Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 16, 2014

Nitric oxide synthase in hypoxic or ischemic brain injury

  • Haiting Liu , Jiao Li , Fengyan Zhao , Huiqing Wang , Yi Qu and Dezhi Mu EMAIL logo

Abstract

Hypoxic or ischemic stress causes many serious brain injuries, including stroke and neonatal hypoxia ischemia encephalopathy. During brain hypoxia ischemia processes, nitric oxide (NO) may play either a neurotoxic or a neuroprotective role, depending upon factors such as the NO synthase (NOS) isoform, the cell type by which NO is produced, and the temporal stage after the onset of the hypoxic ischemic brain injury. Excessive NO production can be neurotoxic, leading to cascade reactions of excitotoxicity, inflammation, apoptosis, and deteriorating primary brain injury. In contrast, NO produced by endothelial NOS plays a neuroprotective role by maintaining cerebral blood flow and preventing neuronal injury, as well as inhibiting platelet and leukocyte adhesion. Sometimes, NO-derived inducible NOS and neuronal NOS in special areas may also play neuroprotective roles. Therefore, this review summarizes the different roles and the regulation of the three NOS isoforms in hypoxic or ischemic brain injury as revealed in research in recent years, focusing on the neurotoxic role of the three NOS isoforms involved in mechanisms of hypoxic or ischemic brain injury.


Corresponding author: Dezhi Mu, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; and Department of Pediatrics and Neurology, University of California, San Francisco, CA 94143, USA, Fax: +86-28-85559065, e-mail:

Acknowledgments

This work was supported by grants from the National Science Foundation of China (no. 81330016 and 31171020 to Dezhi Mu; no. 81172174 and 81270724 to Yi Qu), the Major State Basic Research Development Program (2013CB967404), the Ministry of Education of China (IRT0935, 313037, 20110181130002), and the State Commission of Science Technology of China (2012BAI04B04) in addition to a grant from the clinical discipline program (neonatology) from the Ministry of Health of China (1311200003303).

References

Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615.10.1042/bj3570593Search in Google Scholar

ArunaDevi, R., Ramteke, V.D., Kumar, S., Shukla, M.K., Jaganathan, S., Kumar, D., Sharma, A.K., and Tandan, S.K. (2010). Neuroprotective effect of s-methylisothiourea in transient focal cerebral ischemia in rat. Nitric Oxide 22, 1–10.10.1016/j.niox.2009.10.002Search in Google Scholar PubMed

Atochin, D.N. and Huang, P.L. (2010). Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Flug. Aach. Eur. J. Phys. 460, 965–974.10.1007/s00424-010-0867-4Search in Google Scholar PubMed PubMed Central

Atochin, D.N., Wang, A., Liu, V.W., Critchlow, J.D., Dantas, A.P., Looft-Wilson, R., Murata, T., Salomone, S., Shin, H.K., Ayata, C., et al. (2007). The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J. Clin. Invest. 117, 1961–1967.10.1172/JCI29877Search in Google Scholar PubMed PubMed Central

Badamtseren, B., Odkhuu, E., Koide, N., Haque, A., Naiki, Y., Hashimoto, S., Komatsu, T., Yoshida, T., and Yokochi, T. (2011). Thalidomide inhibits interferon-gamma-mediated nitric oxide production in mouse vascular endothelial cells. Cell. Immunol. 270, 19–24.10.1016/j.cellimm.2011.03.018Search in Google Scholar PubMed

Benavides, G.A., Liang, Q., Dodson, M., Darley-Usmar, V., and Zhang, J. (2013). Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic. Biol. Med. 65, 1215–1228.10.1016/j.freeradbiomed.2013.09.006Search in Google Scholar PubMed PubMed Central

Brown, G.C. (2010). Nitric oxide and neuronal death. Nitric Oxide 23, 153–165.10.1016/j.niox.2010.06.001Search in Google Scholar PubMed

Brown, C.M., Dela Cruz, C.D., Yang, E., and Wise, P.M. (2008). Inducible nitric oxide synthase and estradiol exhibit complementary neuroprotective roles after ischemic brain injury. Exp. Neurol. 210, 782–787.10.1016/j.expneurol.2007.11.021Search in Google Scholar PubMed PubMed Central

Chang, C.C., Wang, Y.H., Chern, C.M., Liou, K.T., Hou, Y.C., Peng, Y.T., and Shen, Y.C. (2011). Prodigiosin inhibits gp91(phox) and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia. Toxicol. Appl. Pharmacol. 257, 137–147.10.1016/j.taap.2011.08.027Search in Google Scholar PubMed

Chao, X.D., Ma, Y.H., Luo, P., Cao, L., Lau, W.B., Zhao, B.C., Han, F., Liu, W., Ning, W.D., Su, N., et al. (2013). Up-regulation of heme oxygenase-1 attenuates brain damage after cerebral ischemia via simultaneous inhibition of superoxide production and preservation of NO bioavailability. Exp. Neurol. 239, 163–169.10.1016/j.expneurol.2012.09.020Search in Google Scholar PubMed

Chen, J., Li, C., Pei, D.S., Han, D., Liu, X.M., Jiang, H.X., Wang, X.T., Guan, Q.H., Wen, X.R., Hou, X.Y., et al. (2009a). GluR6-containing KA receptor mediates the activation of p38 MAP kinase in rat hippocampal CA1 region during brain ischemia injury. Hippocampus 19, 79–89.10.1002/hipo.20479Search in Google Scholar PubMed

Chen, M., Sun, H.Y., Li, S.J., Das, M., Kong, J.M., and Gao, T.M. (2009b). Nitric oxide as an upstream signal of p38 mediates hypoxia/reoxygenation-induced neuronal death. Neuro-Signals 17, 162–168.10.1159/000205525Search in Google Scholar PubMed

Chern, C.M., Liou, K.T., Wang, Y.H., Liao, J.F., Yen, J.C., and Shen, Y.C. (2011). Andrographolide inhibits PI3K/AKT-dependent NOX2 and iNOS expression protecting mice against hypoxia/ischemia-induced oxidative brain injury. Planta Med. 77, 1669–1679.10.1055/s-0030-1271019Search in Google Scholar PubMed

Cheyuo, C., Wu, R., Zhou, M., Jacob, A., Coppa, G., and Wang, P. (2011). Ghrelin suppresses inflammation and neuronal nitric oxide synthase in focal cerebral ischemia via the vagus nerve. Shock 35, 258–265.10.1097/SHK.0b013e3181f48a37Search in Google Scholar PubMed

Corsani, L., Bizzoco, E., Pedata, F., Gianfriddo, M., Faussone-Pellegrini, M.S., and Vannucchi, M.G. (2008). Inducible nitric oxide synthase appears and is co-expressed with the neuronal isoform in interneurons of the rat hippocampus after transient ischemia induced by middle cerebral artery occlusion. Exp. Neurol. 211, 433–440.10.1016/j.expneurol.2008.02.008Search in Google Scholar PubMed

Criollo, A., Senovilla, L., Authier, H., Maiuri, M.C., Morselli, E., Vitale, I., Kepp, O., Tasdemir, E., Galluzzi, L., Shen, S., et al. (2010). The IKK complex contributes to the induction of autophagy. EMBO J. 29, 619–631.10.1038/emboj.2009.364Search in Google Scholar PubMed PubMed Central

Danton, G.H. and Dietrich, W.D. (2003). Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol. 62, 127–136.10.1093/jnen/62.2.127Search in Google Scholar PubMed

Di, J.H., Li, C., Yu, H.M., Zheng, J.N., and Zhang, G.Y. (2012). nNOS downregulation attenuates neuronal apoptosis by inhibiting nNOS-GluR6 interaction and GluR6 nitrosylation in cerebral ischemic reperfusion. Biochem. Biophys. Res. Commun. 420, 594–599.10.1016/j.bbrc.2012.03.039Search in Google Scholar PubMed

Doyle, K.P., Simon, R.P., and Stenzel-Poore, M.P. (2008). Mechanisms of ischemic brain damage. Neuropharmacology 55, 310–318.10.1016/j.neuropharm.2008.01.005Search in Google Scholar PubMed PubMed Central

Endres, M., Laufs, U., Liao, J.K., and Moskowitz, M.A. (2004). Targeting eNOS for stroke protection. Trends Neurosci. 27, 283–289.10.1016/j.tins.2004.03.009Search in Google Scholar PubMed

Fang Li, Q., Xu, H., Sun, Y., Hu, R., and Jiang, H. (2012). Induction of inducible nitric oxide synthase by isoflurane post-conditioning via hypoxia inducible factor-1alpha during tolerance against ischemic neuronal injury. Brain Res. 1451, 1–9.10.1016/j.brainres.2012.02.055Search in Google Scholar PubMed

Forstermann, U. and Sessa, W.C. (2012). Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837, 837a–837d.10.1093/eurheartj/ehr304Search in Google Scholar PubMed PubMed Central

Francis, S.H., Busch, J.L., Corbin, J.D., and Sibley, D. (2010). cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62, 525–563.10.1124/pr.110.002907Search in Google Scholar PubMed PubMed Central

Fujioka, H., Shintaku, H., Nakanishi, H., Kim, T.J., Kusuda, S., and Yamano, T. (2008). Biopterin in the acute phase of hypoxia-ischemia in a neonatal pig model. Brain Dev. 30, 1–6.10.1016/j.braindev.2007.04.009Search in Google Scholar PubMed

Gardoni, F. and Di Luca, M. (2006). New targets for pharmacological intervention in the glutamatergic synapse. Eur. J. Pharmacol. 545, 2–10.10.1016/j.ejphar.2006.06.022Search in Google Scholar PubMed

Gu, Z., Nakamura, T., and Lipton, S.A. (2010). Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol. Neurobiol. 41, 55–72.10.1007/s12035-010-8113-9Search in Google Scholar PubMed PubMed Central

Guix, F.X., Uribesalgo, I., Coma, M., and Munoz, F.J. (2005). The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol. 76, 126–152.10.1016/j.pneurobio.2005.06.001Search in Google Scholar PubMed

Guner, Y.S., Ochoa, C.J., Wang, J., Zhang, X., Steinhauser, S., Stephenson, L., Grishin, A., and Upperman, J.S. (2009). Peroxynitrite-induced p38 MAPK pro-apoptotic signaling in enterocytes. Biochem. Biophys. Res. Commun. 384, 221–225.10.1016/j.bbrc.2009.04.091Search in Google Scholar PubMed PubMed Central

Gunther, M., Al Nimer, F., Gahm, C., Piehl, F., and Mathiesen, T. (2012). iNOS-mediated secondary inflammatory response differs between rat strains following experimental brain contusion. Acta Neurochir. (Wien) 154, 689–697.10.1007/s00701-012-1297-1Search in Google Scholar PubMed

Hayashi, S., Osuka, K., Watanabe, Y., Yasuda, M., Takayasu, M., and Wakabayashi, T. (2011). Hypothermia enhances the colocalization of calmodulin kinase IIalpha with neuronal nitric oxide synthase in the hippocampus following cerebral ischemia. Neurosci. Lett. 505, 228–232.10.1016/j.neulet.2011.10.013Search in Google Scholar PubMed

Haynes, R.L., Folkerth, R.D., Trachtenberg, F.L., Volpe, J.J., and Kinney, H.C. (2009). Nitrosative stress and inducible nitric oxide synthase expression in periventricular leukomalacia. Acta Neuropathol. 118, 391–399.10.1007/s00401-009-0540-1Search in Google Scholar PubMed PubMed Central

Hu, Z., Bian, X., Liu, X., Zhu, Y., Zhang, X., Chen, S., Wang, K., and Wang, Y. (2013). Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Res. 1491, 204–212.10.1016/j.brainres.2012.11.004Search in Google Scholar PubMed

Hua, Q., Zhu, X., Li, P., Tang, H., Cai, D., Xu, Y., Jia, X., Chen, J., and Shen, Y. (2008). Refined Qing Kai Ling, traditional Chinese medicinal preparation, reduces ischemic stroke-induced infarct size and neurological deficits and increases expression of endothelial nitric oxide synthase. Biol. Pharm. Bull. 31, 633–637.10.1248/bpb.31.633Search in Google Scholar PubMed

Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84, 9265–9269.10.1073/pnas.84.24.9265Search in Google Scholar PubMed PubMed Central

Ito, Y., Ohkubo, T., Asano, Y., Hattori, K., Shimazu, T., Yamazato, M., Nagoya, H., Kato, Y., and Araki, N. (2010). Nitric oxide production during cerebral ischemia and reperfusion in eNOS- and nNOS-knockout mice. Curr. Neurovasc. Res. 7, 23–31.10.2174/156720210790820190Search in Google Scholar PubMed

Jekabsone, A., Neher, J.J., Borutaite, V., and Brown, G.C. (2007). Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase. J. Neurochem. 103, 346–356.10.1111/j.1471-4159.2007.04765.xSearch in Google Scholar PubMed

Ji, H., Tan, S., Igarashi, J., Li, H., Derrick, M., Martasek, P., Roman, L.J., Vasquez-Vivar, J., Poulos, T.L., and Silverman, R.B. (2009). Selective neuronal nitric oxide synthase inhibitors and the prevention of cerebral palsy. Ann. Neurol. 65, 209–217.10.1002/ana.21555Search in Google Scholar PubMed PubMed Central

Jung, J., Na, C., and Huh, Y. (2012). Alterations in nitric oxide synthase in the aged CNS. Oxid. Med. Cell. Longev. 2012, 718976.10.1155/2012/718976Search in Google Scholar PubMed PubMed Central

Kim, S.F., Huri, D.A., and Snyder, S.H. (2005). Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310, 1966–1970.10.1126/science.1119407Search in Google Scholar PubMed

Kleinert, H., Pautz, A., Linker, K., and Schwarz, P.M. (2004). Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500, 255–266.10.1016/j.ejphar.2004.07.030Search in Google Scholar PubMed

Koh, P.O. (2008). Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J. Vet. Med. Sci. 70, 747–750.10.1292/jvms.70.747Search in Google Scholar PubMed

Kunz, A., Abe, T., Hochrainer, K., Shimamura, M., Anrather, J., Racchumi, G., Zhou, P., and Iadecola, C. (2008). Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion. J. Neurosci. 28, 1649–1658.10.1523/JNEUROSCI.5205-07.2008Search in Google Scholar PubMed PubMed Central

Lee, J.J., Cho, Y.W., Huh, Y., Cha, C.I., and Yeo, S.G. (2008). Effect of nitric oxide on auditory cortical neurons of aged rats. Neurosci. Lett. 447, 37–41.10.1016/j.neulet.2008.09.074Search in Google Scholar PubMed

Leppanen, T., Korhonen, R., Laavola, M., Nieminen, R., Tuominen, R.K., and Moilanen, E. (2013). Down-regulation of protein kinase Cdelta inhibits inducible nitric oxide synthase expression through IRF1. PloS One 8, e52741.10.1371/journal.pone.0052741Search in Google Scholar PubMed PubMed Central

Li, L., Qu, Y., Mao, M., Xiong, Y., and Mu, D. (2008a). The involvement of phosphoinositid 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1alpha in the developing rat brain after hypoxia-ischemia. Brain Res. 1197, 152–158.10.1016/j.brainres.2007.12.059Search in Google Scholar PubMed

Li, L., Xiong, Y., Qu, Y., Mao, M., Mu, W., Wang, H., and Mu, D. (2008b). The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor 1 alpha in the developing rat brain after hypoxia-ischemia. Acta Neuropathol. 115, 297–303.10.1007/s00401-008-0339-5Search in Google Scholar PubMed

Li, Q.F., Zhu, Y.S., and Jiang, H. (2008c). Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury. Brain Res. 1245, 26–35.10.1016/j.brainres.2008.09.069Search in Google Scholar PubMed

Li, S., Wang, W., Wang, C., and Tang, Y.Y. (2010). Possible involvement of NO/NOS signaling in hippocampal amyloid-beta production induced by transient focal cerebral ischemia in aged rats. Neurosci. Lett. 470, 106–110.10.1016/j.neulet.2009.12.064Search in Google Scholar PubMed

Li, H., Liu, B., Huang, J., Chen, H., Guo, X., and Yuan, Z. (2013a). Insulin inhibits lipopolysaccharide-induced nitric oxide synthase expression in rat primary astrocytes. Brain Res. 1506, 1–11.10.1016/j.brainres.2013.01.055Search in Google Scholar PubMed

Li, L.L., Ginet, V., Liu, X., Vergun, O., Tuittila, M., Mathieu, M., Bonny, C., Puyal, J., Truttmann, A.C., and Courtney, M.J. (2013b). The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death. J. Neurosci. 33, 8185–8201.10.1523/JNEUROSCI.4578-12.2013Search in Google Scholar PubMed PubMed Central

Lin, H.Y., Wu, C.L., and Huang, C.C. (2010). The Akt-endothelial nitric oxide synthase pathway in lipopolysaccharide preconditioning-induced hypoxic-ischemic tolerance in the neonatal rat brain. Stroke 41, 1543–1551.10.1161/STROKEAHA.109.574004Search in Google Scholar PubMed

Liu, Y., Zou, L.P., and Du, J.B. (2011). Nitric oxide-mediated neuronal functional recovery in hypoxic-ischemic brain damaged rats subjected to electrical stimulation. Brain Res. 1383, 324–328.10.1016/j.brainres.2011.01.088Search in Google Scholar PubMed

Liu, H., Liu, X., Wei, X., Chen, L., Xiang, Y., Yi, F., and Zhang, X. (2012). Losartan, an angiotensin II type 1 receptor blocker, ameliorates cerebral ischemia-reperfusion injury via PI3K/Akt-mediated eNOS phosphorylation. Brain Res. Bull. 89, 65–70.10.1016/j.brainresbull.2012.06.010Search in Google Scholar PubMed

Liu, D.H., Yuan, F.G., Hu, S.Q., Diao, F., Wu, Y.P., Zong, Y.Y., Song, T., Li, C., and Zhang, G.Y. (2013). Endogenous nitric oxide induces activation of apoptosis signal-regulating kinase 1 via S-nitrosylation in rat hippocampus during cerebral ischemia-reperfusion. Neuroscience 229, 36–48.10.1016/j.neuroscience.2012.10.055Search in Google Scholar PubMed

Llansola, M. and Felipo, V. (2010). Metabotropic glutamate receptor 5, but not 1, modulates NMDA receptor-mediated activation of neuronal nitric oxide synthase. Neurochem. Int. 56, 535–545.10.1016/j.neuint.2009.12.016Search in Google Scholar PubMed

Lopez-Arenas, E., Mackay-Sim, A., Bacigalupo, J., and Sulz, L. (2012). Leukaemia inhibitory factor stimulates proliferation of olfactory neuronal progenitors via inducible nitric oxide synthase. PloS One 7, e45018.10.1371/journal.pone.0045018Search in Google Scholar PubMed PubMed Central

Martinez-Ruiz, A., Cadenas, S., and Lamas, S. (2011). Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic. Biol. Med. 51, 17–29.10.1016/j.freeradbiomed.2011.04.010Search in Google Scholar PubMed

Mishra, O.P., Randis, T., Ashraf, Q.M., and Delivoria-Papadopoulos, M. (2006). Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide. Neuroscience 141, 1339–1349.10.1016/j.neuroscience.2006.05.005Search in Google Scholar PubMed

Mungrue, I.N. and Bredt, D.S. (2004). nNOS at a glance: implications for brain and brawn. J. Cell. Sci. 117, 2627–2629.10.1242/jcs.01187Search in Google Scholar PubMed

Nishimura, M., Izumiya, Y., Higuchi, A., Shibata, R., Qiu, J., Kudo, C., Shin, H.K., Moskowitz, M.A., and Ouchi, N. (2008). Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 117, 216–223.10.1161/CIRCULATIONAHA.107.725044Search in Google Scholar PubMed

Oh, Y.T., Lee, J.Y., Lee, J., Lee, J.H., Kim, J.E., Ha, J., and Kang, I. (2010). Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells. Neurosci. Lett. 474, 148–153.10.1016/j.neulet.2010.03.026Search in Google Scholar PubMed

Park, E.M., Cho, S., Frys, K.A., Glickstein, S.B., Zhou, P., Anrather, J., Ross, M.E., and Iadecola, C. (2006). Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury. J. Cereb. Blood Flow Metab. 26, 392–401.10.1038/sj.jcbfm.9600194Search in Google Scholar PubMed

Pautz, A., Art, J., Hahn, S., Nowag, S., Voss, C., and Kleinert, H. (2010). Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23, 75–93.10.1016/j.niox.2010.04.007Search in Google Scholar PubMed

Pei, D.S., Song, Y.J., Yu, H.M., Hu, W.W., Du, Y., and Zhang, G.Y. (2008). Exogenous nitric oxide negatively regulates c-Jun N-terminal kinase activation via inhibiting endogenous NO-induced S-nitrosylation during cerebral ischemia and reperfusion in rat hippocampus. J. Neurochem. 106, 1952–1963.10.1111/j.1471-4159.2008.05531.xSearch in Google Scholar PubMed

Qi, S.H., Hao, L.Y., Yue, J., Zong, Y.Y., and Zhang, G.Y. (2013). Exogenous nitric oxide negatively regulates the S-nitrosylation p38 mitogen-activated protein kinase activation during cerebral ischaemia and reperfusion. Neuropathol. Appl. Neurobiol. 39, 284–297.10.1111/j.1365-2990.2012.01284.xSearch in Google Scholar PubMed

Rameau, G.A., Tukey, D.S., Garcin-Hosfield, E.D., Titcombe, R.F., Misra, C., Khatri, L., Getzoff, E.D., and Ziff, E.B. (2007). Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J. Neurosci. 27, 3445–3455.10.1523/JNEUROSCI.4799-06.2007Search in Google Scholar PubMed PubMed Central

Rao, K.M. (2000). Molecular mechanisms regulating iNOS expression in various cell types. J. Toxicol. Environ. Health B Crit. Rev. 3, 27–58.10.1080/109374000281131Search in Google Scholar PubMed

Ridder, D.A. and Schwaninger, M. (2009). NF-kappaB signaling in cerebral ischemia. Neuroscience 158, 995–1006.10.1016/j.neuroscience.2008.07.007Search in Google Scholar PubMed

Sarkar, S., Korolchuk, V.I., Renna, M., Imarisio, S., Fleming, A., Williams, A., Garcia-Arencibia, M., Rose, C., Luo, S., Underwood, B.R., et al. (2011). Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell. 43, 19–32.10.1016/j.molcel.2011.04.029Search in Google Scholar PubMed PubMed Central

Sen, N., Hara, M.R., Kornberg, M.D., Cascio, M.B., Bae, B.I., Shahani, N., Thomas, B., Dawson, T.M., Dawson, V.L., Snyder, S.H., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873.10.1038/ncb1747Search in Google Scholar PubMed PubMed Central

Shao, L., Guo, Z., and Geller, D.A. (2007). Transcriptional suppression of cytokine-induced iNOS gene expression by IL-13 through IRF-1/ISRE signaling. Biochem. Biophys. Res. Commun. 362, 582–586.10.1016/j.bbrc.2007.07.203Search in Google Scholar PubMed PubMed Central

Shi, Z.Q., Sunico, C.R., McKercher, S.R., Cui, J., Feng, G.S., Nakamura, T., and Lipton, S.A. (2013). S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke. Proc. Natl. Acad. Sci. USA 110, 3137–3142.10.1073/pnas.1215501110Search in Google Scholar PubMed PubMed Central

Sun, M., Zhao, Y., Gu, Y., and Xu, C. (2009). Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem. Int. 54, 339–346.10.1016/j.neuint.2008.12.017Search in Google Scholar PubMed

Takagi, N., Logan, R., Teves, L., Wallace, M.C., and Gurd, J.W. (2000). Altered interaction between PSD-95 and the NMDA receptor following transient global ischemia. J. Neurochem. 74, 169–178.10.1046/j.1471-4159.2000.0740169.xSearch in Google Scholar PubMed

Tang, L.J., Li, C., Hu, S.Q., Wu, Y.P., Zong, Y.Y., Sun, C.C., Zhang, F., and Zhang, G.Y. (2012). S-nitrosylation of c-Src via NMDAR-nNOS module promotes c-Src activation and NR2A phosphorylation in cerebral ischemia/reperfusion. Mol. Cell. Biochem. 365, 363–377.10.1007/s11010-012-1280-4Search in Google Scholar PubMed

Tripathi, A. and Sodhi, A. (2009). Growth hormone-induced production of cytokines in murine peritoneal macrophages in vitro: role of JAK/STAT, PI3K, PKC and MAP kinases. Immunobiology 214, 430–440.10.1016/j.imbio.2008.11.013Search in Google Scholar PubMed

Tuna, M., Yilmaz, D.M., Erman, T., Arslan, A., Ozgur, H. and Polat, S. (2009). Effect of neutralization of rat interleukin 6 bioactivity on inducible nitric oxide synthase up-regulation and cerebral ischemic damage. Neurol Res 31, 714–720.10.1179/174313209X380892Search in Google Scholar PubMed

Udayabanu, M., Kumaran, D., Nair, R.U., Srinivas, P., Bhagat, N., Aneja, R., and Katyal, A. (2008). Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia. Brain Res. 1230, 138–149.10.1016/j.brainres.2008.06.081Search in Google Scholar PubMed

Vaibhav, K., Shrivastava, P., Javed, H., Khan, A., Ahmed, M.E., Tabassum, R., Khan, M.M., Khuwaja, G., Islam, F., Siddiqui, M.S., et al. (2012). Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-kappaB in middle cerebral artery occlusion rat model. Mol. Cell. Biochem. 367, 73–84.10.1007/s11010-012-1321-zSearch in Google Scholar PubMed

Wang, W.W., Hu, S.Q., Li, C., Zhou, C., Qi, S.H., and Zhang, G.Y. (2010). Transduced PDZ1 domain of PSD-95 decreases Src phosphorylation and increases nNOS (Ser847) phosphorylation contributing to neuroprotection after cerebral ischemia. Brain Res. 1328, 162–170.10.1016/j.brainres.2010.02.055Search in Google Scholar PubMed

Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell. 30, 678–688.10.1016/j.molcel.2008.06.001Search in Google Scholar PubMed PubMed Central

Yagita, Y., Kitagawa, K., Oyama, N., Yukami, T., Watanabe, A., Sasaki, T., and Mochizuki, H. (2013). Functional deterioration of endothelial nitric oxide synthase after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 33, 1532–1539.10.1038/jcbfm.2013.112Search in Google Scholar PubMed PubMed Central

Yang, M.Z., Mun, C.H., Choi, Y.J., Baik, J.H., Park, K.A., Lee, W.T., and Lee, J.E. (2007). Agmatine inhibits matrix metalloproteinase-9 via endothelial nitric oxide synthase in cerebral endothelial cells. Neurol. Res. 29, 749–754.10.1179/016164107X208103Search in Google Scholar PubMed

Yang, Z.J., Carter, E.L., Torbey, M.T., Martin, L.J., and Koehler, R.C. (2010). Sigma receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons. Exp. Neurol. 221, 166–174.10.1016/j.expneurol.2009.10.019Search in Google Scholar PubMed PubMed Central

Yu, H.M., Xu, J., Li, C., Zhou, C., Zhang, F., Han, D., and Zhang, G.Y. (2008). Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia neuronal death. Neuroscience 155, 1120–1132.10.1016/j.neuroscience.2008.03.061Search in Google Scholar PubMed

Zeng, X.W., Li, M.W., Pan, J., Ji, T.L., Yang, B., Zhang, B., and Wang, X.Q. (2011). Activation of c-Jun N-terminal kinase 1/2 regulated by nitric oxide is associated with neuronal survival in hippocampal neurons in a rat model of ischemia. Chin. Med. J. (Engl.) 124, 3367–3372.Search in Google Scholar

Zhang, F., Li, C., Wang, R., Han, D., Zhang, Q.G., Zhou, C., Yu, H.M., and Zhang, G.Y. (2007a). Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience 150, 938–949.10.1016/j.neuroscience.2007.09.070Search in Google Scholar PubMed

Zhang, P., Liu, Y., Li, J., Kang, Q., Tian, Y., Chen, X., Zhao, J., Shi, Q., and Song, T. (2007b). Decreased neuronal nitric oxide synthase expression and cell migration in the peri-infarction after focal cerebral ischemia in rats. Neuropathology 27, 347–354.10.1111/j.1440-1789.2007.00791.xSearch in Google Scholar PubMed

Zhang, Y., Lu, J., Shi, J., Lin, X., Dong, J., Zhang, S., Liu, Y., and Tong, Q. (2008). Central administration of angiotensin-(1-7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats. Neuropeptides 42, 593–600.10.1016/j.npep.2008.09.005Search in Google Scholar PubMed

Zhang, L., Dong, L.Y., Li, Y.J., Hong, Z., and Wei, W.S. (2012a). The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J. Neuroinflamm. 9, 211.10.1186/1742-2094-9-211Search in Google Scholar PubMed PubMed Central

Zhang, Y., Chen, J., Li, F., Li, D., Xiong, Q., Lin, Y., Zhang, D., Wang, X.F., Yang, P., and Rui, Y.C. (2012b). A pentapeptide monocyte locomotion inhibitory factor protects brain ischemia injury by targeting the eEF1A1/endothelial nitric oxide synthase pathway. Stroke 43, 2764–2773.10.1161/STROKEAHA.112.657908Search in Google Scholar PubMed

Zhang, L., Liu, Q., Yuan, X., Wang, T., Luo, S., Lei, H., and Xia, Y. (2013). Requirement of heat shock protein 70 for inducible nitric oxide synthase induction. Cell. Signal. 25, 1310–1317.10.1016/j.cellsig.2013.02.004Search in Google Scholar PubMed

Zhou, L. and Zhu, D.Y. (2009). Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20, 223–230.10.1016/j.niox.2009.03.001Search in Google Scholar PubMed

Zhou, C., Li, C., Yu, H.M., Zhang, F., Han, D., and Zhang, G.Y. (2008). Neuroprotection of gamma-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. J. Neurosci. Res. 86, 2973–2983.10.1002/jnr.21728Search in Google Scholar PubMed

Zhou, L., Li, F., Xu, H.B., Luo, C.X., Wu, H.Y., Zhu, M.M., Lu, W., Ji, X., Zhou, Q.G., and Zhu, D.Y. (2010). Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat. Med. 16, 1439–1443.10.1038/nm.2245Search in Google Scholar PubMed

Zhou, M., Wang, C.M., Yang, W.L., and Wang, P. (2013). Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res. 1506, 105–114.10.1016/j.brainres.2013.02.010Search in Google Scholar PubMed PubMed Central

Zhu, H., Vishwamitra, D., Curry, C.V., Manshouri, R., Diao, L., Khan, A., and Amin, H.M. (2013). NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism. J. Pathol. 230, 82–94.10.1002/path.4171Search in Google Scholar PubMed PubMed Central

Received: 2014-6-19
Accepted: 2014-7-30
Published Online: 2014-9-16
Published in Print: 2015-2-1

©2015 by De Gruyter

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2014-0041/html
Scroll to top button