Accessible Unlicensed Requires Authentication Published by De Gruyter June 5, 2014

MicroRNAs in central nervous system development

Néstor F. Díaz, Mónica S. Cruz-Reséndiz, Héctor Flores-Herrera, Guadalupe García-López and Anayansi Molina-Hernández


During early and late embryo neurodevelopment, a large number of molecules work together in a spatial and temporal manner to ensure the adequate formation of an organism. Diverse signals participate in embryo patterning and organization synchronized by time and space. Among the molecules that are expressed in a temporal and spatial manner, and that are considered essential in several developmental processes, are the microRNAs (miRNAs). In this review, we highlight some important aspects of the biogenesis and function of miRNAs as well as their participation in ectoderm commitment and their role in central nervous system (CNS) development. Instead of giving an extensive list of miRNAs involved in these processes, we only mention those miRNAs that are the most studied during the development of the CNS as well as the most likely mRNA targets for each miRNA and its protein functions.

Corresponding author: Anayansi Molina-Hernández, Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, México, e-mail: ;


The research of our group is supported by the Instituto Nacional de Perinatología and the Consejo Nacional de Ciencia y Tecnología. M.S. Cruz-Reséndiz received a Consejo Nacional de Ciencia y Tecnología fellowship at the Programa de Posgrado en Ciencias Biológicas at the Universidad Nacional Autónoma de México. We thank David Connolly and Adam Pixler for the language editing and correction.

Conflict of interest statement

Competing interests: The authors have declared that no competing interests exist.

Authors’ contributions: All authors participated in the preparation of the manuscript and read and approved the final manuscript.


Aboobaker, A.A., Tomancak, P., Patel, N., Rubin, G.M., and Lai, E.C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl. Acad. Sci. USA 102, 18017–18022.Search in Google Scholar

Alvarez-Buylla, A., Kohwi, M., Nguyen, T.M., and Merkle, F.T. (2008). The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb. Symp. Quant. Biol. 73, 357–365.Search in Google Scholar

Barbato, C., Ruberti, F., Pieri, M., Vilardo, E., Costanzo, M., Ciotti, M.T., Zona, C., and Cogoni, C. (2010). MicroRNA-92 modulates K+ Cl- co-transporter KCC2 expression in cerebellar granule neurons. J. Neurochem. 113, 591–600.Search in Google Scholar

Barca-Mayo, O. and De Pietri Tonelli, D. (2014). Convergent microRNA actions coordinate neocortical development. Cell. MoLi, L.fe Sci. DOI 10.1007/s00018-014-1576-5.Search in Google Scholar

Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.Search in Google Scholar

Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.Search in Google Scholar

Berezikov, E., Chung, W.J., Willis, J., Cuppen, E., and Lai, E.C. (2007). Mammalian mirtron genes. Mol. Cell. 28, 328–336.Search in Google Scholar

Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., and Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124.Search in Google Scholar

Blaesse, P., Airaksinen, M.S., Rivera, C., and Kaila, K. (2009). Cation-chloride cotransporters and neuronal function. Neuron 61, 820–838.Search in Google Scholar

Boeri, M., Verri, C., Conte, D., Roz, L., Modena, P., Facchinetti, F., Calabro, E., Croce, C.M., Pastorino, U., and Sozzi, G. (2011). MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 108, 3713–3718.Search in Google Scholar

Borchert, G.M., Lanier, W., and Davidson, B.L. (2006). RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097–1101.Search in Google Scholar

Candiani, S., Moronti, L., De Pietri Tonelli, D., Garbarino, G., and Pestarino, M. (2011). A study of neural-related microRNAs in the developing amphioxus. Evodevo 2, 15.Search in Google Scholar

Cao, X., Pfaff, S.L., and Gage, F.H. (2007). A functional study of miR-124 in the developing neural tube. Genes Dev. 21, 531–536.Search in Google Scholar

Caygill, E.E. and Johnston, L.A. (2008). Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18, 943–950.Search in Google Scholar

Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., Lawson, N.D., et al. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698.Search in Google Scholar

Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949.Search in Google Scholar

Colas, A.R., McKeithan, W.L., Cunningham, T.J., Bushway, P.J., Garmire, L.X., Duester, G., Subramaniam, S., and Mercola, M. (2012). Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. Genes Dev. 26, 2567–2579.Search in Google Scholar

Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl. Acad. Sci. USA 103, 2422–2427.Search in Google Scholar

Cortez, M.A. and Calin, G.A. (2009). MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 9, 703–711.Search in Google Scholar

Cortez, M.A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A.K., and Calin, G.A. (2011). MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8, 467–477.Search in Google Scholar

Chalfie, M., Horvitz, H.R., and Sulston, J.E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59–69.Search in Google Scholar

Cheloufi, S., Dos Santos, C.O., Chong, M.M., and Hannon, G.J. (2010). A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589.Search in Google Scholar

Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006.Search in Google Scholar

Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman. J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744.Search in Google Scholar

Cheng, L.C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408.Search in Google Scholar

Choi, P.S., Zakhary, L., Choi, Y.W., Caron, S., Alvarez-Saavedra, E., Miska, E.A., McManus, M., Harfe, B., Giraldez, A.J., Horvitz, H.R., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57, 41–55.Search in Google Scholar

Chung, W.J., Agius, P., Westholm, J.O., Chen, M., Okamura, K., Robine, N., Leslie, C.S., and Lai, E.C. (2011). Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res. 21, 286–300.Search in Google Scholar

Darnell, D.K., Kaur, S., Stanislaw, S., Konieczka, J.H., Yatskievych, T.A., and Antin, P.B. (2006). MicroRNA expression during chick embryo development. Dev. Dyn. 235, 3156–3165.Search in Google Scholar

Davis, T.H., Cuellar, T.L., Koch, S.M., Barker, A.J., Harfe, B.D., McManus, M.T., and Ullian, E.M. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 28, 4322–4330.Search in Google Scholar

Delaloy, C., Liu, L., Lee, J.A., Su, H., Shen, F., Yang, Y.G., Young, W.L., Ivey, K.N., and Gao, F.B. (2010). MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell. 6, 323–335.Search in Google Scholar

Doench, J.G. and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511.Search in Google Scholar

Du, T. and Zamore, P.D. (2005). microPrimer: the biogenesis and function of microRNA. Development 132, 4645–4652.Search in Google Scholar

Du, Z.W., Ma, L.X., Phillips, C., and Zhang, S.C. (2013). miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development 140, 2611–2618.Search in Google Scholar

Fiore, R., Siegel, G., and Schratt, G. (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim. Biophys. Acta 1779, 471–478.Search in Google Scholar

Frank, F., Sonenberg, N., and Nagar, B. (2010). Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822.Search in Google Scholar

Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.Search in Google Scholar

Gage, F.H., Kempermann, G., Palmer, T.D., Peterson, D.A., and Ray, J. (1998). Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249–266.Search in Google Scholar

Gao, F.B. (2010). Context-dependent functions of specific microRNAs in neuronal development. Neural Dev. 5, 25.Search in Google Scholar

Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., and Zamore, P.D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43–56.Search in Google Scholar

Gil-Perotin, S., Alvarez-Buylla, A., and Garcia-Verdugo, J.M. (2009). Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv. Anat. Embryol. Cell. Biol. 203, 1–101, ix.Search in Google Scholar

Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., et al. (2008). Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148.Search in Google Scholar

Greene, N.D. and Copp, A.J. (2012). Could microRNAs be biomarkers for neural tube defects? J. Neurochem. 122, 485–486.Search in Google Scholar

Griffiths-Jones, S., Grocock, R.J., Van Dongen, S., Bateman, A., and Enright, A.J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144.Search in Google Scholar

Gu, H., Li, H., Zhang, L., Luan, H., Huang, T., Wang, L., Fan, Y., Zhang, Y., Liu, X., Wang, W., et al. (2012). Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects. J. Neurochem. 122, 641–649.Search in Google Scholar

Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., and Kim, V.N. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901.Search in Google Scholar

Hebert, S.S. and De Strooper, B. (2007). Molecular biology. miRNAs in neurodegeneration. Science 317, 1179–1180.Search in Google Scholar

Hutchison, M., Berman, K.S., and Cobb, M.H. (1998). Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. J. Biol. Chem. 273, 28625–28632.Search in Google Scholar

Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.Search in Google Scholar

Ji, F., Lv, X., and Jiao, J. (2013). The role of microRNAs in neural stem cells and neurogenesis. J. Genet. Genomics 40, 61–66.Search in Google Scholar

Kapsimali, M., Kloosterman, W.P., De Bruijn, E., Rosa, F., Plasterk, R.H., and Wilson, S.W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 8, R173.Search in Google Scholar

Kaspi, H., Chapnik, E., Levy, M., Beck, G., Hornstein, E., and Soen, Y. (2013). Brief report: miR-290-295 regulate embryonic stem cell differentiation propensities by repressing Pax6. Stem Cells 31, 2266–2272.Search in Google Scholar

Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., Hannon, G., and Abeliovich, A. (2007). A microRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224.Search in Google Scholar

Kloosterman, W.P., Wienholds, E., De Bruijn, E., Kauppinen, S., and Plasterk, R.H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29.Search in Google Scholar

Kozomara, A. and Griffiths-Jones, S. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157.Search in Google Scholar

Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281.Search in Google Scholar

Krichevsky, A.M., Sonntag, K.C., Isacson, O., and Kosik, K.S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857–864.Search in Google Scholar

Kulkarni, M., Ozgur, S., and Stoecklin, G. (2010). On track with P-bodies. Biochem. Soc. Trans. 38, 242–251.Search in Google Scholar

Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003). New microRNAs from mouse and human. RNA 9, 175–179.Search in Google Scholar

Le, M.T., Xie, H., Zhou, B., Chia, P.H., Rizk, P., Um, M., Udolph, G., Yang, H., Lim, B., and Lodish, H.F. (2009). MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol. 29, 5290–5305.Search in Google Scholar

Le, M.T.N., Teh, C., Shyh-Chang, N., Korzh, V., Lodish, H.F., and Lim, B. (2010). Function of miR-125b in zebrafish neurogenesis. Int. J. Biol. Life Sci. Eng. 4, 635–640.Search in Google Scholar

Le, M.T., Shyh-Chang, N., Khaw, S.L., Chin, L., Teh, C., Tay, J., O’Day, E., Korzh, V., Yang, H., Lal, A., et al. (2011). Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 7, e1002242.Search in Google Scholar

Lee, R.C. and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.Search in Google Scholar

Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.Search in Google Scholar

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.Search in Google Scholar

Lewis, B. P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798.Search in Google Scholar

Lichner, Z., Pall, E., Kerekes, A., Pallinger, E., Maraghechi, P., Bosze, Z., and Gocza, E. (2011). The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells. Differentiation 81, 11–24.Search in Google Scholar

Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, S.P., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.Search in Google Scholar

Liu, N., Okamura, K., Tyler, D.M., Phillips, M.D., Chung, W.J., and Lai, E.C. (2008). The evolution and functional diversification of animal microRNA genes. Cell Res. 18, 985–996.Search in Google Scholar

Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.Search in Google Scholar

Maiorano, N.A. and Mallamaci, A. (2009). Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Dev. 4, 40.Search in Google Scholar

Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T. (2007). The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell. 27, 435–448.Search in Google Scholar

Marcelis, C.L., Hol, F.A., Graham, G.E., Rieu, P.N., Kellermayer, R., Meijer, R.P., Lugtenberg, D., Scheffer, H., Van Bokhoven, H., Brunner, H.G., et al. (2008). Genotype-phenotype correlations in MYCN-related Feingold syndrome. Hum. Mutat. 29, 1125–1132.Search in Google Scholar

Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533.Search in Google Scholar

Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M., and Horvitz, H.R. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68.Search in Google Scholar

Miska, E.A., Alvarez-Saavedra, E., Abbott, A.L., Lau, N.C., Hellman, A.B., McGonagle, S.M., Bartel, D.P., Ambros, V.R., and Horvitz, H.R. (2007). Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215.Search in Google Scholar

Mogilyansky, E. and Rigoutsos, I. (2013). The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20, 1603–1614.Search in Google Scholar

Nan, Y., Han, L., Zhang, A., Wang, G., Jia, Z., Yang, Y., Yue, X., Pu, P., Zhong, Y., and Kang, C. (2010). miRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res. 1359, 14–21.Search in Google Scholar

Nielsen, J.A., Lau, P., Maric, D., Barker, J.L., and Hudson, L.D. (2009). Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. BMC Neurosci. 10, 98.Search in Google Scholar

Olguin, P., Oteiza, P., Gamboa, E., Gomez-Skarmeta, J.L., and Kukuljan, M. (2006). RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. J. Neurosci. 26, 2820–2829.Search in Google Scholar

Olsen, P.H. and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680.Search in Google Scholar

Papagiannakopoulos, T. and Kosik, K.S. (2009). MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4, 375–376.Search in Google Scholar

Qureshi, I.A. and Mehler, M.F. (2012). Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528–541.Search in Google Scholar

Rabinowits, G., Gercel-Taylor, C., Day, J.M., Taylor, D.D., and Kloecker, G.H. (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46.Search in Google Scholar

Rajasekharan, S. and Kennedy, T.E. (2009). The netrin protein family. Genome Biol. 10, 239.Search in Google Scholar

Raman, M., Earnest, S., Zhang, K., Zhao, Y., and Cobb, M.H. (2007). TAO kinases mediate activation of p38 in response to DNA damage. EMBO J. 26, 2005–2014.Search in Google Scholar

Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.Search in Google Scholar

Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513–520.Search in Google Scholar

Roese-Koerner, B., Stappert, L., Koch, P., Brustle, O., and Borghese, L. (2013). Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr. Mol. Med. 13, 707–722.Search in Google Scholar

Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86.Search in Google Scholar

Sarver, A.L., Li, L., and Subramanian, S. (2010). MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 70, 9570–9580.Search in Google Scholar

Saurat, N., Andersson, T., Vasistha, N.A., Molnar, Z., and Livesey, F.J. (2013). Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 8, 14.Search in Google Scholar

Schaefer, A., O’Carroll, D., Tan, C.L., Hillman, D., Sugimori, M., Llinas, R., and Greengard, P. (2007). Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204, 1553–1558.Search in Google Scholar

Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13.Search in Google Scholar

Seo, S., Lim, J.W., Yellajoshyula, D., Chang, L.W., and Kroll, K.L. (2007). Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. EMBO J. 26, 5093–5108.Search in Google Scholar

Smirnova, L., Grafe, A., Seiler, A., Schumacher, S., Nitsch, R., and Wulczyn, F.G. (2005). Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21, 1469–1477.Search in Google Scholar

Suter, D.M., Tirefort, D., Julien, S., and Krause, K.H. (2009). A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells 27, 49–58.Search in Google Scholar

Takayama, C. and Inoue, Y. (2007). Developmental localization of potassium chloride co-transporter 2 (KCC2) in the Purkinje cells of embryonic mouse cerebellum. Neurosci. Res. 57, 322–325.Search in Google Scholar

Taylor, D.D. and Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21.Search in Google Scholar

Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524.Search in Google Scholar

Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749.Search in Google Scholar

Weston, M.D., Pierce, M.L., Rocha-Sanchez, S., Beisel, K.W., and Soukup, G.A. (2006). MicroRNA gene expression in the mouse inner ear. Brain Res. 1111, 95–104.Search in Google Scholar

Wienholds, E. and Plasterk, R.H. (2005). MicroRNA function in animal development. FEBS Lett. 579, 5911–5922.Search in Google Scholar

Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., De Bruijn, E., Horvitz, H.R., Kauppinen, S., and Plasterk, R.H. (2005). MicroRNA expression in zebrafish embryonic development. Science 309, 310–311.Search in Google Scholar

Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.Search in Google Scholar

Wu, L. and Belasco, J.G. (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 25, 9198–9208.Search in Google Scholar

Wu, M.F. and Wang, S.G. (2008). Human TAO kinase 1 induces apoptosis in SH-SY5Y cells. Cell. Biol. Int. 32, 151–156.Search in Google Scholar

Yang, J.S. and Lai, E.C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell. 43, 892–903.Search in Google Scholar

Yang, J.S., Maurin, T., Robine, N., Rasmussen, K.D., Jeffrey, K.L., Chandwani, R., Papapetrou, E.P., Sadelain, M., O’Carroll, D., and Lai, E.C. (2010). Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168.Search in Google Scholar

Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.Search in Google Scholar

Yoo, A.S., Staahl, B.T., Chen, L., and Crabtree, G.R. (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646.Search in Google Scholar

Yu, J.Y., Chung, K.H., Deo, M., Thompson, R.C., and Turner, D.L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell. Res. 314, 2618–2633.Search in Google Scholar

Yu, B., Ma, H., Du, Z., Hong, Y., Sang, M., Liu, Y., and Shi, Y. (2011). Involvement of calmodulin and actin in directed differentiation of rat cortical neural stem cells into neurons. Int. J. Mol. Med. 28, 739–744.Search in Google Scholar

Zeng, Y., Wagner, E.J., and Cullen, B.R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell. 9, 1327–1333.Search in Google Scholar

Zhang, X., Huang, C.T., Chen, J., Pankratz, M.T., Xi, J., Li, J., Yang, Y., Lavaute, T.M., Li, X.J., Ayala, M., et al. (2010). Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7, 90–100.Search in Google Scholar

Zhang, Z., Li, S., and Cheng, S.Y. (2013). The miR-183 approximately 96 approximately 182 cluster promotes tumorigenesis in a mouse model of medulloblastoma. J. Biomed. Res. 27, 486–494.Search in Google Scholar

Zhao, C., Sun, G., Li, S., and Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol. 16, 365–371.Search in Google Scholar

Received: 2014-2-17
Accepted: 2014-5-13
Published Online: 2014-6-5
Published in Print: 2014-10-1

©2014 by De Gruyter