari, S.; Dhakate, S. R. Multiwall carbon nanotube embedded phenolic resin-based carbon foam for the removal of As (V) from contaminated water. Mater. Res. Express 2018, 5(3), 035601; 10.1088/2053-1591/aaaf7c.10.1088/2053-1591/aaaf7cSearch in Google Scholar

Ahmad, N.; Younus, H. A.; Chughtai, A. H.; Verpoort, F. Metal–organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 2015, 44(1), 9–25; https://doi.org/10.1039/c4cs00222a.Search in Google Scholar PubMed

Ahmad, K.; Naseem, H. A.; Parveen, S.; Shah, H.-U.-R.; Shah, S. S. A.; Shaheen, S.; Ashfaq, A.; Jamil, J.; Ahmad, M. M.; Ashfaq, M. Synthesis and spectroscopic characterization of medicinal azo derivatives and metal complexes of Indandion. J. Mol. Struct. 2019, 1198, 126885; https://doi.org/10.1016/j.molstruc.2019.126885.Search in Google Scholar

Ahmad, K; Nazir, M. A.; Qureshi, A. K.; Hussain, E.; Najam, T.; Javed, M. S.; Shah, S. S. A.; Tufail, M. K.; Hussain, S.; Khan, N. A.; Shah, H.-U.-R.; Ashfaq, M. Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Mater. Sci. Eng., B 2020, 262, 114766; https://doi.org/10.1016/j.mseb.2020.114766.Search in Google Scholar

Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166(1), 36–59; https://doi.org/10.1016/j.cis.2011.04.005.Search in Google Scholar PubMed

Al Haydar, M.; Abid, H.; Sunderland, B.; Wang, S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des. Dev. Ther. 2017, 11, 2685–2695; https://doi.org/10.2147/dddt.s145716.Search in Google Scholar PubMed PubMed Central

Aldersey-Williams, H. Periodic tales: A cultural history of the elements, from arsenic to zinc; Ecco, 2011.Search in Google Scholar

Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 2015, 137(41), 13308–13318; https://doi.org/10.1021/jacs.5b07053.Search in Google Scholar PubMed PubMed Central

Ali, M. A. Arsenic contamination of groundwater in Bangladesh. Int. Rev. Environ. Strat. 2006, 6(2), 329–360.Search in Google Scholar

Ali, S.; Thakur, S. K.; Sarkar, A.; Shekhar, S. Worldwide contamination of water by fluoride. Environ. Chem. Lett. 2016, 14(3), 291–315; https://doi.org/10.1007/s10311-016-0563-5.Search in Google Scholar

Ali, S.; Shekhar, S.; Bhattacharya, P.; Verma, G.; Chandrasekhar, T.; Chandrashekhar, A. K. Elevated fluoride in groundwater of Siwani Block, Western Haryana, India: a potential concern for sustainable water supplies for drinking and irrigation. Groundwater Sustain. Dev. 2018, 7, 410–420; https://doi.org/10.1016/j.gsd.2018.05.008.Search in Google Scholar

Ali, S.; Rehman, S. A. U.; Luan, H.-Y.; Farid, M. U.; Huang, H. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Sci. Total Environ. 2019, 646, 1126–1139; https://doi.org/10.1016/j.scitotenv.2018.07.348.Search in Google Scholar PubMed

AlOmar, M. K.; Alsaadi, M. A.; Hayyan, M.; Akib, S.; Hashim, M. A. Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Appl. Surf. Sci. 2016, 389, 216–226; https://doi.org/10.1016/j.apsusc.2016.07.079.Search in Google Scholar

Alqadami, A. A.; Naushad, M.; Abdalla, M. A.; Ahamad, T.; Abdullah ALOthman, Z.; Alshehri, S. M.; Ghfar, A. A. Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J. Clean. Prod. 2017, 156, 426–436; https://doi.org/10.1016/j.jclepro.2017.04.085.Search in Google Scholar

Anderson, C.; Kille, P.; Lawlor, A. J.; Spurgeon, D. J. Life-history effects of arsenic toxicity in clades of the earthworm Lumbricus rubellus. Environ. Pollut. 2013, 172, 200–207; https://doi.org/10.1016/j.envpol.2012.09.005.Search in Google Scholar

Antman, K. H. Introduction: the history of arsenic trioxide in cancer therapy. Oncol. 2001, 6, 1–2; https://doi.org/10.1634/theoncologist.6-suppl_2-1.Search in Google Scholar

Aposhian, H. V. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu. Rev. Pharmacol. Toxicol. 1997, 37(1), 397–419; https://doi.org/10.1146/annurev.pharmtox.37.1.397.Search in Google Scholar

Arcibar-Orozco, J. A.; Josue, D.-B.; Rios-Hurtado, J. C.; Rangel-Mendez, J. R. Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem. Eng. J. 2014, 249, 201–209; https://doi.org/10.1016/j.cej.2014.03.096.Search in Google Scholar

Atallah, H.; ELcheikh Mahmoud, M.; Jelle, A.; Lough, A.; Hmadeh, M. A highly stable indium based metal organic framework for efficient arsenic removal from water. Dalton Trans. 2018, 47(3), 799–806; https://doi.org/10.1039/c7dt03705h.Search in Google Scholar

Athar, M.; Ashfaq, M. Q.; Muhammad, N. H.; Guanghua, L.; Zhan, S.; Shouhua, F. Synthesis and characterization of Cu/Pr heterometallic coordination polymer. J. Chem. Soc. Pakistan 2012, 34(3).Search in Google Scholar

Au, W. A biography of arsenic and medicine in Hong Kong and China. Hong Kong Med. J. = Xianggang yi xue za zhi 2011, 17(6), 507.Search in Google Scholar

Audu, C. O.; Nguyen, H. G. T.; Chang, C.-Y.; Katz, M. J.; Mao, L.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. The dual capture of As V and As III by UiO-66 and analogues. Chem. Sci. 2016, 7(10), 6492–6498; https://doi.org/10.1039/c6sc00490c.Search in Google Scholar

Avudainayagam, S.; Megharaj, M.; Owens, G.; Kookana, R. S.; Chittleborough, D.; Naidu, R. Chemistry of chromium in soils with emphasis on tannery waste sites. In Reviews of Environmental Contamination and Toxicology; Springer, 2003; pp 53–91; https://doi.org/10.1007/0-387-21728-2_3.Search in Google Scholar

Babel, S.; Kurniawan, T. A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard Mater. 2003, 97(1), 219–243; https://doi.org/10.1016/s0304-3894(02)00263-7.Search in Google Scholar

Baesman, S. M.; Stolz, J. F.; Kulp, T. R.; Oremland, R. S. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 2009, 13(4), 695–705; https://doi.org/10.1007/s00792-009-0257-z.Search in Google Scholar PubMed

Baker, B. S. From Arsenic to Biologicals: A 200 Year History of Psoriasis; Garner Press, 2008; https://doi.org/10.3726/978-3-0353-0332-2.Search in Google Scholar

Basu, S.; Khan, A. L.; Cano-Odena, A.; Liu, C.; Vankelecom, I. F. J. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010, 39(2), 750–768; https://doi.org/10.1039/b817050a.Search in Google Scholar PubMed

Battaglia-Brunet, F.; Crouzet, C.; Burnol, A.; Coulon, S.; Morin, D.; Joulian, C. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor. Water Res. 2012, 46(12), 3923–3933; https://doi.org/10.1016/j.watres.2012.04.035.Search in Google Scholar PubMed

Bencko, V.; Slámová, A. Best practices for promoting farmers’ health: the case of arsenic history. J. Publ. Health 2007, 15(4), 279–288; https://doi.org/10.1007/s10389-007-0123-3.Search in Google Scholar

Benjwal, P.; Kumar, M.; Chamoli, P.; Kar, K. K. Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic (iii) by reduced graphene oxide (rGO)–metal oxide (TiO2/Fe3O4) based nanocomposites. RSC Adv. 2015, 5(89), 73249–73260; https://doi.org/10.1039/c5ra13689j.Search in Google Scholar

Bentley, R.; Chasteen, T. G. Arsenic curiosa and humanity. Chem. Educat. 2002, 7(2), 51–60; https://doi.org/10.1007/s00897020539a.Search in Google Scholar

Bhattacharjee, P.; Paul, S. Understanding the mechanistic insight of arsenic exposure and decoding the histone cipher. Toxicology 2020, 430, 152340; https://doi.org/10.1016/j.tox.2019.152340.Search in Google Scholar PubMed

Bhattacharya, K. Fundamentals of Qualitative Research: A Practical Guide; Taylor & Francis: New York, NY, 2017.10.4324/9781315231747Search in Google Scholar

Bhattacharya, P.; Jovanovic, D.; Polya, D. Best Practice Guide on the Control of Arsenic in Drinking Water; IWA Publishing: London, 2015; p 120.Search in Google Scholar

Bibi, S.; Farooqi, A.; Hussain, K.; Haider, N. Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. J. Clean. Prod. 2015, 87, 882–896; https://doi.org/10.1016/j.jclepro.2014.09.030.Search in Google Scholar

Bilici Baskan, M.; Pala, A. Removal of arsenic from drinking water using modified natural zeolite. Desalination 2011, 281, 396–403; https://doi.org/10.1016/j.desal.2011.08.015.Search in Google Scholar

Blais, J. F.; Djedidi, Z.; Cheikh, R. B.; Tyagi, R. D.; Mercier, G. Metals precipitation from effluents: review. Pract. Period. Hazard. Toxic, Radioact. Waste Manag. 2008, 12(3), 135–149; https://doi.org/10.1061/(asce)1090-025x(2008)12:3(135).10.1061/(ASCE)1090-025X(2008)12:3(135)Search in Google Scholar

Boddu, V. M.; Abburi, K.; Talbott, J. L.; Smith, E. D.; Haasch, R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res. 2008, 42(3), 633–642; https://doi.org/10.1016/j.watres.2007.08.014.Search in Google Scholar PubMed

Boparai, H. K.; Joseph, M.; O’Carroll, D. M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard Mater. 2011, 186(1), 458–465; https://doi.org/10.1016/j.jhazmat.2010.11.029.Search in Google Scholar PubMed

Bujňáková, Z.; Balaz, P.; Zorkovska, A.; Sayagues, M. J.; Kovac, J.; Timko, M. Arsenic sorption by nanocrystalline magnetite: an example of environmentally promising interface with geosphere. J. Hazard Mater. 2013, 262, 1204–1212.10.1016/j.jhazmat.2013.03.007Search in Google Scholar PubMed

Bundschuh, J.; Litter, M. I.; Parvez, F.; Román-Ross, G.; Nicolli, H. B.; Jean, J.-S.; Liu, C.-W.; López, D.; Armienta, M. A.; Guilherme, L. R. G.; Cuevas, A. G.; Cornejo, L.; Cumbal, L.; Toujaguez, R. One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2–35; https://doi.org/10.1016/j.scitotenv.2011.06.024.Search in Google Scholar PubMed

Cai, W.; Li, Z.; Wei, J.; Liu, Y. Synthesis of peanut shell based magnetic activated carbon with excellent adsorption performance towards electroplating wastewater. Chem. Eng. Res. Des. 2018, 140, 23–32; https://doi.org/10.1016/j.cherd.2018.10.008.Search in Google Scholar

Cálix, E. M.; Tan, L. C.; Rene, E. R.; Nancharaiah, Y. V.; Van Hullebusch, E. D.; Lens, P. N. L. Simultaneous removal of sulfate and selenate from wastewater by process integration of an ion exchange column and upflow anaerobic sludge blanket bioreactor. Separ. Sci. Technol. 2019, 54(8), 1387–1399; https://doi.org/10.1080/01496395.2018.1533562.Search in Google Scholar

Camacho, L. M.; Parra, R. R.; Deng, S. Arsenic removal from groundwater by MnO2-modified natural clinoptilolite zeolite: effects of pH and initial feed concentration. J. Hazard Mater. 2011, 189(1), 286–293; https://doi.org/10.1016/j.jhazmat.2011.02.035.Search in Google Scholar PubMed

Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295(5554), 469–472; 10.1126/science.1067208.10.1126/science.1067208Search in Google Scholar PubMed

Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.-C.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4(7), 3979–3986; https://doi.org/10.1021/nn1008897.Search in Google Scholar

Chatterjee, A.; Das, D.; Chakraborti, D. A study of ground water contamination by arsenic in the residential area of Behala, Calcutta due to industrial pollution. Environ. Pollut. 1993, 80(1), 57–65; https://doi.org/10.1016/0269-7491(93)90010-l.Search in Google Scholar

Chen, X.; Peng, Y.; Han, X.; Liu, Y.; Lin, X.; Cui, Y. Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nat. Commun. 2017, 8(1), 2171; 10.1038/s41467-017-02335-0.10.1038/s41467-017-02335-0Search in Google Scholar PubMed PubMed Central

Chen, T.-B.; Zheng, Y.-M.; Wu, H.-T.; Zhou, J.-L.; Luo, J.-F.; Zheng, G.D. Arsenic accumulation in soils for different land use types in Beijing. Geogr. Res. 2005, 24(2), 229–235.Search in Google Scholar

Chen, W.; Parette, R.; Zou, J.; Cannon, F. S.; Dempsey, B. A. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41(9), 1851–1858; https://doi.org/10.1016/j.watres.2007.01.052.Search in Google Scholar PubMed

Chen, B.; Zhu, Z.; Ma, J.; Qiu, Y.; Chen, J. Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J. Mater. Chem. 2013, 1(37), 11355–11367; https://doi.org/10.1039/c3ta11827d.Search in Google Scholar

Chen, B.; Zhu, Z.; Ma, J.; Yang, M.; Hong, J.; Hu, X.; Qiu, Y.; Chen, J. One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J. Colloid Interface Sci. 2014, 434, 9–17; https://doi.org/10.1016/j.jcis.2014.07.046.Search in Google Scholar PubMed

Choi, W.-H.; Lee, S.-R.; Park, J.-Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag. 2009, 29(5), 1766–1771; https://doi.org/10.1016/j.wasman.2008.11.008.Search in Google Scholar PubMed

Choong, T. S.; Chuah, T. G.; Robiah, Y.; Koay, F. G.; Azni, I. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 2007, 217(1–3), 139–166; 10.1016/j.desal.2007.01.015.10.1016/j.desal.2007.01.015Search in Google Scholar

Cirujano, F. G.; Leyva-Pérez, A.; Corma, A.; Llabrés i Xamena, F. X. MOFs as multifunctional catalysts: synthesis of secondary arylamines, quinolines, pyrroles, and arylpyrrolidines over bifunctional MIL‐101. ChemCatChem 2013, 5(2), 538–549; https://doi.org/10.1002/cctc.201200878.Search in Google Scholar

Clancy, T. M.; Hayes, K. F.; Raskin, L. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. Environ. Sci. Technol. 2013, 47(19), 10799–10812; https://doi.org/10.1021/es401749b.Search in Google Scholar PubMed

Committee, A. N. S. S. Measurement of the Leachability of Solidified Low‐Level Radioactive Wastes by a Short‐Term Test Procedure (ANSI/ANS‐16.1); Author: La Grange Park, IL, 1986.Search in Google Scholar

Cox, L. A. Could removing arsenic from tobacco smoke significantly reduce smoker risks of lung cancer? Risk Anal.: Off. Publ. Soc. Risk Anal. 2009, 29(1), 3–17.10.1111/j.1539-6924.2008.01145.xSearch in Google Scholar PubMed

Cui, H.; Su, Y.; Li, Q.; Gao, S.; Shang, J. K. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Res. 2013, 47(16), 6258–6268; https://doi.org/10.1016/j.watres.2013.07.040.Search in Google Scholar PubMed

Das, T. K.; Sakthivel, T. S.; Jeyaranjan, A.; Seal, S.; Bezbaruah, A. N. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: removal mechanisms and potential applications. Chemosphere 2020, 253, 126702; https://doi.org/10.1016/j.chemosphere.2020.126702.Search in Google Scholar PubMed

Dávila-Jiménez, M. M.; Elizalde-González, M. P.; Mattusch, J.; Morgenstern, P.; Pérez-Cruz, M. A.; Reyes-Ortega, Y.; Wennrich, R.; Yee-Madeira, H. In situ and ex situ study of the enhanced modification with iron of clinoptilolite-rich zeolitic tuff for arsenic sorption from aqueous solutions. J. Colloid Interface Sci. 2008, 322(2), 527–536; https://doi.org/10.1016/j.jcis.2008.03.042.Search in Google Scholar PubMed

Debiec, K.; Rzepa, G.; Bajda, T.; Zych, L.; Krzysztoforski, J.; Sklodowska, A.; Drewniak, L. The influence of thermal treatment on bioweathering and arsenic sorption capacity of a natural iron (oxyhydr)oxide-based adsorbent. Chemosphere 2017, 188, 99–109; https://doi.org/10.1016/j.chemosphere.2017.08.142.Search in Google Scholar PubMed

Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S.-W.; Jeon, B.-H. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 2019, 380, 330–352; https://doi.org/10.1016/j.ccr.2018.10.003.Search in Google Scholar

Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial metal–organic frameworks as heterogeneous catalysts. Chem. Commun. 2012, 48(92), 11275–11288; https://doi.org/10.1039/c2cc34329k.Search in Google Scholar PubMed

Domonkos, A. N. Neutron activation analysis of arsenic in normal skin, keratoses, and epitheliomas. AMA Arch. Dermatol. 1959, 80(6), 672–677; https://doi.org/10.1001/archderm.1959.01560240024003.Search in Google Scholar PubMed

Doyle, D. Notoriety to respectability: a short history of arsenic prior to its present day use in haematology. Br. J. Haematol. 2009, 145(3), 309–317; https://doi.org/10.1111/j.1365-2141.2009.07623.x.Search in Google Scholar PubMed

Duan, F.; Feng, X.; Yang, X.; Sun, W.; Jin, Y.; Liu, H.; Ge, K.; Li, Z.; Zhang, J. A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 2017, 122, 23–33; https://doi.org/10.1016/j.biomaterials.2017.01.017.Search in Google Scholar PubMed

Duker, A. A.; Carranza, E. J. M.; Hale, M. Arsenic geochemistry and health. Environ. Int. 2005, 31(5), 631–641; https://doi.org/10.1016/j.envint.2004.10.020.Search in Google Scholar

Dutré, V.; Vandecasteele, C. Solidification/stabilisation of arsenic-containing waste: leach tests and behaviour of arsenic in the leachate. Waste Manag. 1995, 15(1), 55–62; https://doi.org/10.1016/0956-053x(95)00002-h.Search in Google Scholar

Efome, J. E.; Rana, D.; Matsuura, T.; Lan, C. Q. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10(22), 18619–18629; https://doi.org/10.1021/acsami.8b01454.Search in Google Scholar

Eisenberg, S.; Tittlebaum, M. E.; Eaton, H. C.; Soroczak, M. M. Chemical characteristics of selected flyash leachates. J. Environ. Sci. Health, Part A 1986, 21(4), 383–402; https://doi.org/10.1080/10934528609375299.Search in Google Scholar

Elizalde-González, M. A. P.; Mattusch, J.; Wennrich, R.; Morgenstern, P. Uptake of arsenite and arsenate by clinoptilolite-rich tuffs. Microporous Mesoporous Mater. 2001, 46(2), 277–286; https://doi.org/10.1016/s1387-1811(01)00308-0.Search in Google Scholar

EN, B. Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges: Part 2. One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 mm (without or with Size Reduction). Italian National Unification, UNI EN, 2002; pp 12457–12462.Search in Google Scholar

EPA, U. Method 1311 Toxicity Characteristic Leaching Procedure (TCLP); Agency EP, editor: Washington DC, USA, 1992.Search in Google Scholar

Faras, S. S.; Casa, V. A.; Vazquez, C.; Ferpozzi, L.; Pucci, G. N.; Cohen, I. M. Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Sci. Total Environ. 2003, 309(1–3), 187–199.10.1016/S0048-9697(03)00056-1Search in Google Scholar

Faria, M. C. S.; Rosemberg, R. S.; Bomfeti, C. A.; Monteiro, D. S.; Barbosa, F.; Oliveira, L. C. A.; Rodriguez, M.; Pereira, M. C.; Rodrigues, J. L. Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chem. Eng. J. 2014, 237, 47–54; https://doi.org/10.1016/j.cej.2013.10.006.Search in Google Scholar

Fedorov, V. A.; Churbanov, M. F. Ultrapure arsenic and its compounds for optical and semiconductor materials. Inorg. Mater. 2016, 52(13), 1339–1357; https://doi.org/10.1134/s0020168516130021.Search in Google Scholar

Ferguson, J. F.; Gavis, J. A review of the arsenic cycle in natural waters. Water Res. 1972, 6(11), 1259–1274; https://doi.org/10.1016/0043-1354(72)90052-8.Search in Google Scholar

Finnegan, P.; Chen, W. Arsenic toxicity: the effects on plant metabolism. Front. Physiol. 2012, 3, 182; https://doi.org/10.3389/fphys.2012.00182.Search in Google Scholar PubMed PubMed Central

Firmino, A. D. G.; Mendes, R. F.; Tomé, J. P. C.; Almeida Paz, F. A. Synthesis of MOFs at the Industrial Scale. In Metal-Organic Frameworks: Applications in Separations and Catalysis; García, H., Navalón, S., Eds.; Wile, 2018; Chapter 3; pp 57–80.10.1002/9783527809097.ch3Search in Google Scholar

Found, C.; Helwig, K. The reliability of spot tests for the detection of arsenic and mercury in natural history collections: a case study. Collection 1992, 11(1), 6–15.Search in Google Scholar

Frazer, L. Metal Attraction: An Ironclad Solution to Arsenic Contamination?; National Institue of Environmental Health Sciences, 2005.10.1289/ehp.113-a398Search in Google Scholar

Friščić, T.; Julien, P. A.; Mottillo, C. Environmentally-friendly designs and syntheses of metal-organic frameworks (MOFs). In Green Technologies for the Environment; ACS Publications, 2014; pp 161–183.10.1021/bk-2014-1186.ch009Search in Google Scholar

Frith, J. Arsenic-the. J. Mil. Veterans Health 2013, 21(4), 11.Search in Google Scholar

Fu, D.; He, Z.; Su, S.; Xu, B.; Liu, Y.; Zhao, Y. Fabrication of α-FeOOH decorated graphene oxide-carbon nanotubes aerogel and its application in adsorption of arsenic species. J. Colloid Interface Sci. 2017, 505, 105–114; https://doi.org/10.1016/j.jcis.2017.05.091.Search in Google Scholar

Förstner, U.; Grathwohl, P. Ingenieurgeochemie im Boden-und Gewässerschutz—Praxisbeispiele und rechtlicher Rahmen. In Ingenieurgeochemie: Technische Geochemie—Konzepte und Praxis; Springer: Berlin, 2007; pp. 243–436.Search in Google Scholar

Förstner, U.; Haase, I. Geochemical demobilization of metallic pollutants in solid waste—implications for arsenic in waterworks sludges. J. Geochem. Explor. 1998, 62(1-3), 29–36; https://doi.org/10.1016/s0375-6742(97)00070-8.Search in Google Scholar

Gallios, G. P. Adsorption of arsenate by nano scaled activated carbon modified by iron and manganese oxides. Sustainability 2017, 9(10), 2017; https://doi.org/10.3390/su9101684.Search in Google Scholar

Gallo, M.; Glossman-Mitnik, D. Fuel gas storage and separations by metal− organic frameworks: simulated adsorption isotherms for H2 and CH4 and their equimolar mixture. J. Phys. Chem. C 2009, 113(16), 6634–6642; https://doi.org/10.1021/jp809539w.Search in Google Scholar

Gao, Q.; Xu, J.; Bu, X.-H. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev. 2019, 378, 17–31; https://doi.org/10.1016/j.ccr.2018.03.015.Search in Google Scholar

Gerth, J.; Hirschmann, G.; Paul, M.; Jacobs, P.; Förstner, U. Ingenieurgeochemie im Boden-und Gewässerschutz—praxisbeispiele und rechtlicher Rahmen. In Ingenieurgeochemie; Springer: Berlin, Heidelberg, 2003; pp. 243–382; https://doi.org/10.1007/978-3-662-07903-4_3.Search in Google Scholar

Ghosh, A.; Mukiibi, M.; Ela, W. TCLP underestimates leaching of arsenic from solid residuals under landfill conditions. Environ. Sci. Technol. 2004, 38(17), 4677–4682; https://doi.org/10.1021/es030707w.Search in Google Scholar PubMed

Ghassemi, A.; Siegel, M. D.; Chen, H. W.; McConnell, P. E.; Thompson, R.; Ilges, A. Development and Evaluation of Innovative Arsenic Adsorption Technologies for Drinking Water by the Arsenic Water Technology Partnership; Sandia National Lab.(SNL-NM): Albuquerque, NM (USA), 2006.Search in Google Scholar

Ghosh, P. K.; Maiti, T. K.; Pramanik, K.; Ghosh, S. K.; Mitra, S.; De, T. K. The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 2018, 211, 407–419; https://doi.org/10.1016/j.chemosphere.2018.07.148.Search in Google Scholar PubMed

Graham, J. H.; Mazzanti, G. R.; Helwig, E. B. Chemistry of Bowen’s disease: relationship to arsenic. J. Invest. Dermatol. 1961, 37(5), 317–332; https://doi.org/10.1038/jid.1961.127.Search in Google Scholar

Guan, X.; Dong, H.; Ma, J.; Jiang, L. Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4–Fe(II) process. Water Res. 2009, 43(15), 3891–3899; https://doi.org/10.1016/j.watres.2009.06.008.Search in Google Scholar PubMed

Guo, L.; Ye, P.; Wang, J.; Fu, F.; Wu, Z. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J. Hazard Mater. 2015, 298, 28–35; https://doi.org/10.1016/j.jhazmat.2015.05.011.Search in Google Scholar PubMed

Gupta, A.; Yunus, M.; Sankararamakrishnan, N. Zerovalent iron encapsulated chitosan nanospheres – a novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere 2012, 86(2), 150–155; https://doi.org/10.1016/j.chemosphere.2011.10.003.Search in Google Scholar PubMed

Haldar, D.; Duarah, P.; Purkait, M. K. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: a review. Chemosphere 2020, 126388; https://doi.org/10.1016/j.chemosphere.2020.126388.Search in Google Scholar PubMed

Hanikel, N.; Prévot, M. S.; Yaghi, O. M. MOF water harvesters. Nat 2020, 1–8.10.1038/s41565-020-0673-xSearch in Google Scholar PubMed

Hartley, W.; Edwards, R.; Lepp, N. W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests. Environ. Pollut. 2004, 131(3), 495–504; https://doi.org/10.1016/j.envpol.2004.02.017.Search in Google Scholar PubMed

Hassan, A. F.; Abdel-Mohsen, A. M.; Elhadidy, H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 2014, 68, 125–130; https://doi.org/10.1016/j.ijbiomac.2014.04.006.Search in Google Scholar PubMed

Hawks, C. A.; Williams, S. L. Arsenic in natural history collections. Leather Conserv. News 1986, 2(2), 1–4.Search in Google Scholar

Hayat, K.; Menhas, S.; Bundschuh, J.; Chaudhary, H. J. Microbial biotechnology as an emerging industrial wastewater treatment process for arsenic mitigation: a critical review. J. Clean. Prod. 2017, 151, 427–438; https://doi.org/10.1016/j.jclepro.2017.03.084.Search in Google Scholar

He, Y.; Tang, Y. P.; Ma, D.; Chung, T.-S. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J. Membr. Sci. 2017, 541, 262–270; https://doi.org/10.1016/j.memsci.2017.06.061.Search in Google Scholar

He, X.; Deng, F.; Shen, T.; Yang, L.; Chen, D.; Luo, J.; Luo, X.; Min, X.; Wang, F. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: engineering exploration and mechanism insight. J. Colloid Interface Sci. 2019, 539, 223–234; https://doi.org/10.1016/j.jcis.2018.12.065.Search in Google Scholar

Heinrichs, G. Natural arsenic in Triassic rocks: a source of drinking-water contamination in Bavaria, Germany. Hydrogeol. J. 1999, 7(5), 468–476; https://doi.org/10.1007/s100400050219.Search in Google Scholar

Hindmarsh, J. T.; McCurdy, R. F.; Savory, J. Clinical and environmental aspects of arsenic toxicity. CRC Crit. Rev. Clin. Lab. Sci. 1986, 23(4), 315–347; https://doi.org/10.3109/10408368609167122.Search in Google Scholar

Hong, K.; Tokunaga, S.; Ishigami, Y.; Kajiuchi, T. Extraction of heavy metals from MSW incinerator fly ash using saponins. Chemosphere 2000, 41(3), 345–352; https://doi.org/10.1016/s0045-6535(99)00489-0.Search in Google Scholar

Hooper, K.; Iskander, M.; Sivia, G.; Hussein, F.; Hsu, J.; DeGuzman, M.; Odion, Z.; Ilejay, Z.; Sy, F.; Petreas, M.; Simmons, B. Toxicity characteristic leaching procedure fails to extract oxoanion-forming elements that are extracted by municipal solid waste leachates. Environ. Sci. Technol. 1998, 32(23), 3825–3830; https://doi.org/10.1021/es980151q.Search in Google Scholar

Huang, L.; Zhang, L.; Song, J.; Wang, X.; Liu, H. Superhydrophobic nickel-electroplated carbon fibers for versatile oil/water separation with excellent reusability and high environmental stability. ACS Appl. Mater. Interfaces 2020, 12(21), 24390–24402; https://doi.org/10.1021/acsami.9b23476.Search in Google Scholar

Hughes, M. F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133(1), 1–16; https://doi.org/10.1016/s0378-4274(02)00084-x.Search in Google Scholar

Huo, J.-B.; Xu, L.; Yang, J.-C. E.; Cui, H.-J.; Yuan, B.; Fu, M.-L. Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water. Colloid. Surface. Physicochem. Eng. Aspect. 2018, 539, 59–68; https://doi.org/10.1016/j.colsurfa.2017.12.010.Search in Google Scholar

Huo, J.-B.; Tang, Y. P.; Ma, D.; Chung, T.-S. Recyclable high-affinity arsenate sorbents based on porous Fe2O3/La2O2CO3 composites derived from Fe-La-C frameworks. Colloid. Surface. Physicochem. Eng. Aspect. 2020, 585, 124018; https://doi.org/10.1016/j.colsurfa.2019.124018.Search in Google Scholar

Hussam, A.; Munir, A. K. A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health, Part A 2007, 42(12), 1869–1878; https://doi.org/10.1080/10934520701567122.Search in Google Scholar

Hyson, J. M.Jr. A history of arsenic in dentistry. J. Calif. Dent. Assoc. 2007, 35(2), 135.Search in Google Scholar

Inada, T.; Otoki, Y.; Ohata, K.; Taharasako, S.; Kuma, S. Effects of thermal history during LEC growth on behavior of excess arsenic in semi-insulating GaAs. J. Cryst. Growth 1989, 96(2), 327–332; https://doi.org/10.1016/0022-0248(89)90529-0.Search in Google Scholar

Isaeva, V. I.; Kustov, L. M. The application of metal-organic frameworks in catalysis (Review). Petrol. Chem. 2010, 50(3), 167–180; https://doi.org/10.1134/s0965544110030011.Search in Google Scholar

Jaafarzadeh, N.; Ahmadi, M.; Amiri, H.; Yassin, M. H.; Martinez, S. S. Predicting Fenton modification of solid waste vegetable oil industry for arsenic removal using artificial neural networks. J. Taiwan Inst. Chem. Eng. 2012, 43(6), 873–878; https://doi.org/10.1016/j.jtice.2012.05.008.Search in Google Scholar

Jaafarzadeh, N.; Mengelizadeh, N.; Takdastan, A.; Alavi, N.; Nejad, M. H.; Moshayyedi, M. Efficiency evaluation of Zinc and Nickel removal through coagulation and flocculation process using chitosan. Jentashapir J. Health Res. 2014.Search in Google Scholar

Jais, F. M.; Ibrahim, S.; Yoon, Y.; Jang, M. Enhanced arsenate removal by lanthanum and nano–magnetite composite incorporated palm shell waste–based activated carbon. Separ. Purif. Technol. 2016, 169, 93–102; https://doi.org/10.1016/j.seppur.2016.05.034.Search in Google Scholar

Jan, M.; Shah, J.; Shah, H. Chemical investigation of the effluents of selected chemical industries in NWFP (Pakistan). J. Chem. Soc. Pakistan 2002, 24(2), 129–133.Search in Google Scholar

Jegadeesan, G.; Al-Abed, S. R.; Sundaram, V.; Choi, H.; Scheckel, K. G.; Dionysiou, D. D. Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res. 2010, 44(3), 965–973; https://doi.org/10.1016/j.watres.2009.10.047.Search in Google Scholar PubMed

Jeon, T. H.; Koo, M. S.; Kim, H.; Choi, W. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS Catal. 2018a, 8(12), 11542–11563; https://doi.org/10.1021/acscatal.8b03521.Search in Google Scholar

Jeon, E.-K.; Ryu, S.; Park, S.-W.; Wang, L.; Tsang, D. C. W.; Baek, K. Enhanced adsorption of arsenic onto alum sludge modified by calcination. J. Clean. Prod. 2018b, 176, 54–62; https://doi.org/10.1016/j.jclepro.2017.12.153.Search in Google Scholar

Jeong, Y.; Fan, M.; Singh, S.; Chuang, C.-L.; Saha, B.; Hans van Leeuwen, J. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chem. Eng. Process - Process Intensif. 2007, 46(10), 1030–1039; https://doi.org/10.1016/j.cep.2007.05.004.Search in Google Scholar

Jian, M.; Liu, B.; Zhang, G.; Liu, R.; Zhang, X. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloid. Surface. Physicochem. Eng. Aspect. 2015, 465, 67–76; https://doi.org/10.1016/j.colsurfa.2014.10.023.Search in Google Scholar

Jiang, Y.; Hua, M.; Wu, B.; Ma, H.; Pan, B.; Zhang, Q. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environ. Sci. Pollut. Control Ser. 2014, 21(10), 6729–6735; https://doi.org/10.1007/s11356-014-2590-8.Search in Google Scholar PubMed

Jing, C.; Liu, S.; Patel, M.; Meng, X. Arsenic leachability in water treatment adsorbents. Environ. Sci. Technol. 2005, 39(14), 5481–5487; https://doi.org/10.1021/es050290p.Search in Google Scholar PubMed

Jing, C.; Liu, S.; Meng, X. Arsenic remobilization in water treatment adsorbents under reducing conditions: part I. Incubation study. Sci. Total Environ. 2008, 389(1), 188–194; https://doi.org/10.1016/j.scitotenv.2007.08.030.Search in Google Scholar PubMed

Jolliffe, D. A history of the use of arsenicals in man. J. R. Soc. Med. 1993, 86(5), 287.10.1177/014107689308600515Search in Google Scholar

Jomova, K.; Jenisova, Z; Feszterova, M; Baros, S; Liska, J; Hudecova, D; Rhodes, CJ; Valko, M Arsenic: toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31(2), 95–107; https://doi.org/10.1002/jat.1649.Search in Google Scholar PubMed

Jong, T.; Parry, D. L. Evaluation of the stability of arsenic immobilized by microbial sulfate reduction using TCLP extractions and long-term leaching techniques. Chemosphere 2005, 60(2), 254–265; https://doi.org/10.1016/j.chemosphere.2004.12.046.Search in Google Scholar PubMed

Kamala, C.; Chu, K. H.; Chary, N. S.; Pandey, P. K.; Ramesh, S. L.; Sastry, A. R. K.; Sekhar, K. C. Removal of arsenic (III) from aqueous solutions using fresh and immobilized plant biomass. Water Res. 2005, 39(13), 2815–2826; https://doi.org/10.1016/j.watres.2005.04.059.Search in Google Scholar PubMed

Kamsonlian, S.; Suresh, S.; Ramanaiah, V.; Majumder, C. B.; Chand, S.; Kumar, A. Biosorptive behaviour of mango leaf powder and rice husk for arsenic(III) from aqueous solutions. Int. J. Environ. Sci. Technol. 2012, 9(3), 565–578; https://doi.org/10.1007/s13762-012-0054-6.Search in Google Scholar

Khan, N. A.; Najam, T.; Shah, S. S. A.; Hussain, E.; Ali, H.; Hussain, S.; Shaheen, A.; Ahmad, K.; Ashfaq, M. Development of Mn-PBA on GO sheets for adsorptive removal of ciprofloxacin from water: kinetics, isothermal, thermodynamic and mechanistic studies. Mater. Chem. Phys. 2020, 245, 122737; https://doi.org/10.1016/j.matchemphys.2020.122737.Search in Google Scholar

Khan, K. M.; Rahim, F.; Shah, S. A. A.; Taha, M.; Ismail, N. H.; Manzoor, M.; Parveen, S. Bis (indolyl) methanes synthesis through sodium iodate and sodium hydrogen sulfite in water. J. Chem. Soc. Pakistan 2014, 36(6).Search in Google Scholar

Kim, J.-G.; Kim, H.-B.; Yoon, G.-S.; Kim, S.-H.; Min, S.-J.; Tsang, D. C. W.; Baek, K. Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4). J. Hazard Mater. 2020, 383, 121138; https://doi.org/10.1016/j.jhazmat.2019.121138.Search in Google Scholar PubMed

Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107; https://doi.org/10.1016/j.ccr.2017.12.010.Search in Google Scholar

Kong, S.; Wang, Y.; Hu, Q.; Olusegun, A. K. Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater. Colloid. Surface. Physicochem. Eng. Aspect. 2014, 457, 220–227; https://doi.org/10.1016/j.colsurfa.2014.05.066.Search in Google Scholar

Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Saltikov, C.; Murphy, J. N.; Han, S.; Lanoil, B.; Oremland, R. S. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl. Environ. Microbiol. 2006, 72(10), 6514; https://doi.org/10.1128/aem.01066-06.Search in Google Scholar PubMed PubMed Central

Kulp, T. R.; Han, S.; Saltikov, C. W.; Lanoil, B. D.; Zargar, K.; Oremland, R. S. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Appl. Environ. Microbiol. 2007, 73(16), 5130; https://doi.org/10.1128/aem.00771-07.Search in Google Scholar

Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem. 2017, 8(4), 666–673; https://doi.org/10.1039/c6py01853j.Search in Google Scholar PubMed PubMed Central

Lafferty, B. J.; Loeppert, R. H. Methyl arsenic adsorption and desorption behavior on iron oxides. Environ. Sci. Technol. 2005, 39(7), 2120–2127; https://doi.org/10.1021/es048701+.10.1021/es048701+Search in Google Scholar PubMed

Lazarević, K.; Nikolić, D; Stosić, L; Milutinović, S; Videnović, J; Bogdanović, D Determination of lead and arsenic in tobacco and cigarettes: an important issue of public health. Cent. Eur. J. Publ. Health 2012, 20(1), 62–66.10.21101/cejph.a3728Search in Google Scholar PubMed

Li, Y.; Yang, R. T. Gas adsorption and storage in metal−organic framework MOF-177. Langmuir 2007, 23(26), 12937–12944; https://doi.org/10.1021/la702466d.Search in Google Scholar PubMed

Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402(6759), 276–279; https://doi.org/10.1038/46248.Search in Google Scholar

Li, L.; Huang, Y.; Wang, Y.; Wang, W. Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples. Anal. Chim. Acta 2009, 631(2), 182–188; https://doi.org/10.1016/j.aca.2008.10.043.Search in Google Scholar PubMed

Li, Z.; Jean, J.-S.; Jiang, W.-T.; Chang, P.-H.; Chen, C.-J.; Liao, L. Removal of arsenic from water using Fe-exchanged natural zeolite. J. Hazard Mater. 2011, 187(1), 318–323; https://doi.org/10.1016/j.jhazmat.2011.01.030.Search in Google Scholar PubMed

Li, W.-G.; Gong, X.-J.; Wang, K.; Zhang, X.-R.; Fan, W.-B. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresour. Technol. 2014a, 165, 166–173; https://doi.org/10.1016/j.biortech.2014.02.069.Search in Google Scholar PubMed

Li, J.; Wu, Y.-N.; Li, Z.; Zhu, M.; Li, F. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Sci. Technol. 2014b, 70(8), 1391–1397; https://doi.org/10.2166/wst.2014.390.Search in Google Scholar PubMed

Li, J.; Wu, Y.-N.; Li, Z.; Zhang, B.; Zhu, M.; Hu, X.; Zhang, Y.; Li, F. Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. Chem. C 2014c, 118(47), 27382–27387; https://doi.org/10.1021/jp508381m.Search in Google Scholar

Li, J.; Wu, Y.-n.; Li, Z.; Zhang, B.; Zhu, M.; Hu, X.; Zhang, Y.; Li, F. Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. Chem. C 2014d, 118(47), 27382–27387; https://doi.org/10.1021/jp508381m.Search in Google Scholar

Li, Z.-Q.; Yang, J.-C.; Sui, K.-W.; Yin, N. Facile synthesis of metal-organic framework MOF-808 for arsenic removal. Mater. Lett. 2015, 160, 412–414; https://doi.org/10.1016/j.matlet.2015.08.004.Search in Google Scholar

Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B. Water purification: adsorption over metal-organic frameworks. Chin. J. Chem. 2016, 34(2), 175–185; https://doi.org/10.1002/cjoc.201500761.Search in Google Scholar

Li, X.; Guo, T.; Lachmanski, L.; Manoli, F.; Menendez-Miranda, M.; Manet, I.; Guo, Z.; Wu, L.; Zhang, J.; Gref, R. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: study of morphology and chemical composition of individual particles. Int. J. Pharm. 2017, 531(2), 424–432; https://doi.org/10.1016/j.ijpharm.2017.05.056.Search in Google Scholar PubMed

Lim, M.; Han, G.-C.; Ahn, J.-W.; You, K.-S.; Kim, H.-S. Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines. Int. J. Environ. Res. Publ. Health 2009, 6(11), 2865–2879; https://doi.org/10.3390/ijerph6112865.Search in Google Scholar PubMed PubMed Central

Litter, M. I.; Ingallinella, A. M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Farfán Torres, E. M.; Taylor, S.; Frangie, S.; Herkovits, J.; Schalamuk, I.; González, M. J.; Berardozzi, E.; García Einschlag, F. S.; Bhattacharya, P.; Ahmad, A. Arsenic in Argentina: occurrence, human health, legislation and determination. Sci. Total Environ. 2019a, 676, 756–766; https://doi.org/10.1016/j.scitotenv.2019.04.262.Search in Google Scholar PubMed

Litter, M. I.; Ingallinella, A. M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Torres, E. M. F.; Taylor, S.; Frangie, S.; Herkovits, J.; Schalamuk, I.; González, M. J.; Berardozzi, E.; García Einschlag, F. S.; Bhattacharya, P.; Ahmad, A. Arsenic in Argentina: technologies for arsenic removal from groundwater sources, investment costs and waste management practices. Sci. Total Environ. 2019b, 690, 778–789; https://doi.org/10.1016/j.scitotenv.2019.06.358.Search in Google Scholar PubMed

Liu, Z.; Zhang, F.-S.; Sasai, R. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chem. Eng. J. 2010, 160(1), 57–62; https://doi.org/10.1016/j.cej.2010.03.003.Search in Google Scholar

Liu, X.; Wang, M.; Zhang, S.; Pan, B. Application potential of carbon nanotubes in water treatment: a review. J. Environ. Sci. 2013, 25(7), 1263–1280; https://doi.org/10.1016/s1001-0742(12)60161-2.Search in Google Scholar

Liu, B.; Jian, M.; Liu, R.; Yao, J.; Zhang, X. Highly efficient removal of arsenic (III) from aqueous solution by zeolitic imidazolate frameworks with different morphology. Colloid. Surface. Physicochem. Eng. Aspect. 2015a, 481, 358–366; https://doi.org/10.1016/j.colsurfa.2015.06.009.Search in Google Scholar

Liu, C.-H.; Chuang, Y.-H.; Chen, T.-Y.; Tian, Y.; Li, H.; Wang, M.-K.; Zhang, W. Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environ. Sci. Technol. 2015b, 49(13), 7726–7734; https://doi.org/10.1021/acs.est.5b00381.Search in Google Scholar PubMed

Liu, B.; He, Y.; Han, L.; Singh, V.; Xu, X.; Guo, T.; Meng, F.; Xu, X.; York, P.; Liu, Z.; Zhang, J. Microwave-assisted rapid synthesis of γ-cyclodextrin metal–organic frameworks for size control and efficient drug loading. Cryst. Growth Des. 2017, 17(4), 1654–1660; https://doi.org/10.1021/acs.cgd.6b01658.Search in Google Scholar

Liu, D.; Deng, S.; Maimaiti, A.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. As (III) and as (V) adsorption on nanocomposite of hydrated zirconium oxide coated carbon nanotubes. J. Colloid Interface Sci. 2018, 511, 277–284; https://doi.org/10.1016/j.jcis.2017.10.004.Search in Google Scholar PubMed

Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ. Pollut. 2019a, 252, 62–73; https://doi.org/10.1016/j.envpol.2019.05.050.Search in Google Scholar PubMed

Liu, X.; Tang, J.; Wang, L.; Liu, Q.; Liu, R. A comparative analysis of ball-milled biochar, graphene oxide, and multi-walled carbon nanotubes with respect to toxicity induction in Streptomyces. J. Environ. Manag. 2019b, 243, 308–317; https://doi.org/10.1016/j.jenvman.2019.05.034.Search in Google Scholar PubMed

Liu, B.; Kim, K.-H.; Kumar, V.; Kim, S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. J. Hazard Mater. 2020, 388, 121815; https://doi.org/10.1016/j.jhazmat.2019.121815.Search in Google Scholar PubMed

Lombardo, M. V.; Videla, M.; Calvo, A.; Requejo, F. G.; Soler-Illia, G. J. A. A. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu (II)-sulfate solutions: adsorption efficiency, functional stability and reusability aspects. J. Hazard Mater. 2012, 223, 53–62; https://doi.org/10.1016/j.jhazmat.2012.04.049.Search in Google Scholar PubMed

Lopez, H. A.; Dhakshinamoorthy, A.; Ferrer, B.; Atienzar, P.; Alvaro, M.; Garcia, H. Photochemical response of commercial MOFs: Al2 (BDC) 3 and its use as active material in photovoltaic devices. J. Phys. Chem. C 2011, 115(45), 22200–22206; https://doi.org/10.1021/jp206919m.Search in Google Scholar

Lytle, D. A.; William, D.; Muhlen, C.; Riddick, E.; Pham, M. The removal of ammonia, arsenic, iron and manganese by biological treatment from a small Iowa drinking water system. Environ. Sci.: Water Res. Technol. 2020, 6(11), 3142–3156.10.1039/D0EW00361ASearch in Google Scholar

Ma, J.; Zhu, Z.; Chen, B.; Yang, M.; Zhou, H.; Li, C.; Yu, F.; Chen, J. One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. J. Mater. Chem. 2013, 1(15), 4662–4666; https://doi.org/10.1039/c3ta10329c.Search in Google Scholar

Maiti, A.; Basu, J. K.; De, S. Experimental and kinetic modeling of as (V) and as (III) adsorption on treated laterite using synthetic and contaminated groundwater: effects of phosphate, silicate and carbonate ions. Chem. Eng. J. 2012, 191, 1–12; https://doi.org/10.1016/j.cej.2010.01.031.Search in Google Scholar

Manojlović, D.; Popara, A.; Dojcinovic, B. P.; Nikolic, A.; Obradovic, B. M.; Kuraica, M. M.; Puric, J. Comparison of two methods for removal of arsenic from potable water. Vacuum 2008, 83(1), 142–145.10.1016/j.vacuum.2008.03.045Search in Google Scholar

Marte, F.; Péquignot, A.; von Endt, D. W. Arsenic in taxidermy collections: history, detection, and management. Collection Forum 2006, 21, 143–150.Search in Google Scholar

Martinson, C. A.; Reddy, K. J. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 2009, 336(2), 406–411; https://doi.org/10.1016/j.jcis.2009.04.075.Search in Google Scholar PubMed

Mazumder, D. G. Chronic arsenic toxicity & human health. Indian J. Med. Res. 2008, 128(4), 436–447.Search in Google Scholar

Mazumder, D. G.; et al.. Chronic arsenic toxicity from drinking tubewell water in rural West Bengal. Bull. World Health Organ. 1988, 66(4), 499.Search in Google Scholar

Mazumder, J.; Schifferer, A.; Choi, J. Direct materials deposition: designed macro and microstructure. Mater. Res. Innov. 1999, 3, 118–131, United Kingdom, UK.Search in Google Scholar

McBriarty, M. E.; Soltis, J. A.; Kerisit, S.; Qafoku, O.; Bowden, M.E.; Bylaska, E. J.; Ilton, E. S. The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 2007, 8(1–2), 71–75; https://doi.org/10.1016/j.stam.2006.10.005.Search in Google Scholar

Mejia-Zamudio, F.; Valenzuela-Garcia, J.; Gomez-Alvarez, A.; Meza-Figueroa, D.; Ela, W. P. Adsorption of arsenic on pre-treated zeolite at different pH levels. Chem. Speciat. Bioavailab. 2013, 25(4), 280–284; 10.3184/095422913x13840126102755.10.3184/095422913X13840126102755Search in Google Scholar

Meng, X.; Korfiatis, G. P.; Jing, C.; Christodoulatos, C. Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction. Environ. Sci. Technol. 2001, 35(17), 3476–3481; https://doi.org/10.1021/es010645e.Search in Google Scholar PubMed

Mishra, A. K.; Ramaprabhu, S. Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J. Phys. Chem. C 2010, 114(6), 2583–2590; https://doi.org/10.1021/jp911631w.Search in Google Scholar

Moh, P. Y.; Cubillas, P.; Anderson, M. W.; Attfield, M. P. Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. J. Am. Chem. Soc. 2011, 133(34), 13304–13307; https://doi.org/10.1021/ja205900f.Search in Google Scholar

Mohan, D.; Pittman, C. U. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard Mater. 2007, 142(1), 1–53; https://doi.org/10.1016/j.jhazmat.2007.01.006.Search in Google Scholar

Monteiro Bramante, C.; Demarchi, A. C. C. O.; de Moraes, I. G.; Bernadineli, N.; Garcia, R. B.; Spångberg, L. S. W.; Duarte, M. A. H. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 106(6), 909–913; https://doi.org/10.1016/j.tripleo.2008.07.018.Search in Google Scholar

Nasir, A. M.; Md Nordin, N. A. H.; Goh, P. S.; Ismail, A. F. Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF-L) as arsenite adsorbent: kinetic, isotherm and mechanism. J. Mol. Liq. 2018, 250, 269–277; https://doi.org/10.1016/j.molliq.2017.12.005.Search in Google Scholar

Nasir, A. M.; Goh, P. S.; Abdullah, M. S.; Ng, B. C.; Ismail, A. F. Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere 2019, 232, 96–112; https://doi.org/10.1016/j.chemosphere.2019.05.174.Search in Google Scholar

Navarathna, C. M.; Karunanayake, A. G.; Gunatilake, S. R.; Pittman, C. U.; Perez, F.; Mohan, D.; Mlsna, T. Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. J. Environ. Manag. 2019, 250, 109429; https://doi.org/10.1016/j.jenvman.2019.109429.Search in Google Scholar

Nazir, M. A.; Yasar, A.; Bashir, M. A.; Siyal, S. H.; Najam, T.; Javed, M. S.; Ahmad, K.; Hussain, S.; Anjum, S.; Hussain, E.; Shah, S. S. A.; Rehman, A. U. Quality assessment of the noncarbonated-bottled drinking water: comparison of their treatment techniques. Int. J. Environ. Anal. Chem. 2020, 1–12; https://doi.org/10.1080/03067319.2020.1846732.Search in Google Scholar

NEN, E., 7371, Leaching characteristics of granular building and waste materials. The determination of the availability of inorganic components for leaching. The maximum availability leaching test, 2004.Search in Google Scholar

Neupane, G.; Donahoe, R. J.; Arai, Y. Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite–water interface. Chem. Geol. 2014, 368, 31–38; https://doi.org/10.1016/j.chemgeo.2013.12.020.Search in Google Scholar

Ng, J. C.; Wang, J.; Shraim, A. A global health problem caused by arsenic from natural sources. Chemosphere 2003, 52(9), 1353–1359; https://doi.org/10.1016/s0045-6535(03)00470-3.Search in Google Scholar

Nguyen, L. T. L.; Le, K. K. A.; Truong, H. X.; Phan, N. T. S. Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol. 2012, 2(3), 521–528; https://doi.org/10.1039/c1cy00386k.Search in Google Scholar

Niazi, N. K.; Bibi, I.; Shahid, M.; Ok, Y. S.; Burton, E. D.; Wang, H.; Shaheen, S. M.; Rinklebe, J.; Lüttge, A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ. Pollut. 2018, 232, 31–41; https://doi.org/10.1016/j.envpol.2017.09.051.Search in Google Scholar PubMed

Nicomel, N. R.; et al.. Technologies for arsenic removal from water: current status and future perspectives. Int. J. Environ. Res. Publ. Health 2016, 13(1), 62.10.3390/ijerph13010062Search in Google Scholar PubMed PubMed Central

Nriagu, J. O. Arsenic poisoning through the ages. Environ. Chem. Arsenic 2002, 1, 1–26.Search in Google Scholar

Oliveira, D. Q. L.; Gonçalves, M.; Oliveira, L. C. A.; Guilherme, L. R. G. Removal of As(V) and Cr(VI) from aqueous solutions using solid waste from leather industry. J. Hazard Mater. 2008, 151(1), 280–284; https://doi.org/10.1016/j.jhazmat.2007.11.001.Search in Google Scholar PubMed

Oliveira, F. R.; Patel, A. K.; Jaisi, D. P.; Adhikari, S.; Lu, H.; Khanal, S. K. Environmental application of biochar: current status and perspectives. Bioresour. Technol. 2017, 246, 110–122; https://doi.org/10.1016/j.biortech.2017.08.122.Search in Google Scholar PubMed

Otleş, S.; Cağindi, O. Health importance of arsenic in drinking water and food. Environ. Geochem. Health 2010, 32(4), 367–371; https://doi.org/10.1007/s10653-010-9296-8.Search in Google Scholar PubMed

Pandey, P. K.; Choubey, S.; Verma, Y.; Pandey, M.; Chandrashekhar, K. Biosorptive removal of arsenic from drinking water. Bioresour. Technol. 2009, 100(2), 634–637; https://doi.org/10.1016/j.biortech.2008.07.063.Search in Google Scholar PubMed

Pandi, K.; Prabhu, S. M.; Choi, J. Fabrication of lanthanum methanoate on sucrose-derived biomass carbon nanohybrid for the efficient removal of arsenate from water. Chemosphere 2021, 262, 127596; https://doi.org/10.1016/j.chemosphere.2020.127596.Search in Google Scholar PubMed

Pankajakshan, A.; Sinha, M.; Ojha, A. A.; Mandal, S. Water-stable nanoscale zirconium-based metal–organic frameworks for the effective removal of glyphosate from aqueous media. ACS Omega 2018, 3(7), 7832–7839; https://doi.org/10.1021/acsomega.8b00921.Search in Google Scholar PubMed PubMed Central

Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Y.; Xiao, J.; Li, Z. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J. 2018, 337, 351–371; https://doi.org/10.1016/j.cej.2017.12.092.Search in Google Scholar

Pillewan, P.; Mukherjee, S.; Meher, A. K.; Rayalu, S.; Bansiwal, A. Removal of arsenic (III) and arsenic (V) using copper exchange zeolite-a. Environ. Prog. Sustain. Energy 2014, 33(4), 1274–1282.10.1002/ep.11933Search in Google Scholar

Ploychompoo, S.; Chen, J.; Luo, H.; Liang, Q. Fast and efficient aqueous arsenic removal by functionalized MIL-100(Fe)/rGO/δ-MnO2 ternary composites: adsorption performance and mechanism. J. Environ. Sci. 2020, 91, 22–34; https://doi.org/10.1016/j.jes.2019.12.014.Search in Google Scholar PubMed

Ploychompoo, S.; Liang, Q.; Zhou, X.; Wei, C.; Luo, H. Fabrication of Zn-MOF-74/polyacrylamide coated with reduced graphene oxide (Zn-MOF-74/rGO/PAM) for As(III) removal. Phys. E Low-dimens. Syst. Nanostruct. 2021, 125, 114377; https://doi.org/10.1016/j.physe.2020.114377.Search in Google Scholar

Pronovost, A. D.; Hickey, M. E. Methods and Ceramic Nanoparticle Compositions for Heavy Metal Removal and for Oral Delivery of Desirable Agents. Google Patents, 2014.Search in Google Scholar

Rahman, M. A.; Hashem, M. A. Arsenic, iron and chloride in drinking water at primary school, Satkhira, Bangladesh. Phys. Chem. Earth, Parts A/B/C 2019, 109, 49–58; https://doi.org/10.1016/j.pce.2018.09.008.Search in Google Scholar

Rahman, M. M.; Chowdhury, U. K.; Mukherjee, S. C.; Mondal, B. K.; Paul, K.; Lodh, D.; Biswas, B. K.; Chanda, C. R.; Basu, G. K.; Saha, K. C.; Roy, S.; Das, R.; Palit, S. K.; Quamruzzaman, Q.; Chakraborti, D. Chronic arsenic toxicity in Bangladesh and West Bengal, India—a review and commentary. J. Toxicol. Clin. Toxicol. 2001, 39(7), 683–700; https://doi.org/10.1081/clt-100108509.Search in Google Scholar PubMed

Rahman, M. M.; Ng, J. C.; Naidu, R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ. Geochem. Health 2009, 31(1), 189–200; https://doi.org/10.1007/s10653-008-9235-0.Search in Google Scholar PubMed

Rahman, M. M.; Mondal, D.; Das, B.; Sengupta, M. K.; Ahamed, S.; Hossain, M. A.; Samal, A. C.; Saha, K. C.; Mukherjee, S. C.; Dutta, R. N.; Chakraborti, D Status of groundwater arsenic contamination in all 17 blocks of Nadia district in the state of West Bengal, India: a 23-year study report. J. Hydrol. 2014, 518, 363–372; https://doi.org/10.1016/j.jhydrol.2013.10.037.Search in Google Scholar

Ramanayaka, S.; Vithanage, M.; Sarmah, A.; An, T.; Kim, K.-H.; Ok, Y. S. Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review. RSC Adv. 2019, 9(59), 34359–34376; https://doi.org/10.1039/c9ra06879a.Search in Google Scholar PubMed PubMed Central

Rasheed, T.; Hassan, A. A.; Bilal, M.; Hussain, T.; Rizwan, K. Metal-organic frameworks based adsorbents: a review from removal perspective of various environmental contaminants from wastewater. Chemosphere 2020, 127369; https://doi.org/10.1016/j.chemosphere.2020.127369.Search in Google Scholar PubMed

Ratnaike, R. N. Acute and chronic arsenic toxicity. Postgrad. Med. 2003, 79(933), 391–396; https://doi.org/10.1136/pmj.79.933.391.Search in Google Scholar PubMed PubMed Central

Ren, Z.; Zhang, G.; Paul Chen, J. Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J. Colloid Interface Sci. 2011, 358(1), 230–237; https://doi.org/10.1016/j.jcis.2011.01.013.Search in Google Scholar PubMed

Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187–219; https://doi.org/10.1016/j.ccr.2017.09.005.Search in Google Scholar

Riegert, P. W. From Arsenic to DDT. A History of Entomology in Western Canada; University of Toronto Press, 1980.10.3138/9781487577797Search in Google Scholar

Rosso, J. J. Occurrence of fluoride in arsenic-rich surface waters: a case study in the Pampa Plain, Argentina. Bull. Environ. Contam. Toxicol. 2011, 87(4), 409–413; https://doi.org/10.1007/s00128-011-0358-0.Search in Google Scholar PubMed

Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. K. Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples. Chem. Eng. J. 2016, 299, 244–254; https://doi.org/10.1016/j.cej.2016.04.051.Search in Google Scholar

Sadiq, I. Influence of Sm-Mn substitution on structural, dielectric and electrical properties of X-type hexagonal nanoferrites. J. Chem. Soc. Pakistan 2015, 37(1).Search in Google Scholar

Salem Attia, T. M.; Hu, X. L.; Yin, D. Q. Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution. J. Exp. Nanosci. 2014, 9(6), 551–560; https://doi.org/10.1080/17458080.2012.677549.Search in Google Scholar

Sambu, S.; Wilson, R. Arsenic in food and water–a brief history. Toxicol. Ind. Health 2008, 24(4), 217–226; https://doi.org/10.1177/0748233708094096.Search in Google Scholar PubMed

Sampson, M. L.; Bostick, B.; Chiew, H.; Hagan, J. M.; Shantz, A. Arsenicosis in Cambodia: case studies and policy response. Appl. Geochem. 2008, 23(11), 2977–2986; https://doi.org/10.1016/j.apgeochem.2008.06.022.Search in Google Scholar

Sankararamakrishnan, N.; Gupta, A.; Vidyarthi, S. R. Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. J. Environ. Chem. Eng. 2014, 2(2), 802–810; https://doi.org/10.1016/j.jece.2014.02.010.Search in Google Scholar

Sarkar, S.; Blaney, L. M.; Gupta, A.; Ghosh, D.; SenGupta, A. K. Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. React. Funct. Polym. 2007, 67(12), 1599–1611; https://doi.org/10.1016/j.reactfunctpolym.2007.07.047.Search in Google Scholar

Sasaki, T.; Iizuka, A.; Watanabe, M.; Hongo, T.; Yamasaki, A. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes. Waste Manag. 2014, 34(10), 1829–1835; https://doi.org/10.1016/j.wasman.2014.01.001.Search in Google Scholar PubMed

Schwarzmaier, C.; Schindler, A.; Heindl, C.; Scheuermayer, S.; Peresypkina, E. V.; Virovets, A. V.; Neumeier, M.; Gschwind, R.; Scheer, M. Stabilization of tetrahedral P4 and As4 molecules as guests in polymeric and spherical environments. Angew. Chem. Int. Ed. 2013, 52(41), 10896–10899; https://doi.org/10.1002/anie.201306146.Search in Google Scholar PubMed

Schwarzmaier, C.; Sierka, M.; Scheer, M. Intact As4 tetrahedra coordinated side‐on to metal cations. Angew. Chem. Int. Ed. 2013, 52(3), 858–861; https://doi.org/10.1002/anie.201208226.Search in Google Scholar PubMed

Seidl, M.; Balázs, G.; Scheer, M. The chemistry of yellow arsenic. Chem. Rev. 2019, 119(14), 8406–8434; https://doi.org/10.1021/acs.chemrev.8b00713.Search in Google Scholar PubMed

Seitz, A. E.; Hippauf, F.; Kremer, W.; Kaskel, S.; Scheer, M. Facile storage and release of white phosphorus and yellow arsenic. Nat. Commun. 2018, 9(1), 1–6; 10.1038/s41467-017-02735-2.10.1038/s41467-017-02735-2Search in Google Scholar PubMed PubMed Central

Shahzad, A.; Ahmed, W. Chemical pollution profile of Rehri creek area, Karachi (Sindh). J. Chem. Soc. Pakistan 2009, 31(4), 592–600.Search in Google Scholar

Shankar, S.; Shanker, U. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014, 2014; https://doi.org/10.1155/2014/304524.Search in Google Scholar PubMed PubMed Central

Sharma, V. K.; Sohn, M. Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35(4), 743–759; https://doi.org/10.1016/j.envint.2009.01.005.Search in Google Scholar PubMed

Shaw, J. R.; Jackson, B.; Gabor, K.; Stanton, S.; Hamilton, J. W.; Stanton, B. A. The influence of exposure history on arsenic accumulation and toxicity in the killifish, Fundulus heteroclitus. Environ. Toxicol. Chem.: Int. J. 2007, 26(12), 2704–2709; https://doi.org/10.1897/07-032.1.Search in Google Scholar PubMed

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16(2), 220–224; https://doi.org/10.1038/nmat4766.Search in Google Scholar PubMed

Sherlala, A. I. A.; Raman, A. A. A.; Bello, M. M.; Buthiyappan, A. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J. Environ. Manag. 2019, 246, 547–556; https://doi.org/10.1016/j.jenvman.2019.05.117.Search in Google Scholar PubMed

Shi, H.; Shi, X.; Liu, K. J. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell. Biochem. 2004, 255(1–2), 67–78; https://doi.org/10.1023/b:mcbi.0000007262.26044.e8.10.1023/B:MCBI.0000007262.26044.e8Search in Google Scholar

Singh, A. Arsenic contamination in groundwater of North Eastern India. In Proceedings of 11th National Symposium on Hydrology with Focal Theme on Water Quality; National Institute of Hydrology: Roorkee, 2004.Search in Google Scholar

Singh, A. P.; Goel, R. K.; Kaur, T. Mechanisms pertaining to arsenic toxicity. Toxicol. Int. 2011, 18(2), 87; https://doi.org/10.4103/0971-6580.84267.Search in Google Scholar

Singh, D. K.; Mohan, S.; Kumar, V.; Hasan, S. H. Kinetic, isotherm and thermodynamic studies of adsorption behaviour of CNT/CuO nanocomposite for the removal of As (III) and As (V) from water. RSC Adv. 2016, 6(2), 1218–1230; https://doi.org/10.1039/c5ra20601d.Search in Google Scholar

Slack, R.; Gronow, J.; Voulvoulis, N. Household hazardous waste in municipal landfills: contaminants in leachate. Sci. Total Environ. 2005, 337(1-3), 119–137; https://doi.org/10.1016/j.scitotenv.2004.07.002.Search in Google Scholar

Šlejkovec, Z.; Byrne, A. R.; Stijve, T.; Goessler, W.; Irgolic, K. J. Arsenic compounds in higher fungi. Appl. Organomet. Chem. 1997, 11(8), 673–682.10.1002/(SICI)1099-0739(199708)11:8<673::AID-AOC620>3.0.CO;2-1Search in Google Scholar

Smedley, P. L.; Kinniburgh, D. G. Arsenic in groundwater and the environment. In Essentials of Medical Geology: Revised Edition; Selinus, O., Ed. Springer Netherlands: Dordrecht, 2013; pp 279–310.10.1007/978-94-007-4375-5_12Search in Google Scholar

Soni, R.; Shukla, D. P. Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal. Chemosphere 2019, 219, 504–509; https://doi.org/10.1016/j.chemosphere.2018.11.203.Search in Google Scholar

Squibb, K. S.; Fowler, B. A. The toxicity of arsenic and its compounds. Biol. Environ. Eff. Arsenic 1983, 233; https://doi.org/10.1016/b978-0-444-80513-3.50011-6.Search in Google Scholar

Stuckman, M. Y.; Lenhart, J. J.; Walker, H. W. Abiotic properties of landfill leachate controlling arsenic release from drinking water adsorbents. Water Res. 2011, 45(16), 4782–4792; https://doi.org/10.1016/j.watres.2011.06.024.Search in Google Scholar

Su, H.; Ye, Z.; Hmidi, N. High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloid. Surface. Physicochem. Eng. Aspect. 2017, 522, 161–172; https://doi.org/10.1016/j.colsurfa.2017.02.065.Search in Google Scholar

Su, J.; He, W.; Li, X.-M.; Sun, L.; Wang, H.-Y.; Lan, Y.-Q.; Ding, M.; Zuo, J.-L. High electrical conductivity in a 2D MOF with intrinsic superprotonic conduction and interfacial pseudo-capacitance. Matter 2020, 2(3), 711–722; https://doi.org/10.1016/j.matt.2019.12.018.Search in Google Scholar

Suazo-Hernández, J.; Sepúlveda, P.; Manquián-Cerda, K.; Ramírez-Tagle, R.; Rubio, M. A.; Bolan, N.; Sarkar, B.; Arancibia-Miranda, N. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. J. Hazard Mater. 2019, 373, 810–819; https://doi.org/10.1016/j.jhazmat.2019.03.125.Search in Google Scholar PubMed

Sud, D.; Mahajan, G.; Kaur, M. P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review. Bioresour. Technol. 2008, 99(14), 6017–6027; https://doi.org/10.1016/j.biortech.2007.11.064.Search in Google Scholar PubMed

Sun, J.-K.; Xu, Q. Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 2014, 7(7), 2071–2100; https://doi.org/10.1039/c4ee00517a.Search in Google Scholar

Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 2016, 55(11), 3566–3579; https://doi.org/10.1002/anie.201506219.Search in Google Scholar PubMed

Sun, L.; Liao, B.; Sheberla, D.; Kraemer, D.; Zhou, J.; Stach, E. A.; Zakharov, D.; Stavila, V.; Talin, A. A.; Ge, Y.; Allendorf, M. D.; Chen, G.; Léonard, F.; Dincă, M. A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity. Joule 2017a, 1(1), 168–177; https://doi.org/10.1016/j.joule.2017.07.018.Search in Google Scholar

Sun, T.; Zhao, Z.; Liang, Z.; Liu, J.; Shi, W.; Cui, F. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles. Appl. Surf. Sci. 2017b, 416, 656–665; https://doi.org/10.1016/j.apsusc.2017.04.137.Search in Google Scholar

Sun, T.; Zhao, Z.; Liang, Z.; Liu, J.; Shi, W.; Cui, F. Efficient degradation of p-arsanilic acid with arsenic adsorption by magnetic CuO-Fe3O4 nanoparticles under visible light irradiation. Chem. Eng. J. 2018, 334, 1527–1536; https://doi.org/10.1016/j.cej.2017.11.052.Search in Google Scholar

Sun, J.; Zhang, X.; Zhang, A.; Liao, C. Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. J. Environ. Sci. 2019a, 80, 197–207; https://doi.org/10.1016/j.jes.2018.12.013.Search in Google Scholar PubMed

Sun, J.; Hong, Y.; Guo, J.; Yang, J.; Huang, D.; Lin, Z.; Jiang, F. Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions. Water Res. 2019b, 151, 362–370; https://doi.org/10.1016/j.watres.2018.12.027.Search in Google Scholar PubMed

Tang, W.; Li, Q; Gao, S; Shang, JK. Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J. Hazard Mater. 2011, 192(1), 131–138.10.1016/j.jhazmat.2011.04.111Search in Google Scholar PubMed

Tchounwou, P. B.; Centeno, J. A.; Patlolla, A. K. Arsenic toxicity, mutagenesis, and carcinogenesis–a health risk assessment and management approach. Mol. Cell. Biochem. 2004, 255(1-2), 47–55; https://doi.org/10.1023/b:mcbi.0000007260.32981.b9.10.1023/B:MCBI.0000007260.32981.b9Search in Google Scholar

Technology Solutions Developing a good solution for arsenic. Environ. Sci. Technol. 2001, 35(19), 414A–415A.10.1021/es0125117Search in Google Scholar PubMed

Tuutijärvi, T.; Lu, J.; Sillanpää, M.; Chen, G. As(V) adsorption on maghemite nanoparticles. J. Hazard Mater. 2009, 166(2), 1415–1420; https://doi.org/10.1016/j.jhazmat.2008.12.069.Search in Google Scholar PubMed

Uddin, M. J.; Jeong, Y.-K. Review: efficiently performing periodic elements with modern adsorption technologies for arsenic removal. Environ. Sci. Pollut. Control Ser. 2020, 27(32), 39888–39912; https://doi.org/10.1007/s11356-020-10323-z.Search in Google Scholar PubMed

US EPA, E. Method 1312: Synthetic Precipitation Leaching Procedure. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1994.Search in Google Scholar

Usman, M.; Katsoyiannis, I.; Mitrakas, M.; Zouboulis, A.; Ernst, M. Performance evaluation of small sized powdered ferric hydroxide as arsenic adsorbent. Water 2018, 10(7), 957; https://doi.org/10.3390/w10070957.Search in Google Scholar

Vahter, M.; Concha, G. Role of metabolism in arsenic toxicity. Pharmacol. Toxicol.: Mini Rev. 2001, 89(1), 1–5; https://doi.org/10.1034/j.1600-0773.2001.d01-128.x.Search in Google Scholar PubMed

Van Geen, A.; Zheng, Y.; Goodbred, S.; Horneman, A.; Aziz, Z.; Cheng, Z.; Stute, M.; Mailloux, B.; Weinman, B.; Hoque, M. A.; Seddique, A. A.; Hossain, M. S.; Chowdhury, S. H.; Ahmed, K. M. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ. Sci. Technol. 2008, 42(7), 2283–2288; https://doi.org/10.1021/es702316k.Search in Google Scholar PubMed PubMed Central

van Halem, D.; Bakker, S. A.; Amy, G. L.; van Dijk, J. C. Arsenic in drinking water: a worldwide water quality concern for water supply companies. Drink. Water Eng. Sci. 2009, 2(1), 29; https://doi.org/10.5194/dwes-2-29-2009.Search in Google Scholar

van Zijverden, M.; van der Pijl, A.; Bol, M.; van Pinxteren, F. A.; de Haar, C.; Penninks, A. H.; van Loveren, H.; Pieters, R. Diesel exhaust, carbon black, and silica particles display distinct Th1/Th2 modulating activity. Toxicol. Appl. Pharmacol. 2000, 168(2), 131–139; https://doi.org/10.1006/taap.2000.9013.Search in Google Scholar PubMed

Velazquez-Peña, G. C.; Solache-Ríos, M.; Olguin, M. T.; Fall, C. As(V) sorption by different natural zeolite frameworks modified with Fe, Zr and FeZr. Microporous Mesoporous Mater. 2019, 273, 133–141; https://doi.org/10.1016/j.micromeso.2018.07.003.Search in Google Scholar

Vijay, R.; Sihorwala, T. Identification and leaching characteristics of sludge generated from metal pickling and electroplating industries by toxicity characteristics leaching procedure (TCLP). Environ. Monit. Assess. 2003, 84(3), 193–202; https://doi.org/10.1023/a:1023363423345.10.1023/A:1023363423345Search in Google Scholar

Vitela-Rodriguez, A. V.; Rangel-Mendez, J. R. Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles. J. Environ. Manag. 2013, 114, 225–231; https://doi.org/10.1016/j.jenvman.2012.10.004.Search in Google Scholar

Vu, T. A.; Le, G. H.; Dao, C. D.; Dang, L. Q.; Nguyen, K. T.; Nguyen, Q. K.; Dang, P. T.; Tran, H. T. K.; Duong, Q. T.; Nguyen, T. V.; Lee, G. D. Arsenic removal from aqueous solutions by adsorption using novel MIL-53 (Fe) as a highly efficient adsorbent. RSC Adv. 2015, 5(7), 5261–5268; https://doi.org/10.1039/c4ra12326c.Search in Google Scholar

Wang, T.; Farajollahi, M.; Henke, S.; Zhu, T.; Bajpe, S. R.; Sun, S.; Barnard, J. S.; Lee, J. S.; Madden, J. D. W.; Cheetham, A. K.; Smoukov, S. K. Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. Mater. Horiz. 2017a, 4(1), 64–71; https://doi.org/10.1039/c6mh00230g.Search in Google Scholar

Wang, K.; Gu, J.; Yin, N. Efficient removal of Pb (II) and Cd (II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind. Eng. Chem. Res. 2017b, 56(7), 1880–1887; https://doi.org/10.1021/acs.iecr.6b04997.Search in Google Scholar

Wang, C.; Liu, X.; Chen, J. P.; Li, K. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci. Rep. 2015, 5(1), 16613; 10.1038/srep16613.10.1038/srep16613Search in Google Scholar

Wang, C.; Luan, J.; Wu, C. Metal-organic frameworks for aquatic arsenic removal. Water Res. 2019, 158, 370–382; https://doi.org/10.1016/j.watres.2019.04.043.Search in Google Scholar

Waxman, S.; Anderson, K. C. History of the development of arsenic derivatives in cancer therapy. Oncol. 2001, 6(90002), 3–10; https://doi.org/10.1634/theoncologist.6-suppl_2-3.Search in Google Scholar

WHO, U. Air quality guidelines for Europe. WHO Reg. Publ. Eur. Ser. 2000, V–X, 1–273.Search in Google Scholar

Wolz, S.; Fenske, R. A.; Simcox, N. J.; Palcisko, G.; Kissel, J. C. Residential arsenic and lead levels in an agricultural community with a history of lead arsenate use. Environ. Res. 2003, 93(3), 293–300; https://doi.org/10.1016/s0013-9351(03)00064-1.Search in Google Scholar

Wu, Y.-N.; Zhou, M.; Zhang, B.; Wu, B.; Li, J.; Qiao, J.; Guan, X.; Li, F. Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale 2014, 6(2), 1105–1112; https://doi.org/10.1039/c3nr04390h.Search in Google Scholar PubMed

Wu, H.; Ma, M.-D.; Gai, W.-Z.; Yang, H.; Zhou, J.-G.; Cheng, Z.; Xu, P.; Deng, Z.-Y. Arsenic removal from water by metal-organic framework MIL-88A microrods. Environ. Sci. Pollut. Control Ser. 2018, 25(27), 27196–27202; https://doi.org/10.1007/s11356-018-2751-2.Search in Google Scholar PubMed

Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134(40), 16524–16527; https://doi.org/10.1021/ja307953m.Search in Google Scholar PubMed

Xu, Z.; Li, Q.; Gao, S.; Shang, J. K. As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Res. 2010, 44(19), 5713–5721; https://doi.org/10.1016/j.watres.2010.05.051.Search in Google Scholar PubMed

Xu, L.; Yan, K.; Mao, Y.; Wu, D. Enhancing the dioxygen activation for arsenic removal by Cu0 nano-shell-decorated nZVI: synergistic effects and mechanisms. Chem. Eng. J. 2020, 384, 123295; https://doi.org/10.1016/j.cej.2019.123295.Search in Google Scholar

Yamani, J. Towards Sustainable Remediation of Metal Contaminants from Wastewater: A Novel Nano Metal Oxide Impregnated Chitosan-based Adsorption Technology; Yale University: Ann Arbor, 2015; p 133.Search in Google Scholar

Yamaoka, H.; Ikoma, N; Kato, M; Akasaka, E; Tamiya, S; Matsuyama, T; Ozawa, A; Fukunaga, Y Multiple Bowen’s disease in a patient with a history of possible arsenic exposure: a case report. Tokai J. Exp. Clin. Med. 2011, 36(2), 53–57.Search in Google Scholar

Yang, J.; Zhang, H.; Yu, M.; Emmanuelawati, I.; Zou, J.; Yuan, Z.; Yu, C. High‐content, well‐dispersed γ‐Fe2O3 nanoparticles encapsulated in macroporous silica with superior arsenic removal performance. Adv. Funct. Mater. 2014, 24(10), 1354–1363; https://doi.org/10.1002/adfm.201302561.Search in Google Scholar

Yang, B.; Shen, M.; Liu, J.; Ren, F. Post-synthetic modification nanoscale metal-organic frameworks for targeted drug delivery in cancer cells. Pharmaceut. Res. 2017, 34(11), 2440–2450; https://doi.org/10.1007/s11095-017-2253-9.Search in Google Scholar PubMed

Yang, T.; Liu, Y.; Wang, L.; Jiang, J.; Huang, Z.; Pang, S.-Y.; Cheng, H.; Gao, D.; Ma, J. Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles. Water Res. 2018, 147, 321–330; https://doi.org/10.1016/j.watres.2018.10.012.Search in Google Scholar PubMed

Yao, S.; Liu, Z.; Shi, Z. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J. Environ. Health Sci. Eng. 2014, 12(1), 58; https://doi.org/10.1186/2052-336x-12-58.Search in Google Scholar

Ye, S.; Jin, W.; Huang, Q.; Hu, Y.; Li, Y.; Li, J.; Li, B. Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution. Int. J. Biol. Macromol. 2017, 94, 527–534; https://doi.org/10.1016/j.ijbiomac.2016.10.059.Search in Google Scholar PubMed

Yin, C. Y.; Aroua, M. K.; Daud, W. M. A. W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separ. Purif. Technol. 2007, 52(3), 403–415; https://doi.org/10.1016/j.seppur.2006.06.009.Search in Google Scholar

Yin, H.; Kong, M.; Gu, X.; Chen, H. Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes. J. Clean. Prod. 2017, 166, 88–97; https://doi.org/10.1016/j.jclepro.2017.08.026.Search in Google Scholar

Yoon, Y.; Park, W. K.; Hwang, T.-M.; Yoon, D. H.; Yang, W. S.; Kang, J.-W. Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J. Hazard Mater. 2016, 304, 196–204; https://doi.org/10.1016/j.jhazmat.2015.10.053.Search in Google Scholar PubMed

Yorifuji, T.; Kato, T.; Ohta, H.; Bellinger, D. C.; Matsuoka, K.; Grandjean, P. Neurological and neuropsychological functions in adults with a history of developmental arsenic poisoning from contaminated milk powder. Neurotoxicol. Teratol. 2016, 53, 75–80; https://doi.org/10.1016/j.ntt.2015.12.001.Search in Google Scholar PubMed

Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. One-step synthesis of magnetic composites of cellulose@ iron oxide nanoparticles for arsenic removal. J. Mater. Chem. 2013, 1(3), 959–965; https://doi.org/10.1039/c2ta00315e.Search in Google Scholar

Yu, W.; Luo, M.; Yang, Y.; Wu, H.; Huang, W.; Zeng, K.; Luo, F. Metal-organic framework (MOF) showing both ultrahigh As (V) and As (III) removal from aqueous solution. J. Solid State Chem. 2019, 269, 264–270; https://doi.org/10.1016/j.jssc.2018.09.042.Search in Google Scholar

Yu, Y.; Yu, L.; Koh, K. Y.; Wang, C.; Chen, J. P. Rare-earth metal based adsorbents for effective removal of arsenic from water: a critical review. Crit. Rev. Environ. Sci. Technol. 2018, 48(22–24), 1127–1164; 10.1080/10643389.2018.1514930.10.1080/10643389.2018.1514930Search in Google Scholar

Yürüm, A.; Kocabaş-Ataklı, Z. Ö.; Sezen, M.; Semiat, R.; Yürüm, Y. Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chem. Eng. J. 2014, 242, 321–332; https://doi.org/10.1016/j.cej.2014.01.005.Search in Google Scholar

Zhang, G.; Ren, Z.; Zhang, X.; Chen, J. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 2013, 47(12), 4022–4031; https://doi.org/10.1016/j.watres.2012.11.059.Search in Google Scholar PubMed

Zhang, Y.; Yuan, S.; Feng, X.; Li, H.; Zhou, J.; Wang, B. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J. Am. Chem. Soc. 2016, 138(18), 5785–5788; https://doi.org/10.1021/jacs.6b02553.Search in Google Scholar PubMed

Zhang, J.; Barałkiewicz, D.; Wang, Y.; Falandysz, J.; Cai, C. Arsenic and arsenic speciation in mushrooms from China: a review. Chemosphere 2020, 246, 125685; https://doi.org/10.1016/j.chemosphere.2019.125685.Search in Google Scholar PubMed

Zhao, D.; Yu, Y.; Chen, J. P. Fabrication and testing of zirconium-based nanoparticle-doped activated carbon fiber for enhanced arsenic removal in water. RSC Adv. 2016, 6(32), 27020–27030; https://doi.org/10.1039/c5ra25030g.Search in Google Scholar

Zhu, J.; Sadu, R.; Wei, S.; Chen, D. H.; Haldolaarachchige, N.; Luo, Z.; Gomes, J. A.; Young, D. P.; Guo, Z. Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J. Solid State Sci. Technol. 2012, 1(1), M1; https://doi.org/10.1149/2.010201jss.Search in Google Scholar

Zhu, J.; Lou, Z.; Liu, Y.; Fu, R.; Baig, S. A.; Xu, X. Adsorption behavior and removal mechanism of arsenic on graphene modified by iron–manganese binary oxide (FeMnOx/RGO) from aqueous solutions. RSC Adv. 2015, 5(83), 67951–67961; https://doi.org/10.1039/c5ra11601e.Search in Google Scholar

Zhu, L.; Liu, X.-Q.; Jiang, H.-L.; Sun, L.-B. Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117(12), 8129–8176; https://doi.org/10.1021/acs.chemrev.7b00091.Search in Google Scholar PubMed

Received: 2021-03-08
Accepted: 2021-05-03
Published Online: 2021-05-26
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2021-0005/html
Scroll to top button