Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 3, 2013

The role of GRASPs in morphological alterations of Golgi apparatus: mechanisms and effects

  • Guang Ji , Hui Ji , Xiaoye Mo , Ting Li , Yaduo Yu and Zhiping Hu EMAIL logo

Abstract

The Golgi apparatus (GA) is a pivotal organelle in cell metabolism, functioning not only in the processing and transportation of cargoes but also in ion homeostasis, cell apoptosis, and stress sensing. We are interested in the intricate role of GA and the recently present novel concept of ‘GA stress’. GA shows various morphological alterations in many neurodegenerative diseases and cell apoptosis induced by biochemical reagents, mechanisms in which oxidative stress is strongly involved. In turn, the structural changes and morphological alterations of the GA could also transduce stress signals. Therefore, besides the biochemical changes, more attention should be paid to the morphological alterations of the GA itself during pathological processes and diseases. The Golgi reassembly and stacking proteins (GRASPs) have been identified as important components acting in the transformation of Golgi structure, and they may thus affect the Golgi functions and cell behavior. In this review, we will discuss the intricate role of the GRASPs in remodeling the GA morphology and focus on their mechanisms and effects in the processes of Golgi stacking, mitosis, cell apoptosis, and cargo secretion. We would also like to provide a further prospective of their potential biological values in neurodegenerative diseases.


Corresponding author: Zhiping Hu, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China, e-mail:

We thank Jingjie Zheng for her critical reading of the manuscript, and we are grateful to Peiyuan Gong for his selfless assistance in the illustration of artwork. This article was supported by the National Natural Science Foundation (Grant 81171239), China.

References

Acharya, U., Mallabiabarrena, A., Acharya, J.K., and Malhotra, V. (1998). Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 92, 183–192.10.1016/S0092-8674(00)80913-7Search in Google Scholar

Allan, B.B., Moyer, B.D., and Balch, W.E. (2000). Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448.10.1126/science.289.5478.444Search in Google Scholar

Alvarez, C., Garcia-Mata, R., Hauri, H.P., and Sztul, E. (2001). The p115-interactive proteins GM130 and giantin participate in endoplasmic reticulum-Golgi traffic. J. Biol. Chem. 276, 2693–700.10.1074/jbc.M007957200Search in Google Scholar

Baloyannis, S.J., Costa, V., and Michmizos, D. (2004). Mitochondrial alterations in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 19, 89–93.10.1177/153331750401900205Search in Google Scholar

Barr, F.A., Puype, M., Vandekerckhove, J., and Warren, G. (1997). GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91, 253–262.10.1016/S0092-8674(00)80407-9Search in Google Scholar

Barr, F.A., Nakamura, N., and Warren, G. (1998). Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO J. 17, 3258–3268.10.1093/emboj/17.12.3258Search in Google Scholar PubMed PubMed Central

Barr, F.A., Preisinger, C., Kopajtich, R., and Korner, R. (2001). Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the Golgi apparatus. J. Cell Biol. 155, 885–891.10.1083/jcb.200108102Search in Google Scholar PubMed PubMed Central

Bartz, R., Sun, L.P., Bisel, B., Wei, J.H., and Seemann, J. (2008). Spatial separation of Golgi and ER during mitosis protects SREBP from unregulated activation. EMBO J. 27, 948–955.10.1038/emboj.2008.36Search in Google Scholar PubMed PubMed Central

Behnia, R., Barr, F.A., Flanagan, J.J., Barlowe, C., and Munro, S. (2007). The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J. Cell Biol. 176, 255–261.10.1083/jcb.200607151Search in Google Scholar PubMed PubMed Central

Bisel, B., Wang, Y., Wei, J.H., Xiang, Y., Tang, D., Miron-Mendoza, M., Yoshimura, S., Nakamura, N., and Seemann, J. (2008). ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J. Cell Biol. 182, 837–843.10.1083/jcb.200805045Search in Google Scholar PubMed PubMed Central

Chambon, J.P., Soule, J., Pomies, P., Fort, P., Sahuquet, A., Alexandre, D., Mangeat, P.H., and Baghdiguian, S. (2002). Tail regression in Ciona intestinalis (Prochordate) involves a caspase-dependent apoptosis event associated with ERK activation. Development 129, 3105–3114.10.1242/dev.129.13.3105Search in Google Scholar PubMed

Cheung, F.W., Li, C., Che, C.T., Liu, B.P., Wang, L., and Liu, W.K. (2010). Geoditin A induces oxidative stress and apoptosis on human colon HT29 cells. Mar. Drugs 8, 80–90.10.3390/md8010080Search in Google Scholar PubMed PubMed Central

Chiu, R., Novikov, L., Mukherjee, S., and Shields, D. (2002). A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J. Cell Biol. 159, 637–48.10.1083/jcb.200208013Search in Google Scholar PubMed PubMed Central

Chua, C.E., Lim, Y.S., Lee, M.G., and Tang, B.L. (2012). Non-classical membrane trafficking processes galore. J. Cell Physiol. 227, 3722–3730.10.1002/jcp.24082Search in Google Scholar PubMed

Colanzi, A. and Corda, D. (2007). Mitosis controls the Golgi and the Golgi controls mitosis. Curr. Opin. Cell Biol. 19, 386–393.10.1016/j.ceb.2007.06.002Search in Google Scholar PubMed

Colanzi, A., Deerinck, T.J., Ellisman, M.H., and Malhotra, V. (2000). A specific activation of the mitogen-activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis. J. Cell Biol. 149, 331–339.10.1083/jcb.149.2.331Search in Google Scholar PubMed PubMed Central

Colanzi, A., Sutterlin, C., and Malhotra, V. (2003). RAF1-activated MEK1 is found on the Golgi apparatus in late prophase and is required for Golgi complex fragmentation in mitosis. J. Cell Biol. 161, 27–32.10.1083/jcb.200208099Search in Google Scholar PubMed PubMed Central

D’Angelo, G., Prencipe, L., Iodice, L., Beznoussenko, G., Savarese, M., Marra, P., Di Tullio, G., Martire, G., De Matteis, M.A., and Bonatti, S. (2009). GRASP65 and GRASP55 sequentially promote the transport of C-terminal valine-bearing cargos to and through the Golgi complex. J. Biol. Chem. 284, 34849–34860.10.1074/jbc.M109.068403Search in Google Scholar PubMed PubMed Central

Dinter, A. and Berger, E.G. (1998). Golgi-disturbing agents. Histochem. Cell Biol. 109, 571–590.10.1007/s004180050256Search in Google Scholar PubMed

Duran, J.M., Kinseth, M., Bossard, C., Rose, D.W., Polishchuk, R., Wu, C.C., Yates, J., Zimmerman, T., and Malhotra, V. (2008). The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis. Mol. Biol. Cell 19, 2579–2587.10.1091/mbc.e07-10-0998Search in Google Scholar PubMed PubMed Central

Fan, J., Hu, Z., Zeng, L., Lu, W., Tang, X., Zhang, J., and Li, T. (2008). Golgi apparatus and neurodegenerative diseases. Int. J. Dev. Neurosci. 26, 523–534.10.1016/j.ijdevneu.2008.05.006Search in Google Scholar

Farquhar, M.G. and Palade, G.E. (1981). The Golgi apparatus (complex)-(1954–1981)-from artifact to center stage. J. Cell Biol. 91, 77–103.10.1083/jcb.91.3.77sSearch in Google Scholar

Feinstein, T.N. and Linstedt, A.D. (2007). Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol. Biol. Cell 18, 594–604.10.1091/mbc.e06-06-0530Search in Google Scholar

Feinstein, T.N. and Linstedt, A.D. (2008). GRASP55 regulates Golgi ribbon formation. Mol. Biol. Cell 19, 2696–2707.10.1091/mbc.e07-11-1200Search in Google Scholar

Fujita, Y., Okamoto, K., Sakurai, A., Gonatas, N.K., and Hirano, A. (2000). Fragmentation of the Golgi apparatus of the anterior horn cells in patients with familial amyotrophic lateral sclerosis with SOD1 mutations and posterior column involvement. J. Neurol. Sci. 174, 137–140.10.1016/S0022-510X(00)00265-3Search in Google Scholar

Fujita, Y., Ohama, E., Takatama, M., Al-Sarraj, S., and Okamoto, K. (2006). Fragmentation of Golgi apparatus of nigral neurons with α-synuclein-positive inclusions in patients with Parkinson’s disease. Acta Neuropathol. 112, 261–265.10.1007/s00401-006-0114-4Search in Google Scholar

Giuliani, F., Grieve, A., and Rabouille, C. (2011). Unconventional secretion: a stress on GRASP. Curr. Opin. Cell Biol. 23, 498–504.10.1016/j.ceb.2011.04.005Search in Google Scholar

Gonatas, J.O., Mezitis, S.G., Stieber, A., Fleischer, B., and Gonatas, N.K. (1989). MG-160. A novel sialoglycoprotein of the medial cisternae of the Golgi apparatus [published erratum appears in J. Biol. Chem. 1989 Mar 5;264(7):4264]. J. Biol. Chem. 264, 646–653.10.1016/S0021-9258(17)31310-8Search in Google Scholar

Gonatas, N.K., Stieber, A., and Gonatas, J.O. (2006). Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J. Neurol. Sci. 246, 21–30.10.1016/j.jns.2006.01.019Search in Google Scholar PubMed

Gosavi, N., Lee, H.J., Lee, J.S., Patel, S., and Lee, S.J. (2002). Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J. Biol. Chem. 277, 48984–48992.10.1074/jbc.M208194200Search in Google Scholar PubMed

Graves, T.K., Patel, S., Dannies, P.S., and Hinkle, P.M. (2001). Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic. J. Cell Sci. 114, 3685–3694.10.1242/jcs.114.20.3685Search in Google Scholar

Griffiths, G. and Simons, K. (1986). The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–443.10.1126/science.2945253Search in Google Scholar

Griffiths, G., Pfeiffer, S., Simons, K., and Matlin, K. (1985). Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J. Cell Biol. 101, 949–964.10.1083/jcb.101.3.949Search in Google Scholar

Hicks, S.W. and Machamer, C.E. (2005). Golgi structure in stress sensing and apoptosis. Biochim. Biophys. Acta 1744, 406–514.10.1016/j.bbamcr.2005.03.002Search in Google Scholar

Hsu, V.W., Yuan, L.C., Nuchtern, J.G., Lippincott-Schwartz, J., Hammerling G.J., and Klausner, R.D. (1991). A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature 352, 441–444.10.1038/352441a0Search in Google Scholar

Hu, Z., Zeng, L., Xie, L., Lu, W., Zhang, J., Li, T., and Wang, X. (2007). Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-β1 in Golgi apparatus in gerbils following transient forebrain ischemia. Neurochem. Res. 32, 1927–1931.10.1007/s11064-007-9382-1Search in Google Scholar

Huynh, D.P., Yang, H.T., Vakharia, H., Nguyen, D., and Pulst, S.M. (2003). Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum. Mol. Genet. 12, 1485–1496.10.1093/hmg/ddg175Search in Google Scholar

Ishunina, T.A. and Swaab, D.F. (2003). Increased neuronal metabolic activity and estrogen receptors in the vertical limb of the diagonal band of Broca in Alzheimer’s disease: relation to sex and aging. Exp. Neurol. 183, 159–172.10.1016/S0014-4886(03)00138-9Search in Google Scholar

Jesch, S.A., Lewis, T.S., Ahn, N.G., and Linstedt, A.D. (2001). Mitotic phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated protein kinase ERK2. Mol. Biol. Cell 12, 1811–1817.10.1091/mbc.12.6.1811Search in Google Scholar PubMed PubMed Central

Jiang, N., Wang, X., Jhanwar-Uniyal, M., Darzynkiewicz, Z., and Dai, W. (2006). Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J. Biol. Chem. 281, 10577–10582.10.1074/jbc.M513156200Search in Google Scholar PubMed

Jiang, Z., Hu, Z., Zeng, L., Lu, W., Zhang, H., Li, T., and Xiao, H. (2011). The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic. Biol. Med. 50, 907–917.10.1016/j.freeradbiomed.2011.01.011Search in Google Scholar PubMed

Karecla, P.I. and Kreis, T.E. (1992). Interaction of membranes of the Golgi complex with microtubules in vitro. Eur. J. Cell Biol. 57, 139–146.Search in Google Scholar

Ladinsky, M.S., Mastronarde, D.N., McIntosh, J.R., Howell, K.E., and Staehelin, L.A. (1999). Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149.10.1083/jcb.144.6.1135Search in Google Scholar PubMed PubMed Central

Ladinsky, M.S., Wu, C.C., McIntosh, S., McIntosh, J.R., and Howell, K.E. (2002). Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol. Biol. Cell 13, 2810–2825.10.1091/mbc.01-12-0593Search in Google Scholar PubMed PubMed Central

Lane, J.D., Vergnolle, M.A., Woodman, P.G., and Allan, V.J. (2001). Apoptotic cleavage of cytoplasmic dynein intermediate chain and p150(Glued) stops dynein-dependent membrane motility. J. Cell Biol. 153, 1415–1426.10.1083/jcb.153.7.1415Search in Google Scholar PubMed PubMed Central

Lane, J.D., Lucocq, J., Pryde, J., Barr, F.A., Woodman, P.G., Allan, V.J., and Lowe, M. (2002). Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J. Cell Biol. 156, 495–509.10.1083/jcb.200110007Search in Google Scholar PubMed PubMed Central

Lee, T.H. and Linstedt, A.D. (1999). Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. Mol. Biol. Cell 10, 1445–1462.10.1091/mbc.10.5.1445Search in Google Scholar PubMed PubMed Central

Li, Z., Niu, J., Uwagawa, T., Peng, B., and Chiao, P.J. (2005). Function of polo-like kinase 3 in NF-κB-mediated proapoptotic response. J. Biol. Chem. 280, 16843–16850.10.1074/jbc.M410119200Search in Google Scholar PubMed

Lin, C.Y., Madsen, M.L., Yarm, F.R., Jang, Y.J., Liu, X., and Erikson, R.L. (2000). Peripheral Golgi protein GRASP65 is a target of mitotic polo-like kinase (Plk) and Cdc2. Proc. Natl. Acad. Sci. USA 97, 12589–12594.10.1073/pnas.220423497Search in Google Scholar PubMed PubMed Central

Lin, P., Li, F., Zhang, Y.W., Huang, H., Tong, G., Farquhar, M.G., and Xu, H. (2007). Calnuc binds to Alzheimer’s β-amyloid precursor protein and affects its biogenesis. J. Neurochem. 100, 1505–1514.Search in Google Scholar

Liu, F., Stanton, J.J., Wu, Z., and Piwnica-Worms, H. (1997). The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17, 571–583.10.1128/MCB.17.2.571Search in Google Scholar PubMed PubMed Central

Liu, F., Rothblum-Oviatt, C., Ryan, C.E., and Piwnica-Worms, H. (1999). Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Mol. Cell. Biol. 19, 5113–5123.10.1128/MCB.19.7.5113Search in Google Scholar PubMed PubMed Central

Liu, Y., Xie, P., Qiu, T., Li, H.Y., Li, G.Y., Hao, L., and Xiong, Q. (2010). Microcystin extracts induce ultrastructural damage and biochemical disturbance in male rabbit testis. Environ. Toxicol. 25, 9–17.Search in Google Scholar

Louvard, D., Reggio, H., and Warren, G. (1982). Antibodies to the Golgi complex and the rough endoplasmic reticulum. J. Cell Biol. 92, 92–107.10.1083/jcb.92.1.92Search in Google Scholar

Lowe, M. and Barr, F.A. (2007). Inheritance and biogenesis of organelles in the secretory pathway. Nat. Rev. Mol. Cell Biol. 8, 429–439.10.1038/nrm2179Search in Google Scholar

Lowe, M., Nakamura, N., and Warren, G. (1998a). Golgi division and membrane traffic. Trends Cell Biol. 8, 40–44.10.1016/S0962-8924(97)01189-6Search in Google Scholar

Lowe, M., Rabouille, C., Nakamura, N., Watson, R., Jackman, M., Jamsa, E., Rahman, D., Pappin, D.J., and Warren, G. (1998b). Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94, 783–793.10.1016/S0092-8674(00)81737-7Search in Google Scholar

Lowe, M., Gonatas, N.K., and Warren, G. (2000). The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130. J. Cell Biol. 149, 341–356.10.1083/jcb.149.2.341Search in Google Scholar PubMed PubMed Central

Lowe, M., Lane, J.D., Woodman, P.G., and Allan, V.J. (2004). Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J. Cell Sci. 117, 1139–1150.10.1242/jcs.00950Search in Google Scholar PubMed

Lowery, D.M., Clauser, K.R., Hjerrild, M., Lim, D., Alexander, J., Kishi, K., Ong, S.E., Gammeltoft, S., Carr, S.A., and Yaffe, M.B. (2007). Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J. 26, 2262–2273.10.1038/sj.emboj.7601683Search in Google Scholar PubMed PubMed Central

Mancini, M., Machamer, C.E., Roy, S., Nicholson, D.W., Thornberry, N.A., Casciola-Rosen, L.A., and Rosen, A. (2000). Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J. Cell Biol. 149, 603–612.10.1083/jcb.149.3.603Search in Google Scholar PubMed PubMed Central

Manjithaya, R., Anjard, C., Loomis, W.F., and Subramani, S. (2010). Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537–546.10.1083/jcb.200911149Search in Google Scholar PubMed PubMed Central

Marra, P., Maffucci, T., Daniele, T., Tullio, G.D., Ikehara. Y., Chan. E.K., Luini. A., Beznoussenko, G., Mironov, A., and De Matteis, M.A. (2001). The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat. Cell Biol. 3, 1101–1113.10.1038/ncb1201-1101Search in Google Scholar PubMed

Martin, L.J., Brambrink, A.M., Price, A.C., Kaiser, A., Agnew, D.M., Ichord, R.N., and Traystman, R.J. (2000). Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress. Neurobiol. Dis. 7, 169–191.10.1006/nbdi.2000.0282Search in Google Scholar

Matlin, K.S. and Simons, K. (1983). Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 34, 233–243.10.1016/0092-8674(83)90154-XSearch in Google Scholar

Matthess, Y., Raab, M., Sanhaji, M., Lavrik, I.N., and Strebhardt, K. (2010). Cdk1/cyclin B1 controls Fas-mediated apoptosis by regulating caspase-8 activity. Mol. Cell. Biol. 30, 5726–5740.10.1128/MCB.00731-10Search in Google Scholar PubMed PubMed Central

Mironov, A.A. and Pavelka, M. (2008). The Golgi Apparatus: State of the Art 110 Years After Camillo Golgi’s Discovery, Springer, Wien, p. 716.Search in Google Scholar

Modi, P.K., Komaravelli, N., Singh, N., and Sharma, P. (2012). Interplay between MEK-ERK signaling, cyclin D1, and cyclin-dependent kinase 5 regulates cell cycle reentry and apoptosis of neurons. Mol. Biol. Cell 23, 3722–3730.10.1091/mbc.e12-02-0125Search in Google Scholar PubMed PubMed Central

Mourelatos, Z., Gonatas, N.K., Stieber, A., Gurney, M.E., and Dal Canto, M.C. (1996). The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc. Natl. Acad. Sci. USA 93, 5472–5477.10.1073/pnas.93.11.5472Search in Google Scholar PubMed PubMed Central

Moyer, B.D., Allan, B.B., and Balch, W.E. (2001). Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic 2, 268–276.10.1034/j.1600-0854.2001.1o007.xSearch in Google Scholar PubMed

Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2003). Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J. Biol. Chem. 278, 25277–25280.10.1074/jbc.C300126200Search in Google Scholar PubMed

Norman, T.C., Smith, D.L., Sorger, P.K., Drees, B.L., O’Rourke, S.M., Hughes, T.R., Roberts, C.J., Friend, S.H., Fields, S., and Murray, A.W. (1999). Genetic selection of peptide inhibitors of biological pathways. Science 285, 591–595.10.1126/science.285.5427.591Search in Google Scholar PubMed

Okano-Uchida, T., Okumura, E., Iwashita, M., Yoshida, H., Tachibana, K., and Kishimoto, T. (2003). Distinct regulators for Plk1 activation in starfish meiotic and early embryonic cycles. EMBO J. 22, 5633–5642.10.1093/emboj/cdg535Search in Google Scholar PubMed PubMed Central

Pavelka, M. and Ellinger, A. (1993). Early and late transformations occurring at organelles of the Golgi area under the influence of brefeldin A: an ultrastructural and lectin cytochemical study. J. Histochem. Cytochem. 41, 1031–1042.10.1177/41.7.8515046Search in Google Scholar PubMed

Preisinger, C., Korner, R., Wind, M., Lehmann, W.D., Kopajtich, R., and Barr, F.A. (2005). Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J. 24, 753–765.10.1038/sj.emboj.7600569Search in Google Scholar PubMed PubMed Central

Puthenveedu, M.A., Bachert, C., Puri, S., Lanni, F., and Linstedt, A.D. (2006). GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat. Cell Biol. 8, 238–248.10.1038/ncb1366Search in Google Scholar PubMed

Rafols, J.A., Daya, A.M., O’Neil, B.J., Krause, G.S., Neumar, R.W., and White, B.C. (1995). Global brain ischemia and reperfusion: golgi apparatus ultrastructure in neurons selectively vulnerable to death. Acta Neuropathol. 90, 17–30.10.1007/BF00294455Search in Google Scholar PubMed

Ramos, J.W. (2008). The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int. J. Biochem. Cell Biol. 40, 2707–2019.10.1016/j.biocel.2008.04.009Search in Google Scholar PubMed

Robbins, E. and Gonatas, N.K. (1964). The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol. 21, 429–463.10.1083/jcb.21.3.429Search in Google Scholar PubMed PubMed Central

Rogalski, A.A., Bergmann, J.E., and Singer, S.J. (1984). Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane. J. Cell Biol. 99, 1101–1109.10.1083/jcb.99.3.1101Search in Google Scholar PubMed PubMed Central

Ruan, Q., Wang, Q., Xie, S., Fang, Y., Darzynkiewicz, Z., Guan, K., Jhanwar-Uniyal, M., and Dai, W. (2004). Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp. Cell Res. 294, 51–59.10.1016/j.yexcr.2003.10.022Search in Google Scholar PubMed

Sakurai, A., Okamoto, K., Fujita, Y., Nakazato, Y., Wakabayashi, K., Takahashi, H., and Gonatas, N.K. (2000). Fragmentation of the Golgi apparatus of the ballooned neurons in patients with corticobasal degeneration and Creutzfeldt-Jakob disease. Acta Neuropathol. 100, 270–274.10.1007/s004010000182Search in Google Scholar PubMed

Sakurai, A., Okamoto, K., Yaguchi, M., Fujita, Y., Mizuno, Y., Nakazato, Y., and Gonatas, N.K. (2002). Pathology of the inferior olivary nucleus in patients with multiple system atrophy. Acta Neuropathol. 103, 550–554.10.1007/s00401-001-0500-xSearch in Google Scholar PubMed

Seemann, J., Jokitalo, E.J., and Warren, G. (2000). The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol. Biol. Cell 11, 635–645.10.1091/mbc.11.2.635Search in Google Scholar PubMed PubMed Central

Sengupta, D. and Linstedt, A.D. (2010). Mitotic inhibition of GRASP65 organelle tethering involves Polo-like kinase 1 (PLK1) phosphorylation proximate to an internal PDZ ligand. J. Biol. Chem. 285, 39994–40003.10.1074/jbc.M110.189449Search in Google Scholar PubMed PubMed Central

Sengupta, D., Truschel, S., Bachert, C., and Linstedt, A.D. (2009). Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. J. Cell Biol. 186, 41–55.10.1083/jcb.200902110Search in Google Scholar PubMed PubMed Central

Sesso, A., Fujiwara, D.T., Jaeger, M., Jaeger, R., Li, T.C., Monteiro, M.M., Correa, H., Ferreira, M.A., Schumacher, R.I., Belisario, J., et al. (1999). Structural elements common to mitosis and apoptosis. Tissue Cell 31, 357–371.10.1054/tice.1999.0042Search in Google Scholar PubMed

Shaul, Y.D. and Seger, R. (2006). ERK1c regulates Golgi fragmentation during mitosis. J. Cell Biol. 172, 885–897.10.1083/jcb.200509063Search in Google Scholar PubMed PubMed Central

Short, B., Preisinger, C., Korner, R., Kopajtich, R., Byron, O., and Barr, F.A. (2001). A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J. Cell Biol. 155, 877–883.10.1083/jcb.200108079Search in Google Scholar PubMed PubMed Central

Shorter, J. and Warren, G. (1999). A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system. J. Cell Biol. 146, 57–70.10.1083/jcb.146.1.57Search in Google Scholar PubMed PubMed Central

Shorter, J. and Warren, G. (2002). Golgi architecture and inheritance. Annu. Rev. Cell Dev. Biol. 18, 379–420.10.1146/annurev.cellbio.18.030602.133733Search in Google Scholar PubMed

Shorter, J., Watson, R., Giannakou, M.E., Clarke, M., Warren, G., and Barr, F.A. (1999). GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18, 4949–4960.10.1093/emboj/18.18.4949Search in Google Scholar PubMed PubMed Central

Stanciu, M. and DeFranco, D.B. (2002). Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J. Biol. Chem. 277, 4010–4017.10.1074/jbc.M104479200Search in Google Scholar PubMed

Stieber, A., Mourelatos, Z., and Gonatas, N.K. (1996). In Alzheimer’s disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic. Am. J. Pathol. 148, 415–426.Search in Google Scholar

Stieber, A., Chen, Y., Wei, S., Mourelatos, Z., Gonatas, J., Okamoto, K., and Gonatas, N.K. (1998). The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golgi-network: functional implications. Acta Neuropathol. 95, 245–253.10.1007/s004010050794Search in Google Scholar PubMed

Stieber, A., Gonatas, J.O., and Gonatas, N.K. (2000). Aggregation of ubiquitin and a mutant ALS-linked SOD1 protein correlate with disease progression and fragmentation of the Golgi apparatus. J. Neurol. Sci. 173, 53–62.10.1016/S0022-510X(99)00300-7Search in Google Scholar

Sutterlin, C., Lin, C.Y., Feng, Y., Ferris, D.K., Erikson, R.L., and Malhotra, V. (2001). Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis. Proc. Natl. Acad. Sci. USA 98, 9128–9132.10.1073/pnas.161283998Search in Google Scholar

Sutterlin, C., Hsu, P., Mallabiabarrena, A., and Malhotra, V. (2002). Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109, 359–369.10.1016/S0092-8674(02)00720-1Search in Google Scholar

Sutterlin, C., Polishchuk, R., Pecot, M., and Malhotra, V. (2005). The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol. Biol. Cell 16, 3211–3222.10.1091/mbc.e04-12-1065Search in Google Scholar PubMed PubMed Central

Swaab, D.F., Dubelaar, E.J., Scherder, E.J., van Someren, E.J., and Verwer, R.W. (2003). Therapeutic strategies for Alzheimer disease: focus on neuronal reactivation of metabolically impaired neurons. Alzheimer Dis. Assoc. Disord. 17(Suppl. 4), S114–S122.10.1097/00002093-200307004-00006Search in Google Scholar PubMed

Tang, D., Mar, K., Warren, G., and Wang, Y. (2008). Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J. Biol. Chem. 283, 6085–6094.10.1074/jbc.M707715200Search in Google Scholar PubMed PubMed Central

Tang, D., Yuan, H., and Wang, Y. (2010). The role of GRASP65 in Golgi cisternal stacking and cell cycle progression. Traffic 11, 827–842.10.1111/j.1600-0854.2010.01055.xSearch in Google Scholar PubMed PubMed Central

Terrano, D.T., Upreti, M., and Chambers, T.C. (2010). Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol. Cell. Biol. 30, 640–656.10.1128/MCB.00882-09Search in Google Scholar PubMed PubMed Central

Truschel, S.T., Sengupta, D., Foote, A., Heroux, A., Macbeth, M.R., and Linstedt, A.D. (2011). Structure of the membrane-tethering GRASP domain reveals a unique PDZ ligand interaction that mediates Golgi biogenesis. J. Biol. Chem. 286, 20125–20129.10.1074/jbc.C111.245324Search in Google Scholar PubMed PubMed Central

Truschel, S.T., Zhang, M., Bachert, C., Macbeth, M.R., and Linstedt, A.D. (2012). Allosteric regulation of GRASP protein-dependent Golgi membrane tethering by mitotic phosphorylation. J. Biol. Chem. 287, 19870–19875.10.1074/jbc.M111.326256Search in Google Scholar PubMed PubMed Central

Vinke, F.P., Grieve, A.G., and Rabouille, C. (2011). The multiple facets of the Golgi reassembly stacking proteins. Biochem. J. 433, 423–433.10.1042/BJ20101540Search in Google Scholar

Walker, A., Ward, C., Sheldrake, T.A., Dransfield, I., Rossi, A.G., Pryde, J.G., and Haslett, C. (2004). Golgi fragmentation during Fas-mediated apoptosis is associated with the rapid loss of GM130. Biochem. Biophys. Res. Commun. 316, 6–11.10.1016/j.bbrc.2004.02.015Search in Google Scholar

Wang, Q., Xie, S., Chen, J., Fukasawa, K., Naik, U., Traganos, F., Darzynkiewicz, Z., Jhanwar-Uniyal, M., and Dai, W. (2002). Cell cycle arrest and apoptosis induced by human Polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol. Cell. Biol. 22, 3450–3459.10.1128/MCB.22.10.3450-3459.2002Search in Google Scholar

Wang, Y., Seemann, J., Pypaert, M., Shorter, J., and Warren, G. (2003). A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 22, 3279–3290.10.1093/emboj/cdg317Search in Google Scholar

Wang, Y., Satoh, A., and Warren, G. (2005). Mapping the functional domains of the Golgi stacking factor GRASP65. J. Biol. Chem. 280, 4921–4928.10.1074/jbc.M412407200Search in Google Scholar

Wang, L., Dai, W., and Lu, L. (2007). Stress-induced c-Jun activation mediated by Polo-like kinase 3 in corneal epithelial cells. J. Biol. Chem. 282, 32121–32127.10.1074/jbc.M702791200Search in Google Scholar

Wang, Y., Wei, J.H., Bisel, B., Tang, D., and Seemann, J. (2008). Golgi cisternal unstacking stimulates COPI vesicle budding and protein transport. PLoS One 3, e1647.10.1371/journal.pone.0001647Search in Google Scholar

Warren, G., Levine, T., and Misteli, T. (1995). Mitotic disassembly of the mammalian Golgi apparatus. Trends Cell Biol. 5, 413–416.10.1016/S0962-8924(00)89094-7Search in Google Scholar

Weide, T., Bayer, M., Koster, M., Siebrasse, J.P., Peters, R., and Barnekow, A. (2001). The Golgi matrix protein GM130: a specific interacting partner of the small GTPase rab1b. EMBO Rep. 2, 336–341.10.1093/embo-reports/kve065Search in Google Scholar PubMed PubMed Central

Wilson, B.S., Nuoffer, C., Meinkoth, J.L., McCaffery, M., Feramisco, J.R., Balch, W.E., and Farquhar, M.G. (1994). A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. J. Cell Biol. 125, 557–571.10.1083/jcb.125.3.557Search in Google Scholar PubMed PubMed Central

Wlodkowic, D., Skommer, J., McGuinness, D., Hillier, C., and Darzynkiewicz, Z. (2009). ER-Golgi network – a future target for anti-cancer therapy. Leuk. Res. 33, 1440–1447.10.1016/j.leukres.2009.05.025Search in Google Scholar PubMed PubMed Central

Xiang, Y. and Wang, Y. (2010). GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J. Cell Biol. 188, 237–251.10.1083/jcb.200907132Search in Google Scholar PubMed PubMed Central

Xiang, Y., Seemann, J., Bisel, B., Punthambaker, S., and Wang, Y. (2007). Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation. J. Biol. Chem. 282, 21829–21837.10.1074/jbc.M611716200Search in Google Scholar PubMed PubMed Central

Xiang, Y., Zhang, X., Nix, D.B., Katoh, T., Aoki, K., Tiemeyer, M., and Wang, Y. (2013). Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat. Commun. 4, 1659.10.1038/ncomms2669Search in Google Scholar PubMed PubMed Central

Yoshimura, S.I., Nakamura, N., Barr, F.A., Misumi, Y., Ikehara, Y., Ohno, H., Sakaguchi, M., and Mihara, K. (2001). Direct targeting of cis-Golgi matrix proteins to the Golgi apparatus. J. Cell Sci. 114, 4105–4115.10.1242/jcs.114.22.4105Search in Google Scholar PubMed

Yoshimura, S., Yoshioka, K., Barr, F.A., Lowe, M., Nakayama, K., Ohkuma, S., and Nakamura, N. (2005). Convergence of cell cycle regulation and growth factor signals on GRASP65. J. Biol. Chem. 280, 23048–23056.10.1074/jbc.M502442200Search in Google Scholar PubMed

Yoshiyama, Y., Zhang, B., Bruce, J., Trojanowski, J.Q., and Lee, V.M. (2003). Reduction of detyrosinated microtubules and Golgi fragmentation are linked to tau-induced degeneration in astrocytes. J. Neurosci. 23, 10662–10671.10.1523/JNEUROSCI.23-33-10662.2003Search in Google Scholar

Zhou, B.B., Li, H., Yuan, J., and Kirschner, M.W. (1998). Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc. Natl. Acad. Sci. USA 95, 6785–6790.10.1073/pnas.95.12.6785Search in Google Scholar PubMed PubMed Central

Received: 2013-6-25
Accepted: 2013-8-10
Published Online: 2013-09-03
Published in Print: 2013-10-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2013-0020/html
Scroll to top button