Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 12, 2014

An insight into advances in the pathogenesis and therapeutic strategies of spinocerebellar ataxia type 3

  • Yan Wu , Ying Peng EMAIL logo and Yidong Wang EMAIL logo

Abstract

Spinocerebellar ataxia type 3 (SCA3) is the most common type of spinocerebellar ataxia, which are inherited neurodegenerative diseases. CAG repeat expansions that translate into an abnormal length of glutamine residues are considered to be the disease-causing mutation. The pathological mechanisms of SCA3 are not fully elucidated but may include aggregate or inclusion formation, imbalance of cellular protein homeostasis, axonal transportation dysfunction, translation dysregulation, mitochondrial damage and oxidative stress, abnormal neural signaling pathways, etc. Currently, symptom relief is the only available therapeutic route; however, promising therapeutic targets have been discovered, such as decreasing the mutant protein through RNA interference (RNAi) and antisense oligonucleotides (AONs) and replacement therapy using stem cell transplantation. Other potential targets can inhibit the previously mentioned pathological mechanisms. However, additional efforts are necessary before these strategies can be used clinically.


Corresponding authors: Ying Peng and Yidong Wang, Neurology Department, Sun Yat-sen Memorial Hospital, No. 107 Yanjian West Road, Guangzhou City, Guangdong Province, Guangzhou 510080, China, e-mail: ,

References

Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., Kusakabe, M., Yoshiki, A., Kobayashi, Y., Doyu, M., et al. (2003). Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J. Neurosci. 23, 2203–2211.10.1523/JNEUROSCI.23-06-02203.2003Search in Google Scholar

Alves, S., Nascimento-Ferreira, I., Dufour, N., Hassig, R., Auregan, G., Nóbrega, C., Brouillet, E., Hantraye, P., Pedroso de Lima, M.C., Déglon, N., et al. (2010). Silencing ataxin-3 mitigates degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-3? Hum. Mol. Genet. 19, 2380–2394.10.1093/hmg/ddq111Search in Google Scholar PubMed

Antony, P.M., Mäntele, S., Mollenkopf, P., Bo, J., Kehlenbach, R.H., Riess, O., and Schmidt, T. (2009). Identification and functional dissection of localization signals within ataxin-3. Neurobiol. Dis. 36, 280–292.10.1016/j.nbd.2009.07.020Search in Google Scholar PubMed

Araujo, J., Breuer, P., Dieringer, S., Krauss, S., Dorn, S., Zimmermann, K., Pfeifer, A., Klockgether, T., Wuellner, U., and Evert, B.O. (2011). FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum. Mol. Genet. 20, 2928–2941.10.1093/hmg/ddr197Search in Google Scholar PubMed

Bauer, P.O., Wong, H.K., Oyama, F., Goswami, A., Okuno, M., Kino, Y., Miyazaki, H., and Nukina, N. (2009). Inhibition of Rho kinases enhances the degradation of mutant huntingtin. J. Biol. Chem. 284, 13153–13164.10.1074/jbc.M809229200Search in Google Scholar PubMed PubMed Central

Berger, Z., Ravikumar, B., Menzies, F.M., Oroz, L.G., Underwood, B.R., Pangalos, M.N., Schmitt, I., Wullner, U., Evert, B.O., O’Kane, C.J., et al. (2006). Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442.10.1093/hmg/ddi458Search in Google Scholar PubMed

Bilen, J., Liu, N., Burnett, B.G., Pittman, R.N., and Bonini, N.M. (2006). MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol. Cell 24, 157–163.10.1016/j.molcel.2006.07.030Search in Google Scholar PubMed

Breuer, P., Haacke, A., Evert, B.O., and Wüllner, U. (2010). Nuclear aggregation of polyglutamine-expanded ataxin-3: fragments escape the cytoplasmic quality control. J. Biol. Chem. 285, 6532–6537.10.1074/jbc.M109.036335Search in Google Scholar PubMed PubMed Central

Burnett, B. and Pittman, R.N. (2005). The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc. Natl. Acad. Sci. USA 102, 4330–4335.10.1073/pnas.0407252102Search in Google Scholar PubMed PubMed Central

Burnett, B., Li, F., and Pittman, R.N. (2003). The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12, 3195–3205.10.1093/hmg/ddg344Search in Google Scholar PubMed

Chai, Y., Koppenhafer, S.L., Bonini, N.M., and Paulson, H.L. (1999). Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19, 10338–10347.10.1523/JNEUROSCI.19-23-10338.1999Search in Google Scholar

Chai, Y., Wu, L., Griffin, J.D., and Paulson, H.L. (2001). The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J. Biol. Chem. 276, 44889–44897.10.1074/jbc.M106575200Search in Google Scholar

Chang, W.H., Tien, C.L., Chen, T.J., Nukina, N., and Hsieh, M. (2009). Decreased protein synthesis of Hsp27 associated with cellular toxicity in a cell model of Machado-Joseph disease. Neurosci. Lett. 454, 152–156.10.1016/j.neulet.2009.03.004Search in Google Scholar

Chen, X., Tang, T.S., Tu, H., Nelson, O., Pook, M., Hammer, R., Nukina, N., and Bezprozvanny, I. (2008). Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J. Neurosci. 28, 12713–12724.10.1523/JNEUROSCI.3909-08.2008Search in Google Scholar

Chou, A.H., Yeh, T.H., Ouyang, P., Chen, Y.L., Chen, S.Y., and Wang, H.L. (2008). Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol. Dis. 31, 89–101.10.1016/j.nbd.2008.03.011Search in Google Scholar

Cirak, S., Arechavala-Gomeza, V., Guglieri, M., Feng, L., Torelli, S., Anthony, K., Abbs, S., Garralda, M.E., Bourke, J., Wells, D.J., et al. (2011). Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378, 595–605.10.1016/S0140-6736(11)60756-3Search in Google Scholar

Cushman-Nick, M., Bonini, N.M., and Shorter, J. (2013). Hsp104 suppresses polyglutamine-induced degeneration post onset in a Drosophila MJD/SCA3 model. PLoS Genet. 9, e1003781.10.1371/journal.pgen.1003781Search in Google Scholar

do Carmo Costa, M., Bajanca, F., Rodrigues, A.J., Tomé, R.J., Corthals, G., Macedo-Ribeiro, S., Paulson, H.L., Logarinho, E., and Maciel, P. (2010). Ataxin-3 plays a role in mouse myogenic differentiation through regulation of integrin subunit levels. PloS One 5, e11728.Search in Google Scholar

Durcan, T.M., Kontogiannea, M., Thorarinsdottir, T., Fallon, L., Williams, A.J., Djarmati, A., Fantaneanu, T., Paulson, H.L., and Fon, E.A. (2011). The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum. Mol. Genet. 20, 141–154.10.1093/hmg/ddq452Search in Google Scholar

Durr, A. (2010). Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 9, 885–894.10.1016/S1474-4422(10)70183-6Search in Google Scholar

Evers, M.M., Pepers, B.A., van Deutekom, J.C., Mulders, S.A., den Dunnen, J.T., Aartsma-Rus, A., van Ommen, G.J., and van Roon-Mom, W.M. (2011). Targeting several CAG expansion diseases by a single antisense oligonucleotide. PloS One 6, e24308.10.1371/journal.pone.0024308Search in Google Scholar PubMed PubMed Central

Evers, M.M., Tran, H.D., Zalachoras, I., Pepers, B.A., Meijer, O.C., den Dunnen, J.T., van Ommen, G.J., Aartsma-Rus, A., and van Roon-Mom, W.M. (2013). Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol. Dis. 58, 49–56.10.1016/j.nbd.2013.04.019Search in Google Scholar PubMed

Evert, B.O., Vogt, I.R., Vieira-Saecker, A.M., Ozimek, L., de Vos, R.A., Brunt, E.R., Klockgether, T., and Wüllner, U. (2003). Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3. J. Neuropathol. Exp. Neurol. 62, 1006–1018.10.1093/jnen/62.10.1006Search in Google Scholar PubMed

Evert, B.O., Vogt, I.R., Kindermann, C., Ozimek, L., de Vos, R.A., Brunt, E.R., Schmitt, I., Klockgether, T., and Wüllner, U. (2011). Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J. Neurosci. 21, 5389–5396.10.1523/JNEUROSCI.21-15-05389.2001Search in Google Scholar

Fan, H.C., Ho, L.I., Chi, C.S., Chen, S.J., Peng, G.S., Chan, T.M., Lin, S.Z. and Harn, H.J. (2014). Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 23, 441–458.10.3727/096368914X678454Search in Google Scholar PubMed

Gaspar, C., Lopes-Cendes, I., Hayes, S., Goto, J., Arvidsson, K., Dias, A., Silveira, I., Maciel, P., Coutinho, P., Lima, M., et al. (2001). Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am. J. Hum. Genet. 68, 523–528.10.1086/318184Search in Google Scholar PubMed PubMed Central

Hersch, S.M., Gevorkian, S., Marder, K., Moskowitz, C., Feigin, A., Cox, M., Como, P., Zimmerman, C., Lin, M., Zhang, L., et al. (2006). Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 66, 250–252.10.1212/01.wnl.0000194318.74946.b6Search in Google Scholar PubMed

Hu, J., Gagnon, K.T., Liu, J., Watts, J.K., Syeda-Nawaz, J., Bennett, C.F., Swayze, E.E., Randolph, J., Chattopadhyaya, J., and Corey, D.R. (2011). Allele-selective inhibition of ataxin-3 (ATX3) expression by anti-sense oligomers and duplex RNAs. Biol. Chem. 392, 315–325.10.1515/bc.2011.045Search in Google Scholar

Hyson, H.C., Kieburtz, K., Shoulson, I., McDermott, M., Ravina, B., de Blieck, E.A., Cudkowicz, M.E., Ferrante, R.J., Como, P., Frank, S., et al. (2010). Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov. Disord. 25, 1924–1928.10.1002/mds.22408Search in Google Scholar PubMed

Ichikawa, Y., Goto, J., Hattori, M., Toyoda, A., Ishii, K., Jeong, S.Y., Hashida, H., Masuda, N., Ogata, K., Kasai, F., et al. (2001). The genomic structure and expression of MJD, the Machado-Joseph disease gene. J. Hum. Genet. 46, 413–422.10.1007/s100380170060Search in Google Scholar PubMed

Igarashi, S., Takiyama, Y., Cancel, G., Rogaeva, E.A., Sasaki, H., Wakisaka, A., Zhou, Y.X., Takano, H., Endo, K., Sanpei, K., et al. (1996). Intergenerational instability of the CAG repeat of the gene for Machado-Joseph disease (MJD1) is affected by the genotype of the normal chromosome: implications for the molecular mechanisms of the instability of the CAG repeat. Hum. Mol. Genet. 5, 923–932.10.1093/hmg/5.7.923Search in Google Scholar PubMed

Jardim, L.B., Pereira, M.L., Silveira, I., Ferro, A., Sequeiros, J., and Giugliani, R. (2001). Neurologic findings in Machado-Joseph disease: relation with disease duration, subtypes, and (CAG)n. Arch. Neurol. 58, 899–904.10.1001/archneur.58.6.899Search in Google Scholar PubMed

Jung, J., Xu, K., Lessing, D., and Bonini, N.M. (2009). Preventing ataxin-3 protein cleavage mitigates degeneration in a Drosophila model of SCA3. Hum. Mol. Genet. 18, 4843–4852.10.1093/hmg/ddp456Search in Google Scholar PubMed PubMed Central

Kazachkova, N., Raposo, M., Montiel, R., Cymbron, T., Bettencourt, C., Silva-Fernandes, A., Silva, S., Maciel, P., and Lima, M. (2012). Patterns of mitochondrial DNA damage in blood and brain tissues of a transgenic mouse model of Machado-Joseph disease. Neurodegener. Dis. 11, 206–214.10.1159/000339207Search in Google Scholar PubMed

Koch, P., Breuer, P., Peitz, M., Jungverdorben, J., Kesavan, J., Poppe, D., Doerr, J., Ladewig, J., Mertens, J., Tüting, T., et al. (2011). Excitation- induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480, 543–546.10.1038/nature10671Search in Google Scholar PubMed

Kordasiewicz, H.B., Stanek, L.M., Wancewicz, E.V., Mazur, C., McAlonis, M.M., Pytel, K.A., Artates, J.W., Weiss, A., Cheng, S.H., Shihabuddin, L.S., et al. (2012). Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044.10.1016/j.neuron.2012.05.009Search in Google Scholar PubMed PubMed Central

Landschulz, W.H., Johnson, P.F., and McKnight, S.L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764.10.1126/science.3289117Search in Google Scholar PubMed

Li, F., Macfarlan, T., Pittman, R.N., and Chakravarti, D. (2002). Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Chem. 277, 45004–45012.10.1074/jbc.M205259200Search in Google Scholar PubMed

Li, L.B., Yu, Z., Teng, X., and Bonini, N.M. (2008). RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111.10.1038/nature06909Search in Google Scholar PubMed PubMed Central

Liu, J., Pendergraff, H., Narayanannair, K.J., Lackey, J.G., Kuchimanchi, S., Rajeev, K.G., Manoharan, M., Hu, J., and Corey, D.R. (2013a). RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression. Nucleic Acids Res. 41, 8788–8801.10.1093/nar/gkt594Search in Google Scholar PubMed PubMed Central

Liu, J., Yu, D., Aiba, Y., Pendergraff, H., Swayze, E.E., Lima, W.F., Hu, J., Prakash, T.P., and Corey, D.R. (2013b). ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy. Nucleic Acids Res. 41, 95780–95783.10.1093/nar/gkt693Search in Google Scholar PubMed PubMed Central

Maciel, P., Lopes-Cendes, I., Kish, S., Sequeiros, J., and Rouleau, G.A. (1997). Mosaicism of the CAG repeat in CNS tissue in relation to age at death in spinocerebellar ataxia type 1 and Machado-Joseph disease patients. Am. J. Hum. Genet. 60, 993–996.Search in Google Scholar

Martínez-Morales, P.L., Revilla, A., Ocaña, I., González, C., Sainz, P., McGuire, D., and Liste, I. (2013). Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. 9, 685–699.10.1007/s12015-013-9443-6Search in Google Scholar

Masino, L., Nicastro, G., De Simone, A., Calder, L., Molloy, J., and Pastore, A. (2011). The Josephin domain determines the morphological and mechanical properties of ataxin-3 fibrils. Biophys. J. 100, 2033–2042.10.1016/j.bpj.2011.02.056Search in Google Scholar

Masino, L., Musi, V., Menon, R.P., Fusi, P., Kelly, G., Frenkiel, T.A., Trottier, Y., and Pastore, A. (2013). Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Lett. 549, 21–25.10.1016/S0014-5793(03)00748-8Search in Google Scholar

Mazzini, L., Ferrero, I., Luparello, V., Rustichelli, D., Gunetti, M., Mareschi, K., Testa, L., Stecco, A., Tarletti, R., Miglioretti, M., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp. Neurol. 223, 229–237.10.1016/j.expneurol.2009.08.007Search in Google Scholar

Menzies, F.M., Huebener, J., Renna, M., Bonin, M., Riess, O., and Rubinsztein, D.C. (2010). Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133, 93–104.10.1093/brain/awp292Search in Google Scholar

Miller, T.M., Pestronk, A., David, W., Rothstein, J., Simpson, E., Appel, S.H., Andres, P.L., Mahoney, K., Allred, P., Alexander, K., et al. (2013). An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 12, 435–442.10.1016/S1474-4422(13)70061-9Search in Google Scholar

Minamiyama, M., Katsuno, M., Adachi, H., Waza, M., Sang, C., Kobayashi, Y., Tanaka, F., Doyu, M., Inukai, A., and Sobue, G. (2004). Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 13, 1183–1192.10.1093/hmg/ddh131Search in Google Scholar PubMed

Mueller, T., Breuer, P., Schmitt, I., Walter, J., Evert, B.O., and Wüllner, U. (2009). CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum. Mol. Genet. 28, 3334–3343.10.1093/hmg/ddp274Search in Google Scholar PubMed

Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803.10.1083/jcb.200809125Search in Google Scholar PubMed PubMed Central

Nascimento-Ferreira, I., Santos-Ferreira, T., Sousa-Ferreira, L., Auregan, G., Onofre, I., Alves, S., Dufour, N., Colomer Gould, V.F., Koeppen, A., Déglon, N., et al. (2011). Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134, 1400–1415.10.1093/brain/awr047Search in Google Scholar PubMed

Natalello, A., Frana, A.M., Relini, A., Apicella, A., Invernizzi, G., Casari, C., Gliozzi, A., Doglia, S.M., Tortora, P., and Regonesi, M.E. (2011). A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. PLoS One 6, e18789.10.1371/journal.pone.0018789Search in Google Scholar PubMed PubMed Central

Nicastro, G., Masino, L., Esposito, V., Menon, R.P., De Simone, A., Fraternali, F., and Pastore, A. (2009). Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 91, 1203–1214.10.1002/bip.21210Search in Google Scholar PubMed

Reina, C.P., Zhong, X., and Pittman, R.N. (2010). Proteotoxic stress increases nuclear localization of ataxin-3. Hum. Mol. Genet. 19, 235–249.10.1093/hmg/ddp482Search in Google Scholar PubMed PubMed Central

Robertson, A.L., Headey, S.J., Saunders, H.M., Ecroyd, H., Scanlon, M.J., Carver, J.A., and Bottomley, S.P. (2010). Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 107, 10424–10429.10.1073/pnas.0914773107Search in Google Scholar PubMed PubMed Central

Rosenberg, R.N. (1992). Machado-Joseph disease: an autosomal dominant motor system degeneration. Mov. Disord. 7, 193–203.10.1002/mds.870070302Search in Google Scholar PubMed

Saute, J.A., de Castilhos, R.M., Monte, T.L., Schmache-Schuh, A.F., Donis, K.C., D’Ávila, R., Souza, G.N., Russo, A.D., Furtado, G.V., Gheno, T.C., et al. (2014). A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov. Disord. 29, 568–573.10.1002/mds.25803Search in Google Scholar PubMed

Scaglione, K.M., Zavodszky, E., Todi, S.V., Patury, S., Xu, P., Rodríguez-Lebrón, E., Fischer, S., Konen, J., Djarmati, A., Peng, J., et al. (2011). Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. Mol. Cell 43, 599–612.10.1016/j.molcel.2011.05.036Search in Google Scholar PubMed PubMed Central

Schilling, G., Savonenko, A.V., Coonfield, M.L., Morton, J.L., Vorovich, E., Gale, A., Neslon, C., Chan, N., Eaton, M., Fromholt, D., et al. (2004). Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. Exp. Neurol. 187, 137–149.10.1016/j.expneurol.2004.01.003Search in Google Scholar PubMed

Schmidt, T., Landwehrmeyer, G.B., Schmitt, I., Trottier, Y., Auburger, G., Laccone, F., Klockgether, T., Völpel, M., Epplen, J.T., Schöls, L., et al. (1998). An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol. 8, 669–679.10.1111/j.1750-3639.1998.tb00193.xSearch in Google Scholar PubMed PubMed Central

Seidel, K., den Dunnen, W.F., Schultz, C., Paulson, H., Frank, S., de Vos, R.A., Brunt, E.R., Deller, T., Kampinga, H.H., and Rüb, U. (2010). Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol. 120, 449–460.10.1007/s00401-010-0717-7Search in Google Scholar PubMed PubMed Central

Sequeiros, J. and Coutinho, P. (1993). Epidemiology and clinical aspects of Machado-Joseph disease. Adv. Neurol. 61, 139–153.Search in Google Scholar

Shakkottai, V.G., do Carmo Costa, M., Dell’Orco, J.M., Sankaranarayanan, A., Wulff, H., and Paulson, H.L. (2011). Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J. Neurosci. 31, 13002–13014.10.1523/JNEUROSCI.2789-11.2011Search in Google Scholar PubMed PubMed Central

Silva-Fernandes, A., Costa Mdo, C., Duarte-Silva, S., Oliveira, P., Botelho, C.M., Martins, L., Mariz, J.A., Ferreira, T., Ribeiro, F., Correia-Neves, M., et al. (2010). Motor uncoordination and neuropathology in a transgenic mouse model of Machado-Joseph disease lacking intranuclear inclusions and ataxin-3 cleavage products. Neurobiol. Dis. 40, 163–176.10.1016/j.nbd.2010.05.021Search in Google Scholar PubMed

Silva-Fernandes, A., Duarte-Silva, S., Neves-Carvalho, A., Amorim, M., Soares-Cunha, C., Oliveira, P., Thirstrup, K., Teixeira-Castro, A., and Maciel, P. (2014). Chronic treatment with 17-DMAG improves balance and coordination in a new mouse model of Machado-Joseph disease. Neurotherapeutics 11, 433–449.10.1007/s13311-013-0255-9Search in Google Scholar PubMed PubMed Central

Simões, A.T., Gonçalves, N., Koeppen, A., Déglon, N., Kügler, S., Duarte, C.B., and Pereira de Almeida, L. (2012). Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Brain 135, 2428–2439.10.1093/brain/aws177Search in Google Scholar PubMed

Snyder-Keller, A., McLear, J.A., Hathorn, T., and Messer, A. (2010). Early or late-stage anti-N-terminal Huntingtin intrabody gene therapy reduces pathological features in B6.HDR6/1 mice. J. Neuropathol. Exp. Neurol. 69, 1078–1085.10.1097/NEN.0b013e3181f530ecSearch in Google Scholar PubMed PubMed Central

Teixeira-Castro, A., Ailion, M., Jalles, A., Brignull, H.R., Vilaça, J.L., Dias, N., Rodrigues, P., Oliveira, J.F., Neves-Carvalho, A., Morimoto, R.I., et al. (2011). Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum. Mol. Genet. 20, 2996–3009.10.1093/hmg/ddr203Search in Google Scholar PubMed PubMed Central

Todi, S.V., Winborn, B.J., Scaglione, K.M., Blount, J.R., Travis, S.M., and Paulson, H.L. (2009). Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 28, 372–382.10.1038/emboj.2008.289Search in Google Scholar PubMed PubMed Central

Wang, G., Sawai, N., Kotliarova, S., Kanazawa, I., and Nukina, N. (2000). Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum. Mol. Genet. 9, 1795–1803.10.1093/hmg/9.12.1795Search in Google Scholar PubMed

Wang, Y.G., Du, J., Wang, J.L., Chen, J., Chen, C., Luo, Y.Y., Xiao, Z.Q., Jiang, H., Yan, X.X., Xia, K., et al. (2009). Six cases of SCA3/MJD patients that mimic hereditary spastic paraplegia in clinic. J. Neurol. Sci. 285, 121–124.10.1016/j.jns.2009.06.027Search in Google Scholar PubMed

Wang, H.L., Hu, S.H., Chou, A.H., Wang, S.S., Weng, Y.H., and Yeh, T.H. (2013). H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology 70, 1–11.10.1016/j.neuropharm.2013.01.006Search in Google Scholar PubMed

Watts, J.K. and Corey, D.R. (2012). Silencing disease genes in the laboratory and the clinic. J. Pathol. 226, 365–379.10.1002/path.2993Search in Google Scholar PubMed PubMed Central

Yu, Y.C., Kuo, C.L., Cheng, W.L., Liu, C.S., and Hsieh, M. (2009). Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. J. Neurosci. Res. 87, 1884–1891.10.1002/jnr.22011Search in Google Scholar PubMed

Zhong, X. and Pittman, R.N. (2006). Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum. Mol. Genet. 15, 2409–2420.10.1093/hmg/ddl164Search in Google Scholar PubMed

Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D., Margolis, J., Peterson, M., Markowski, T.W., Ingram, M.A., et al. (2011). Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. USA 108, 260–265.10.1073/pnas.1013343108Search in Google Scholar PubMed PubMed Central

Received: 2014-6-8
Accepted: 2014-7-30
Published Online: 2014-9-12
Published in Print: 2015-2-1

©2015 by De Gruyter

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2014-0040/html
Scroll to top button