Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 25, 2013

Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease

Nandakumar S. Narayanan, Robert L. Rodnitzky and Ergun Y. Uc


Cognitive dysfunction is a common symptom of Parkinson’s disease (PD) that causes significant morbidity and mortality. The severity of these symptoms ranges from minor executive symptoms to frank dementia involving multiple domains. In the present review, we will concentrate on the aspects of cognitive impairment associated with prefrontal dopaminergic dysfunction, seen in non-demented patients with PD. These symptoms include executive dysfunction and disorders of thought, such as hallucinations and psychosis. Such symptoms may go on to predict dementia related to PD, which involves amnestic dysfunction and is typically seen later in the disease. Cognitive symptoms are associated with dysfunction in cholinergic circuits, in addition to the abnormalities in the prefrontal dopaminergic system. These circuits can be carefully studied and evaluated in PD, and could be leveraged to treat difficult clinical problems related to cognitive symptoms of PD.

Corresponding author: Nandakumar S. Narayanan, Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; and Aging Mind and Brain Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA


Aarsland, D. and Kurz, M.W. (2010). The epidemiology of dementia associated with Parkinson’s disease. Brain Pathology 20, 633–639.10.1111/j.1750-3639.2009.00369.xSearch in Google Scholar PubMed PubMed Central

Aarsland, D., Larsen, J.P., Cummins, J.L., and Laake, K. (1999). Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch. Neurol. 56, 595–601.10.1001/archneur.56.5.595Search in Google Scholar PubMed

Aarsland, D., Larsen, J.P., Tandberg, E. and Laake, K. (2000). Predictors of nursing home placement in Parkinson’s disease: a population-based, prospective study. J. Am. Geriatr. Soc. 48, 938–942.10.1111/j.1532-5415.2000.tb06891.xSearch in Google Scholar PubMed

Aarsland, D., Andersen, K., Larsen, J.P., Lolk, A., Nielsen, H., and Kragh- Sørensen, P. (2001). Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56, 730–736.10.1212/WNL.56.6.730Search in Google Scholar

Aarsland, D., Laake, K., Larsen, J.P., and Janvin, C. (2002). Donepezil for cognitive impairment in Parkinson’s disease: a randomised controlled study. J. Neurol. Neurosurg. Psychiatr. 72, 708–712.10.1136/jnnp.72.6.708Search in Google Scholar PubMed PubMed Central

Aarsland, D., Andersen, K., Larsen, J.P., Lolk, A., and Kragh-Sørensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch. Neurol. 60, 387–392.10.1001/archneur.60.3.387Search in Google Scholar PubMed

Aarsland, D., Zaccai, J., and Brayne, C. (2005). A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov. Disord. 20, 1255–1263.10.1002/mds.20527Search in Google Scholar PubMed

Aarsland, D., Brønnick, K., Larsen, J.P., Tysnes, O.B., and Alves, G. (2009). Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72, 1121–1126.10.1212/01.wnl.0000338632.00552.cbSearch in Google Scholar PubMed

Aarsland, D., Brønnick, K., and Fladby, T. (2011). Mild cognitive impairment in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 11, 371–378.10.1007/s11910-011-0203-1Search in Google Scholar PubMed

Acadia Pharmaceuticals (first) (2012). ACADIA Announces Pimavanserin Meets Primary and Key Secondary Endpoints in Pivotal Phase III Parkinson’s Disease Psychosis Trial. in Google Scholar

Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D.-R., Keilp, J., Kochan, L., Van Heertum, R., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 22, 3708–3719.10.1523/JNEUROSCI.22-09-03708.2002Search in Google Scholar

Anon. (1989). DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Parkinson Study Group. Arch. Neurol. 46, 1052–1060.10.1001/archneur.1989.00520460028009Search in Google Scholar

Arendt, T., Bigl, V., Arendt, A., and Tennstedt, A. (1983). Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s Disease. Acta Neuropathol. 61, 101–108.10.1007/BF00697388Search in Google Scholar

Arnsten, A.F.T. and Li, B.-M. (2005). Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol. Psychiatry 57, 1377–1384.10.1016/j.biopsych.2004.08.019Search in Google Scholar

Asaad, W.F., Rainer, G., and Miller, E.K. (1998). Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407.10.1016/S0896-6273(00)80658-3Search in Google Scholar

Ávila, A., Cardona, X., Martín-Baranera, M., Bello, J., and Sastre, F. (2011). Impulsive and compulsive behaviors in Parkinson’s disease: a one-year follow-up study. J. Neurol. Sci. 310, 197–201.10.1016/j.jns.2011.05.044Search in Google Scholar PubMed

Baddeley, A. (1998). The central executive: a concept and some misconceptions. J. Int. Neuropsychol. Soc. 4, 523–526.10.1017/S135561779800513XSearch in Google Scholar

Balzer-Geldsetzer, M., Costa, A.S., Kronenbürger, M., Schulz, J.B., Röske, S., Spottke, A., Wüllner, U., Klockgether, T., Storch, A., Schneider, C., et al. (2011). Parkinson’s disease and dementia: a longitudinal study (DEMPARK). Neuroepidemiology 37, 168–176.10.1159/000331490Search in Google Scholar PubMed

Bédard, M.A., Pillon, B., Dubois, B., Duchesne, N., Masson, H., and Agid, Y. (1999). Acute and long-term administration of anticholinergics in Parkinson’s disease: specific effects on the subcortico-frontal syndrome. Brain Cogn. 40, 289–313.10.1006/brcg.1999.1083Search in Google Scholar PubMed

Bohnen, N.I., Kaufer, D.I., Ivanco, L.S., Lopresti, B., Koeppe, R.A., Davis, J.G., Mathi, C.A., Moore, R.Y., and DeKosky, S.T. (2003). Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch. Neurol. 60, 1745–1748.10.1001/archneur.60.12.1745Search in Google Scholar PubMed

Bohnen, N.I., Kaufer, D.I., Hendrickson, R., Ivanco, L.S., Lopresti, B.J., Constantine, G.M., Mathis, C.A., Davis, J.G., Moore, R.Y., and Dekosky, S.T. (2006). Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J. Neurol. 253, 242–247.10.1007/s00415-005-0971-0Search in Google Scholar PubMed

Bosboom, J.L.W., Stoffers, D., and Wolters, E.C. (2003). The role of acetylcholine and dopamine in dementia and psychosis in Parkinson’s disease. J. Neural Transm. Suppl. 65, 185–195.10.1007/978-3-7091-0643-3_11Search in Google Scholar

Botvinick, M.M., Cohen, J.D., and Carter, C.S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. (Regul. Ed.) 8, 539–546.10.1016/j.tics.2004.10.003Search in Google Scholar

Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A., Jansen Steur, E.N., and Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211.10.1016/S0197-4580(02)00065-9Search in Google Scholar

Braak, H., Rüb, U., and Del Tredici, K. (2006). Cognitive decline correlates with neuropathological stage in Parkinson’s disease. J. Neurol. Sci. 248, 255–258.10.1016/j.jns.2006.05.011Search in Google Scholar

Braver, T.S., Barch, D.M., and Cohen, J.D. (1999). Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol. Psychiatry 46, 312–328.10.1016/S0006-3223(99)00116-XSearch in Google Scholar

Burack, M.A., Hartlein, J., Flores, H.P., Taylor-Reinwald, L., Perlmutter, J.S. and Cairns, N.J. (2010). In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology 74, 77–84.10.1212/WNL.0b013e3181c7da8eSearch in Google Scholar

Burton, E.J., McKeith, I.G., Burn, D.J., Williams, E.D., and O’Brien, J.T. (2004). Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127, 791–800.10.1093/brain/awh088Search in Google Scholar

Caballol, N., Martí, M.J., and Tolosa, E. (2007). Cognitive dysfunction and dementia in Parkinson disease. Mov. Disord. 22 Suppl. 17, S358–S366.10.1002/mds.21677Search in Google Scholar

Candy, J.M., Perry, R.H., Perry, E.K., Irving, D., Blessed, G., Fairbairn, A.F. and Tomlinson, B.E. (1983). Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J. Neurol. Sci. 59, 277–289.10.1016/0022-510X(83)90045-XSearch in Google Scholar

Castner, S.A. and Williams, G.V. (2007). Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn. 63, 94–122.10.1016/j.bandc.2006.11.002Search in Google Scholar PubMed

Ceravolo, R., Pagni, C., Tognoni, G., and Bonuccelli, U. (2012). The epidemiology and clinical manifestations of dysexecutive syndrome in Parkinson’s disease. Front Neurol. 3, 159.10.3389/fneur.2012.00159Search in Google Scholar

Chaudhuri, K.R. and Schapira, A.H.V. (2009). Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 464–474.10.1016/S1474-4422(09)70068-7Search in Google Scholar

Claassen, D.O., Josephs, K.A., Ahlskog, J.E., Silber, M.H., Tippmann-Peikert, M., and Boeve, B.F. (2010). REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology 75, 494–499.10.1212/WNL.0b013e3181ec7facSearch in Google Scholar PubMed PubMed Central

Compta, Y., Parkkinen, L., O’Sullivan, S.S., Vandrovcova, J., Holton, J.L., Collins, C., Lashley, T., Kallis, C., Williams, D.R., and de Silva, R. (2011). Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134, 1493–1505.10.1093/brain/awr031Search in Google Scholar PubMed PubMed Central

Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci. Biobehav. Rev. 30, 1–23.10.1016/j.neubiorev.2005.03.024Search in Google Scholar PubMed

Cools, R. and D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69, e113–e125.10.1016/j.biopsych.2011.03.028Search in Google Scholar PubMed PubMed Central

Cools, R., Barker, R.A., Sahakian, B.J., and Robbins, T.W. (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb. Cortex. 11, 1136–1143.10.1093/cercor/11.12.1136Search in Google Scholar PubMed

Cools, R., Stefanova, E., Barker, R.A., Robbins, T.W., and Owen, A.M. (2002). Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125, 584–594.10.1093/brain/awf052Search in Google Scholar PubMed

Cooper, J.A., Sagar, H.J., Jordan, N., Harvey, N.S., and Sullivan, E.V. (1991). Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain 114 (Pt 5), 2095–2122.10.1093/brain/114.5.2095Search in Google Scholar PubMed

Coull, J.T., Cheng, R.-K., and Meck, W.H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36, 3–25.10.1038/npp.2010.113Search in Google Scholar PubMed PubMed Central

Crizzle, A.M., Classen, S. and Uc, E.Y. (2012). Parkinson disease and driving: an evidence-based review. Neurology 79, 2067–2074.10.1212/WNL.0b013e3182749e95Search in Google Scholar

Dalrymple-Alford, J.C., MacAskill, M.R., Nakas, C.T., Livingston, L., Graham, C., Crucian, G.P., Melzer, T.R., Kirwan, J., Keenan, R., and Wells, S. (2010). The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology 75, 1717–1725.10.1212/WNL.0b013e3181fc29c9Search in Google Scholar

Dalrymple-Alford, J.C., Livingston, L., MacAskill, M.R., Graham, C., Melzer, T.R., Porter, R.J., Watts, R., and Anderson, T.J. (2011). Characterizing mild cognitive impairment in Parkinson’s disease. Mov. Disord. 26, 629–636.10.1002/mds.23592Search in Google Scholar

Dias, E.C., McGinnis, T., Smiley, J.F., Foxe, J.J., Schroeder, C.E., and Javitt, D.C. (2006). Changing plans: neural correlates of executive control in monkey and human frontal cortex. Exp. Brain Res. 174, 279–291.10.1007/s00221-006-0444-4Search in Google Scholar

Dirnberger, G., Frith, C.D., and Jahanshahi, M. (2005). Executive dysfunction in Parkinson’s disease is associated with altered pallidal-frontal processing. Neuroimage 25, 588–599.10.1016/j.neuroimage.2004.11.023Search in Google Scholar

Dolan, R.J., Bench, C.J., Liddle, P.F., Friston, K.J., Frith, C.D., Grasby, P.M., and Frackowiak, R.S. (1993). Dorsolateral prefrontal cortex dysfunction in the major psychoses; symptom or disease specificity? J. Neurol. Neurosurg. Psychiatr. 56, 1290–1294.10.1136/jnnp.56.12.1290Search in Google Scholar

Domellöf, M.E., Elgh, E., and Forsgren, L. (2011). The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Mov. Disord. 26, 2183–2189.10.1002/mds.23814Search in Google Scholar

Dubois, B. and Pillon, B. (1995). Do cognitive changes of Parkinson’s disease result from dopamine depletion? J. Neural Transm. Suppl. 45, 27–34.Search in Google Scholar

Dubois, B. and Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. J. Neurol. 244, 2–8.10.1007/PL00007725Search in Google Scholar

Dubois, B., Danzé, F., Pillon, B., Cusimano, G., Lhermitte, F., and Agid, Y. (1987). Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann. Neurol. 22, 26–30.10.1002/ana.410220108Search in Google Scholar

Dunning, C.J.R., Reyes, J.F., Steiner, J.A. and Brundin, P. (2012). Can Parkinson’s disease pathology be propagated from one neuron to another? Prog. Neurobiol. 97, 205–219.Search in Google Scholar

Dymecki, J., Lechowicz, W., Bertrand, E., and Szpak, G.M. (1996). Changes in dopaminergic neurons of the mesocorticolimbic system in Parkinson’s disease. Folia Neuropathol. 34, 102–106.Search in Google Scholar

Ekman, U., Eriksson, J., Forsgren, L., Mo, S.J., Riklund, K., and Nyberg, L. (2012). Functional brain activity and presynaptic dopamine uptake in patients with Parkinson’s disease and mild cognitive impairment: a cross-sectional study. Lancet Neurol. 11, 679–687.10.1016/S1474-4422(12)70138-2Search in Google Scholar

Elgh, E., Domellöf, M., Linder, J., Edström, M., Stenlund, H. and Forsgren, L. (2009). Cognitive function in early Parkinson’s disease: a population-based study. Eur. J. Neurol. 16, 1278–1284.10.1111/j.1468-1331.2009.02707.xSearch in Google Scholar PubMed

Emre, M., Aarsland, D., Albanese, A., Byrne, E.J., Deuschl, G., De Deyn, P.P., Durif, F., Kulisevsky, J., van Laar, T., and Lees, A. (2004). Rivastigmine for dementia associated with Parkinson’s disease. N. Engl. J. Med. 351, 2509–2518.10.1056/NEJMoa041470Search in Google Scholar PubMed

Emre, M., Aarsland, D., Brown, R., Burn, D.J., Duyckaerts, C., Mizuno, Y., Broe, G.A., Cummings, J., Dickson, DW., Gauthier, S., et al. (2007). Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. Soc. 22, 1689–1707; quiz 1837.10.1002/mds.21507Search in Google Scholar PubMed

Fabbrini, G., Barbanti, P., Aurilia, C., Pauletti, C., Lenzi, G.L., and Meco, G. (2002). Donepezil in the treatment of hallucinations and delusions in Parkinson’s disease. Neurol. Sci. 23, 41–43.10.1007/s100720200022Search in Google Scholar PubMed

Factor, S.A., Feustel, P.J., Friedman, J.H., Comella, C.L., Goetz, C.G., Kurlan, R., Parsa, M., and Pfeiffer, R. (2003). Longitudinal outcome of Parkinson’s disease patients with psychosis. Neurology 60, 1756–1761.10.1212/01.WNL.0000068010.82167.CFSearch in Google Scholar

Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W., Tanner, C., and Marek, K. (2004). Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 351, 2498–2508.10.1056/NEJMoa033447Search in Google Scholar PubMed

Ferreri, F., Agbokou, C., and Gauthier, S. (2006). Recognition and management of neuropsychiatric complications in Parkinson’s disease. CMAJ 175, 1545–1552.10.1503/cmaj.060542Search in Google Scholar PubMed PubMed Central

Floresco, S.B., and Phillips, A.G. (2001). Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav. Neurosci. 115, 934–939.10.1037/0735-7044.115.4.934Search in Google Scholar

Foltynie, T., Brayne, C.E.G., Robbins, T.W., and Barker, R.A. (2004a). The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127, 550–560.10.1093/brain/awh067Search in Google Scholar PubMed

Foltynie, T., Goldberg, T.E., Lewis, S.G.J., Blackwell, A.D., Kolachana, B.S., Weinberger, D.R., Robbins, T.W., and Barker, R.A. (2004b). Planning ability in Parkinson’s disease is influenced by the COMT val158met polymorphism. Mov. Disord. 19, 885–891.10.1002/mds.20118Search in Google Scholar PubMed

Fonnum, F. (1966). Is choline acetyltransferase present in synaptic vesicles? Biochem. Pharmacol. 15, 1641–1643.Search in Google Scholar

Forsaa, E.B., Larsen, J.P., Wentzel-Larsen, T., and Alves, G. (2010a). What predicts mortality in Parkinson disease?: a prospective population-based long-term study. Neurology 75, 1270–1276.10.1212/WNL.0b013e3181f61311Search in Google Scholar

Forsaa, E.B., Larsen, J.P., Wentzel-Larsen, T., Goetz, C.G., Stebbins, G.T., Aarsland, D., and Alves, G. (2010b). A 12-year population-based study of psychosis in Parkinson disease. Arch. Neurol. 67, 996–1001.10.1001/archneurol.2010.166Search in Google Scholar

Fujita, M., Ichise, M., Zoghbi, S.S., Liow, J.-S., Ghose, S., Vines, D.C., Sangare, J., Lu, J.-Q., Cropley, V.L., Iida, H., et al. (2006). Widespread decrease of nicotinic acetylcholine receptors in Parkinson’s disease. Ann. Neurol. 59, 174–177.10.1002/ana.20688Search in Google Scholar

Fuster, J. (2008). The Prefrontal Cortex, 4th ed. (New York, NY: Academic Press).Search in Google Scholar

Garell, P.C., Bakken, H., Greenlee, J.D.W., Volkov, I., Reale, R.A., Oya, H., Kawasaki, H., Howard, M.A., and Brugge, J.F. (2012). Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human. Cereb. Cortex. Epub ahead of print.Search in Google Scholar

Gaspar, P., Bloch, B., and Le Moine, C. (1995). D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur. J. Neurosci. 7, 1050–1063.10.1111/j.1460-9568.1995.tb01092.xSearch in Google Scholar

Gibb, W.R. and Lees, A.J. (1988). The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr. 51, 745–752.10.1136/jnnp.51.6.745Search in Google Scholar

Gilman, S., Koeppe, R.A., Nan, B., Wang, C.-N., Wang, X., Junck, L., Chervin, R.D., Consens, F., and Bhaumik, A. (2010). Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology 74, 1416–1423.10.1212/WNL.0b013e3181dc1a55Search in Google Scholar

Goldman, J.G. and Litvan, I. (2011). Mild cognitive impairment in Parkinson’s disease. Minerva Med. 102, 441–459.Search in Google Scholar

Goldman-Rakic, P.S. (1998). The cortical dopamine system: role in memory and cognition. Adv. Pharmacol. 42, 707–711.10.1016/S1054-3589(08)60846-7Search in Google Scholar

Goldman-Rakic, P.S., Castner, S.A., Svensson, T.H., Siever, L.J., and Williams, G.V. (2004). Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174, 3–16.10.1007/s00213-004-1793-ySearch in Google Scholar PubMed

Gotham, A.M., Brown, R.G., and Marsden, C.D. (1988). “Frontal” cognitive function in patients with Parkinson’s disease “on” and “off” levodopa. Brain 111 (Pt 2), 299–321.10.1093/brain/111.2.299Search in Google Scholar PubMed

Graybiel, A.M., Aosaki, T., Flaherty, A.W., and Kimura, M. (1994). The basal ganglia and adaptive motor control. Science 265, 1826–1831.10.1126/science.8091209Search in Google Scholar PubMed

Harrington, D.L., Castillo, G.N., Greenberg, P.A., Song, D.D., Lessig, S., Lee, R.R., and Rao, S.M. (2011). Neurobehavioral mechanisms of temporal processing deficits in Parkinson’s disease. PLoS ONE 6, e17461.10.1371/journal.pone.0017461Search in Google Scholar PubMed PubMed Central

Hobson, P. and Meara, J. (2004). Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov. Disord. 19, 1043–1049.10.1002/mds.20216Search in Google Scholar PubMed

Huang, C., Mattis, P., Tang, C., Perrine, K., Carbon, M., and Eidelberg, D. (2007). Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage 34, 714–723.10.1016/j.neuroimage.2006.09.003Search in Google Scholar PubMed PubMed Central

Hughes, A.J., Daniel, S.E., Kilford, L., and Lees, A.J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatr. 55, 181–184.10.1136/jnnp.55.3.181Search in Google Scholar PubMed PubMed Central

Irwin, D.J., White, M.T., Toledo, J.B., Xie, S.X., Robinson, J.L., Van Deerlin, V., Lee, V.M.-Y., Leverenz, J.B., Montine, T.J., and Duda, J.E. (2012). Neuropathologic substrates of Parkinson disease dementia. Ann. Neurol. 72, 587–598.10.1002/ana.23659Search in Google Scholar PubMed PubMed Central

Jahanshahi, M., Jones, C.R.G., Zijlmans, J., Katzenschlager, R., Lee, L., Quinn, N., Frith, C.D., and Lees, A.J. (2010). Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 133, 727–745.10.1093/brain/awq012Search in Google Scholar PubMed

Javoy-Agid, F. and Agid, Y. (1980). Is the mesocortical dopaminergic system involved in Parkinson disease? Neurology 30, 1326–1330.10.1212/WNL.30.12.1326Search in Google Scholar PubMed

Javoy-Agid, F., Ploska, A., and Agid, Y. (1981). Microtopography of tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyltransferase in the substantia nigra and ventral tegmental area of control and Parkinsonian brains. J. Neurochem. 37, 1218–1227.10.1111/j.1471-4159.1981.tb04672.xSearch in Google Scholar PubMed

Jellinger, K.A. (1999). Post mortem studies in Parkinson’s disease–is it possible to detect brain areas for specific symptoms? J. Neural Transm. Suppl. 56, 1–29.10.1007/978-3-7091-6360-3_1Search in Google Scholar PubMed

Jellinger, K.A. (2009). A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders. Biochim. Biophys. Acta 1792, 730–740.10.1016/j.bbadis.2008.07.006Search in Google Scholar PubMed

Jellinger, K.A. (2011). Synuclein deposition and non-motor symptoms in Parkinson disease. J. Neurol. Sci. 310, 107–111.10.1016/j.jns.2011.04.012Search in Google Scholar PubMed

Kaasinen, V., Någren, K., Hietala, J., Oikonen, V., Vilkman, H., Farde, L., Halldin, C., and Rinne, J.O. (2000). Extrastriatal dopamine D2 and D3 receptors in early and advanced Parkinson’s disease. Neurology 54, 1482–1487.10.1212/WNL.54.7.1482Search in Google Scholar PubMed

Kaasinen, V., Nurmi, E., Brück, A., Eskola, O., Bergman, J., Solin, O., and Rinne, J.O. (2001). Increased frontal [18F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain 124, 1125–1130.10.1093/brain/124.6.1125Search in Google Scholar PubMed

Kaltenboeck, A., Johnson, S.J., Davis, M.R., Birnbaum, H.G., Carroll, C.A., Tarrants, M.L., and Siderowf, A.D. (2012). Direct costs and survival of medicare beneficiaries with early and advanced Parkinson’s disease. Parkinsonism Relat. Disord. 18, 321–326.10.1016/j.parkreldis.2011.11.015Search in Google Scholar PubMed

Kempster, P.A., O’Sullivan, S.S., Holton, J.L., Revesz, T., and Lees, A.J. (2010). Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain 133, 1755–1762.10.1093/brain/awq059Search in Google Scholar PubMed

Kieburtz, K., McDermott, M., Como, P., Growdon, J., Brady, J., Carter, J., Huber, S., Kanigan, B., Landow, E., and Rudolph, A. (1994). The effect of deprenyl and tocopherol on cognitive performance in early untreated Parkinson’s disease. Parkinson Study Group. Neurology 44, 1756–1759.10.1212/WNL.44.9.1756Search in Google Scholar

Kim, J.-S., Oh, Y.-S., Lee, K.-S., Kim, Y.-.I, Yang, D.-W., and Goldstein, D.S. (2012). Association of cognitive dysfunction with neurocirculatory abnormalities in early Parkinson disease. Neurology 79, 1323–1331.10.1212/WNL.0b013e31826c1acdSearch in Google Scholar PubMed PubMed Central

Knopp, W. (1970). Psychiatric changes in patients treated with levodopa. I. The clinical experiment. Neurology 20, 23–30.Search in Google Scholar

Kotzbauer, P.T., Cairns, N.J., Campbell, M.C., Willis, A.W., Racette, B.A., Tabbal, S.D., and Perlmutter, J.S. (2012). Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch. Neurol. 10, 1–6.10.1001/archneurol.2012.1608Search in Google Scholar PubMed PubMed Central

Lange, K.W., Robbins, T.W., Marsden, C.D., James, M., Owen, A.M., and Paul, G.M. (1992). L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology (Berl) 107, 394–404.10.1007/BF02245167Search in Google Scholar PubMed

Lee, J.-Y., Kim, J.-M., Kim, J.W., Cho, J., Lee, W.Y., Kim, H.-J., and Jeon, B.S. (2010). Association between the dose of dopaminergic medication and the behavioral disturbances in Parkinson disease. Parkinsonism Relat. Disord. 16, 202–207.10.1016/j.parkreldis.2009.12.002Search in Google Scholar PubMed

Lennox, G. (1992). Lewy body dementia. Baillieres Clin. Neurol. 1, 653–676.Search in Google Scholar

Levy, G., Tang, M.-X., Louis, E.D., Côté, L.J., Alfaro, B., Mejia, H., Stern, Y., and Marder, K. (2002). The association of incident dementia with mortality in PD. Neurology 59, 1708–1713.10.1212/01.WNL.0000036610.36834.E0Search in Google Scholar

Lippa, C.F., Duda, J.E., Grossman, M., Hurtig, H.I., Aarsland, D., Boeve, B.F., Brooks, D.J., Dickson, D.W., Dubois, B., Emre, M., et al. (2007). DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 68, 812–819.10.1212/01.wnl.0000256715.13907.d3Search in Google Scholar PubMed

Litvan, I., Mohr, E., Williams, J., Gomez, C., and Chase, T.N. (1991). Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 54, 25–29.10.1136/jnnp.54.1.25Search in Google Scholar PubMed PubMed Central

Litvan, I., Aarsland, D., Adler, C.H., Goldman, J.G., Kulisevsky, J., Mollenhauer, B., Rodriguez-Oroz, M.C., Tröster, A.I., Weintraub, D. (2011). MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov. Disord. 26, 1814–1824.10.1002/mds.23823Search in Google Scholar PubMed PubMed Central

Luk, K.C., Kehm, V., Carroll, J., Zhang, B., O’Brien, P., Trojanowski, J.Q. and Lee, V.M.-Y. (2012a). Pathological α-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science 338, 949–953.10.1126/science.1227157Search in Google Scholar PubMed PubMed Central

Luk, K.C., Kehm, V.M., Zhang, B., O’Brien, P., Trojanowski, J.Q. and Lee, V.M.Y. (2012b). Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986.10.1084/jem.20112457Search in Google Scholar PubMed PubMed Central

McKeith, I.G., Galasko, D., Kosaka, K., Perry, E.K., Dickson, D.W., Hansen, L.A., Salmon, D.P., Lowe, J., Mirra, S.S., Byrne, E.J., et al. (1996). Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47, 1113–1124.10.1212/WNL.47.5.1113Search in Google Scholar PubMed

Meyer, P.M., Strecker, K., Kendziorra, K., Becker, G., Hesse, S., Woelpl, D., Hensel, A., Patt, M., Sorger, D., and Wegner, F. (2009). Reduced α4β2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch. Gen. Psychiatry 66, 866–877.10.1001/archgenpsychiatry.2009.106Search in Google Scholar PubMed

Miller, E.K. and Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202.10.1146/annurev.neuro.24.1.167Search in Google Scholar PubMed

Monastero, R., Di Fiore, P., Ventimiglia, G.D., Ventimiglia, C.C., Battaglini, I., Camarda, R., and Camarda, C. (2012). Prevalence and profile of mild cognitive impairment in Parkinson’s disease. Neurodegener. Dis. 10, 187–190.10.1159/000335909Search in Google Scholar PubMed

Montine, T.J., Shi, M., Quinn, J.F., Peskind, E.R., Craft, S., Ginghina, C., Chung, K.A., Kim, H., Galasko, D.R., Jankovic, J., et al. (2010). CSF Aβ(42) and tau in Parkinson’s disease with cognitive impairment. Mov. Disord. 25, 2682–2685.10.1002/mds.23287Search in Google Scholar

Morrison, C.E., Borod, J.C., Brin, M.F., Hälbig, T.D., and Olanow, C.W. (2004). Effects of levodopa on cognitive functioning in moderate-to-severe Parkinson’s disease (MSPD). J. Neural Transm. 111, 1333–1341.10.1007/s00702-004-0145-8Search in Google Scholar

Müller, T., Benz, S., and Börnke, C. (2001). Delay of simple reaction time after levodopa intake. Clin. Neurophysiol. 112, 2133–2137.10.1016/S1388-2457(01)00653-8Search in Google Scholar

Müller, T., Welnic, J., Fuchs, G., Baas, H., Ebersbach, G., and Reichmann, H. (2006). The DONPAD-study – treatment of dementia in patients with Parkinson’s disease with donepezil. J. Neural. Transm. Suppl. 71, 27–30.10.1007/978-3-211-33328-0_3Search in Google Scholar PubMed

Muslimovic, D., Post, B., Speelman, J.D., and Schmand, B. (2005). Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65, 1239–1245.10.1212/01.wnl.0000180516.69442.95Search in Google Scholar PubMed

Narayanan, N.S. and Laubach, M. (2006). Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 52, 921–931.10.1016/j.neuron.2006.10.021Search in Google Scholar PubMed PubMed Central

Narayanan, N.S. and Laubach, M. (2009). Delay activity in rodent frontal cortex during a simple reaction time task. J. Neurophysiol. 101, 2859–2871.10.1152/jn.90615.2008Search in Google Scholar PubMed PubMed Central

Narayanan, N.S., Prabhakaran, V., Bunge, S.A., Christoff, K., Fine, E.M., and Gabrieli, J.D.E. (2005). The role of the prefrontal cortex in the maintenance of verbal working memory: an event-related FMRI analysis. Neuropsychology 19, 223–232.10.1037/0894-4105.19.2.223Search in Google Scholar PubMed

Narayanan, N.S., Land, B.B., Solder, J.E., Deisseroth, K., and Dileone, R.J. (2012). Prefrontal D1 dopamine signaling is required for temporal control. Proc. Natl. Acad. Sci. USA 109, 20726–20731.10.1073/pnas.1211258109Search in Google Scholar PubMed PubMed Central

Nikiforuk, A. (2012). Dopamine D1 receptor modulation of set shifting: the role of stress exposure. Behav. Pharmacol. 23, 434–438.10.1097/FBP.0b013e328356522fSearch in Google Scholar PubMed

Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., and Matsushima, E. (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385, 634–636.10.1038/385634a0Search in Google Scholar PubMed

Pascual-Sedano, B., Kulisevsky, J., Barbanoj, M., García-Sánchez, C., Campolongo, A., Gironell, A., Pagonabarraga, J., and Gich, I. (2008). Levodopa and executive performance in Parkinson’s disease: a randomized study. J. Int. Neuropsychol. Soc. 14, 832–841.10.1017/S1355617708081010Search in Google Scholar PubMed

Perry, E.K., Curtis, M., Dick, D.J., Candy, J.M., Atack, J.R., Bloxham, C.A., Blessed, G., Fairbairn, A., Tomlinson, B.E., and Perry, R.H. (1985). Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatr. 48, 413–421.10.1136/jnnp.48.5.413Search in Google Scholar PubMed PubMed Central

Phillips, A.G., Ahn, S., and Floresco, S.B. (2004). Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J. Neurosci. 24, 547–553.10.1523/JNEUROSCI.4653-03.2004Search in Google Scholar PubMed PubMed Central

Poewe, W., Wolters, E., Emre, M., Onofrj, M., Hsu, C., Tekin, S., and Lane, R. (2006). Long-term benefits of rivastigmine in dementia associated with Parkinson’s disease: an active treatment extension study. Mov. Disord. 21, 456–461.10.1002/mds.20700Search in Google Scholar PubMed

Polito, C., Berti, V., Ramat, S., Vanzi, E., De Cristofaro, M.T., Pellicanò, G., Mungai, F., Marini, P., Formiconi, A.R., and Sorbi, S. (2012). Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson’s disease. Neurobiol. Aging 33, 206.e29–39.10.1016/j.neurobiolaging.2010.09.004Search in Google Scholar PubMed

Pontone, G., Williams, J.R., Bassett, S.S., and Marsh, L. (2006). Clinical features associated with impulse control disorders in Parkinson disease. Neurology 67, 1258–1261.10.1212/01.wnl.0000238401.76928.45Search in Google Scholar PubMed

Rakshi, J.S., Uema, T., Ito, K., Bailey, D.L., Morrish, P.K., Ashburner, J., Dagher, A., Jenkins, I.H., Friston, K.J., and Brooks, D.J. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease A 3D [(18)F]dopa-PET study. Brain 122 (Pt 9), 1637–1650.Search in Google Scholar

Reading, P.J., Luce, A.K., and McKeith, I.G. (2001). Rivastigmine in the treatment of parkinsonian psychosis and cognitive impairment: preliminary findings from an open trial. Mov. Disord. 16, 1171–1174.10.1002/mds.1204Search in Google Scholar PubMed

Rowan, E., McKeith, I.G., Saxby, B.K., O’Brien, J.T., Burn, D., Mosimann, U., Newby, J., Daniel, S., Sanders, J., and Wesnes, K. (2007). Effects of donepezil on central processing speed and attentional measures in Parkinson’s disease with dementia and dementia with Lewy bodies. Dement. Geriatr. Cogn. Disord. 23, 161–167.10.1159/000098335Search in Google Scholar PubMed

Santangelo, G., Trojano, L., Vitale, C., Ianniciello, M., Amboni, M., Grossi, D., and Barone, P. (2007). A neuropsychological longitudinal study in Parkinson’s patients with and without hallucinations. Mov. Disord. 22, 2418–2425.10.1002/mds.21746Search in Google Scholar PubMed

Sawada, Y., Nishio, Y., Suzuki, K., Hirayama, K., Takeda, A., Hosokai, Y., Ishioka, T., Itoyama, Y., Takahashi, S., Fukuda, H., et al. (2012). Attentional set-shifting deficit in Parkinson’s disease is associated with prefrontal dysfunction: an FDG-PET study. PLoS ONE 7, e38498.10.1371/journal.pone.0038498Search in Google Scholar

Sawamoto, N., Piccini, P., Hotton, G., Pavese, N., Thielemans, K., and Brooks, D.J. (2008). Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain 131, 1294–1302.10.1093/brain/awn054Search in Google Scholar

Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B., and Agid, Y. (1983). Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res. 275, 321–328.10.1016/0006-8993(83)90993-9Search in Google Scholar

Schmitt, F.A., Farlow, M.R., Meng, X., Tekin, S., and Olin, J.T. (2010). Efficacy of rivastigmine on executive function in patients with Parkinson’s disease dementia. CNS Neurosci. Ther. 16, 330–336.10.1111/j.1755-5949.2010.00182.xSearch in Google Scholar PubMed PubMed Central

Seamans, J.K., Floresco, S.B., and Phillips, A.G. (1998). D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J. Neurosci. 18, 1613–1621.10.1523/JNEUROSCI.18-04-01613.1998Search in Google Scholar

Seong, H.J. and Carter, A.G. (2012). D1 receptor modulation of action potential firing in a subpopulation of layer 5 pyramidal neurons in the prefrontal cortex. J. Neurosci. 32, 10516–10521.10.1523/JNEUROSCI.1367-12.2012Search in Google Scholar PubMed PubMed Central

Sheth, S.A., Mian, M.K., Patel, S.R., Asaad, W.F., Williams, Z.M., Dougherty, D.D., Bush, G., and Eskandar, E.N. (2012). Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218–221.10.1038/nature11239Search in Google Scholar PubMed PubMed Central

Stolwyk, R.J., Triggs, T.J., Charlton, J.L., Iansek, R. and Bradshaw, J.L. (2005). Impact of internal versus external cueing on driving performance in people with Parkinson’s disease. Mov. Disord. Soc. 20, 846–857.10.1002/mds.20420Search in Google Scholar PubMed

Swanberg, M.M., Tractenberg, R.E., Mohs, R., Thal, L.J. and Cummings, J.L. (2004). Executive dysfunction in Alzheimer disease. Arch. Neurol. 61, 556–560.10.1001/archneur.61.4.556Search in Google Scholar PubMed PubMed Central

Uc, E.Y., Rizzo, M., Anderson, S.W., Qian, S., Rodnitzky, R.L., and Dawson, J.D. (2005). Visual dysfunction in Parkinson disease without dementia. Neurology 65, 1907–1913.10.1212/01.wnl.0000191565.11065.11Search in Google Scholar PubMed

Uc, E.Y., McDermott, M.P., Marder, K.S., Anderson, S.W., Litvan, I., Como, P.G., Auinger, P., Chou, K.L., and Growdon, J.C. (2009). Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology 73, 1469–1477.10.1212/WNL.0b013e3181bf992fSearch in Google Scholar

Van Spaendonck, K.P., Berger, H.J., Horstink, M.W., Buytenhuijs, E.L., and Cools, A.R. (1996). Executive functions and disease characteristics in Parkinson’s disease. Neuropsychologia 34, 617–626.10.1016/0028-3932(95)00159-XSearch in Google Scholar

Voon, V., Hassan, K., Zurowski, M., de Souza, M., Thomsen, T., Fox, S., Lang, A.E., and Miyasaki, J. (2006a). Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology 67, 1254–1257.10.1212/01.wnl.0000238503.20816.13Search in Google Scholar PubMed

Voon, V., Hassan, K., Zurowski, M., Duff-Canning, S., de Souza, M., Fox, S., Lang, A.E., and Miyasaki, J. (2006b). Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology 66, 1750–1752.10.1212/01.wnl.0000218206.20920.4dSearch in Google Scholar PubMed

Voon, V., Sohr, M., Lang, A.E., Potenza, M.N., Siderowf, A.D., Whetteckey, J., Weintraub, D., Wunderlich, G.R., and Stacy, M. (2011). Impulse control disorders in Parkinson disease: a multicenter case–control study. Ann. Neurol. 69, 986–996.10.1002/ana.22356Search in Google Scholar PubMed

Vrieze, E., Ceccarini, J., Pizzagalli, D.A., Bormans, G., Vandenbulcke, M., Demyttenaere, K., Van Laere, K., and Claes, S. (2013). Measuring extrastriatal dopamine release during a reward learning task. Hum. Brain Mapp 34, 575–586.Search in Google Scholar

Wang, M., Vijayraghavan, S., and Goldman-Rakic, P.S. (2004). Selective D2 receptor actions on the functional circuitry of working memory. Science 303, 853–856.10.1126/science.1091162Search in Google Scholar PubMed

Weinberger, D.R., Berman, K.F., and Zec, R.F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch. Gen. Psychiatry 43, 114–124.10.1001/archpsyc.1986.01800020020004Search in Google Scholar PubMed

Weintraub, D., Siderowf, A.D., Potenza, M.N., Goveas, J., Morales, K.H., Duda, J.E., Moberg, P.J., and Stern M.B. (2006). Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch. Neurol. 63, 969–973.10.1001/archneur.63.7.969Search in Google Scholar PubMed PubMed Central

Weintraub, D., Koester, J., Potenza, M.N., Siderowf, A.D., Stacy, M., Voon, V., Whetteckey, J., Wunderlich, G.R., and Lang, A.E. (2010). Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch. Neurol. 67, 589–595.10.1001/archneurol.2010.65Search in Google Scholar PubMed

Westerink, B.H., Enrico, P., Feimann, J., and De Vries, J.B. (1998). The pharmacology of mesocortical dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and prefrontal cortex of the rat brain. J. Pharmacol. Exp. Ther. 285, 143–154.Search in Google Scholar

Williams, G.V. and Goldman-Rakic, P.S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376, 572–575.10.1038/376572a0Search in Google Scholar PubMed

Williams, S.M. and Goldman-Rakic, P.S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cereb. Cortex 8, 321–345.10.1093/cercor/8.4.321Search in Google Scholar PubMed

Williams-Gray, C.H., Foltynie, T., Lewis, S.J.G., and Barker, R.A. (2006). Cognitive deficits and psychosis in Parkinson’s disease: a review of pathophysiology and therapeutic options. CNS Drugs 20, 477–505.10.2165/00023210-200620060-00004Search in Google Scholar PubMed

Williams-Gray, C.H., Foltynie, T., Brayne, C.E.G., Robbins, T.W., and Barker, R.A. (2007). Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130, 1787–1798.10.1093/brain/awm111Search in Google Scholar PubMed

Williams-Gray, C.H., Hampshire, A., Barker, R.A., and Owen, A.M. (2008). Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain 131, 397–408.10.1093/brain/awm313Search in Google Scholar PubMed

Williams-Gray, C.H., Evans, J.R., Goris, A., Foltynie, T., Ban, M., Robbins, T.W., Brayne, C., Kolachana, B.S., Weinberger, D.R., Sawcer, S.J., et al. (2009). The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain 132.10.1093/brain/awp245Search in Google Scholar PubMed

Wolk, S.I. and Douglas, C.J. (1992). Clozapine treatment of psychosis in Parkinson’s disease: a report of five consecutive cases. J. Clin. Psychiatry 53, 373–376.Search in Google Scholar

Wu, K., O’Keeffe, D., Politis, M., O’Keeffe, G.C., Robbins, T.W., Bose, S.K., Brooks, D.J., Piccini, P., and Barker, R.A. (2012). The catechol-O-methyltransferase Val(158)Met polymorphism modulates fronto-cortical dopamine turnover in early Parkinson’s disease: a PET study. Brain 135, 2449–2457.10.1093/brain/aws157Search in Google Scholar PubMed

Wurtman, R.J. (2012). Personalized medicine strategies for managing patients with Parkinsonism and cognitive deficits. Metab. Clin. Exp. Available at: [Accessed September 28, 2012].Search in Google Scholar

Zgaljardic, D.J., Borod, J.C., Foldi, N.S., Mattis, P.J., Gordon, M.F., Feigin, A., and Eidelberg, D. (2006). An examination of executive dysfunction associated with frontostriatal circuitry in Parkinson’s disease. J. Clin. Exp. Neuropsychol. 28, 1127–1144.10.1080/13803390500246910Search in Google Scholar PubMed PubMed Central

Received: 2013-2-27
Accepted: 2013-4-9
Published Online: 2013-05-25
Published in Print: 2013-06-01

©2013 by Walter de Gruyter Berlin Boston