Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2014

Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways

Wen-Lin Chen, Ying-Ying Niu, Wei-Zheng Jiang, Hui-Lan Tang, Chong Zhang, Qi-Ming Xia and Xiao-Qing Tang

Abstract

Hydrogen sulfide (H2S) is an endogenously produced gas that represents a novel third gaseous signaling molecule, neurotransmitter and cytoprotectant. Cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfur transferase with cysteine aminotransferase (3-MST/CAT) and 3-mercaptopyruvate sulfur transferase with d-amino acid oxidase (3-MST/DAO) pathways are involved in the generation of endogenous H2S despite the ubiquitous or restricted distribution of those enzymes. CBS, 3-MST/CAT and 3-MST/DAO can be found in the brain, while CSE is widely located in other organs. There also exist up-taking or recycling and scavenging mechanisms in H2S metabolism to maintain its persistence for physiological function. In recent years, investigating the role that H2S plays in the central nervous system and cardiovascular system has always been a hotspot. To date, effects of H2S are at least partially verified in multiple animal models or neuron cell lines of Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, major depression disorders and febrile seizure, although subsequent studies are still badly needed. This article presents an overview of current knowledge of H2S focusing on its neuroprotective effects and corresponding signaling pathways, together with connections to potential therapeutic strategies in the clinic.


Corresponding author: Xiao-Qing Tang, Institute of Neuroscience, Medical College, University of South China, 28 W Changsheng Road, Hengyang, Hunan, P. R. China, e-mail:

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81371485 and 81200985), Natural Science Foundation of Hunan Province, China (11JJ3117 and 12JJ9032), Project of Research-based Learning and Innovative Experiment for Undergraduate Student in Hunan Province (2011-199) and the construct program of the key discipline in Hunan province.

References

Abe, K. and Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071.10.1523/JNEUROSCI.16-03-01066.1996Search in Google Scholar

Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiol. Aging. 21, 383–421.10.1016/S0197-4580(00)00124-XSearch in Google Scholar

Andrikopoulos, P., Fraser, S.P., Patterson, L., Ahmad, Z., Burcu, H., Ottaviani, D., Diss, J.K., Box, C., Eccles, S.A., and Djamgoz, M.B. (2011). Angiogenic functions of voltage-gated Na+ channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. J. Biol. Chem. 286, 16846–16860.10.1074/jbc.M110.187559Search in Google Scholar

Ang, S.F., Moochhala, S.M., MacAry, P.A., and Bhatia, M. (2011a). Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: involvement of substance P and ERK-NF-kappaB signaling. PLoS One 6, e24535.10.1371/journal.pone.0024535Search in Google Scholar

Ang, S.F., Sio, S.W., Moochhala, S.M., MacAry, P.A., and Bhatia, M. (2011b). Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation. J. Immunol. 187, 4778–4787.10.4049/jimmunol.1101559Search in Google Scholar

Braunstein, A.E., Goryachenkova, E.V., Tolosa, E.A., Willhardt, I.H., and Yefremova, L.L. (1971). Specificity and some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine-synthase. Biochim. Biophys. Acta. 242, 247–260.10.1016/0005-2744(71)90105-7Search in Google Scholar

Cai, W.J., Wang, M.J., Moore, P.K., Jin, H.M., Yao, T., and Zhu, Y.C. (2007). The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 76, 29–40.10.1016/j.cardiores.2007.05.026Search in Google Scholar PubMed

Calvert, J.W., Jha, S., Gundewar, S., Elrod, J.W., Ramachandran, A., Pattillo, C.B., Kevil, C.G., and Lefer, D.J. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res. 105, 365–374.10.1161/CIRCRESAHA.109.199919Search in Google Scholar PubMed PubMed Central

Castren, E. and Rantamaki, T. (2010). The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev. Neurobiol. 70, 289–297.10.1002/dneu.20758Search in Google Scholar PubMed

Cavallini, D., Mondovi, B., de Marco, C., and Scioscia-Santoro, A. (1962). The mechanism of desulphhydration of cysteine. Enzymologia 24, 253–266.Search in Google Scholar

Cazorla, M., Jouvenceau, A., Rose, C., Guilloux, J.-P., Pilon, C., Dranovsky, A., and Prémont, J. (2010). Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 5, e9777.10.1371/journal.pone.0009777Search in Google Scholar PubMed PubMed Central

Chen, X., Jhee, K.H., and Kruger, W.D. (2004). Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J. Biol. Chem. 279, 52082–52086.10.1074/jbc.C400481200Search in Google Scholar

Chen, C.Q., Xin, H., and Zhu, Y.Z. (2007). Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol. Sin. 28, 1709–1716.10.1111/j.1745-7254.2007.00629.xSearch in Google Scholar

Chen, P.C., Vargas, M.R., Pani, A.K., Smeyne, R.J., Johnson, D.A., Kan, Y.W., and Johnson, J.A. (2009). Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc. Natl. Acad. Sci. USA 106, 2933–2938.10.1073/pnas.0813361106Search in Google Scholar

Chen, W.L., Xie, B., Zhang, C., Xu, K.L., Niu, Y.Y., Tang, X.Q., Zhang, P., Zou, W., Hu, B., and Tian, Y. (2013). Antidepressant-like and anxiolytic-like effects of hydrogen sulfide in behavioral models of depression and anxiety. Behav. Pharmacol. 24, 590–597.10.1097/FBP.0b013e3283654258Search in Google Scholar

Chiku, T., Padovani, D., Zhu, W., Singh, S., Vitvitsky, V., and Banerjee, R. (2009). H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem. 284, 11601–11612.10.1074/jbc.M808026200Search in Google Scholar

Dawe, G.S., Han, S.P., Bian, J.S., and Moore, P.K. (2008). Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 152, 169–177.10.1016/j.neuroscience.2007.12.008Search in Google Scholar

Denollet, J., Maas, K., Knottnerus, A., Keyzer, J.J., and Pop, V.J. (2009). Anxiety predicted premature all-cause and cardiovascular death in a 10-year follow-up of middle-aged women. J. Clin. Epidemiol. 62, 452–456.10.1016/j.jclinepi.2008.08.006Search in Google Scholar

Eisch, A.J. and Petrik, D. (2012). Depression and hippocampal neurogenesis: a road to remission? Science 338, 72–75.10.1126/science.1222941Search in Google Scholar

Enokido, Y., Suzuki, E., Iwasawa, K., Namekata, K., Okazawa, H., and Kimura, H. (2005). Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. 19, 1854–1856.10.1096/fj.05-3724fjeSearch in Google Scholar

Eto, K., Asada, T., Arima, K., Makifuchi, T., and Kimura, H. (2002). Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 293, 1485–1488.10.1016/S0006-291X(02)00422-9Search in Google Scholar

Fan, H., Guo, Y., Liang, X., Yuan, Y., Qi, X., Wang, M., Ma, J., and Zhou, H. (2013). Hydrogen sulfide protects against amyloid beta-peptide induced neuronal injury via attenuating inflammatory responses in a rat model. J. Biomed. Res. 27, 296–304.Search in Google Scholar

Florian, B., Vintilescu, R., Balseanu, A.T., Buga, A.M., Grisk, O., Walker, L.C., Kessler, C., and Popa-Wagner, A. (2008). Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci. Lett. 438, 180–185.10.1016/j.neulet.2008.04.020Search in Google Scholar

Gadalla, M.M. and Snyder, S.H. (2010). Hydrogen sulfide as a gasotransmitter. J. Neurochem 113, 14–26.10.1111/j.1471-4159.2010.06580.xSearch in Google Scholar

Geng, B., Yang, J., Qi, Y., Zhao, J., Pang, Y., Du, J., and Tang, C. (2004). H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun. 313, 362–368.10.1016/j.bbrc.2003.11.130Search in Google Scholar

Goldberg-Stern, H., Aharoni, S., Afawi, Z., Bennett, O., Appenzeller, S., Pendziwiat, M., Kuhlenbäumer, G., Basel-Vanagaite, L., Shuper, A., Korczyn, A.D., et al. (2014). Broad phenotypic heterogeneity due to a novel SCN1A mutation in a family with genetic epilepsy with febrile seizures plus. J. Child Neurol. 29, 221–226.10.1177/0883073813509016Search in Google Scholar

Gordon, W.A. and Hibbard, M.R. (1997). Poststroke depression: an examination of the literature. Arch. Phys. Med. Rehabil. 78, 658–663.10.1016/S0003-9993(97)90433-0Search in Google Scholar

Gouret, C.J., Porsolt, R., Wettstein, J.G., Puech, A., Soulard, C., Pascaud, X., and Junien, J.L. (1990). Biochemical and pharmacological evaluation of the novel antidepressant and serotonin uptake inhibitor 2-(3,4-dichlorobenzyl)-2-dimethylamino-1-propanol hydrochloride. Arzneimittelforschung 40, 633–640.Search in Google Scholar

Guo, W., Kan, J.T., Cheng, Z.Y., Chen, J.F., Shen, Y.Q., Xu, J., Wu, D., and Zhu, Y.Z. (2012). Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxid. Med. Cell Longev. 2012, 878052.10.1155/2012/878052Search in Google Scholar PubMed PubMed Central

Han, Y., Qin, J., Chang, X., Yang, Z., Bu, D., and Du, J. (2005a). Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci. Res. 53, 216–219.10.1016/j.neures.2005.07.002Search in Google Scholar PubMed

Han, Y., Qin, J., Chang, X., Yang, Z., Tang, X., and Du, J. (2005b). Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem. Biophys. Res. Commun. 327, 431–436.10.1016/j.bbrc.2004.12.028Search in Google Scholar PubMed

Han, Y., Qin, J., Chang, X., Yang, Z., and Du, J. (2006). Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell. Mol. Neurobiol. 26, 101–107.10.1007/s10571-006-8848-zSearch in Google Scholar PubMed

Hanson, N.D., Owens, M.J., and Nemeroff, C.B. (2011). Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36, 2589–2602.10.1038/npp.2011.220Search in Google Scholar PubMed PubMed Central

Hirsch, E.C. and Hunot, S. (2009). Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397.Search in Google Scholar

Hirsch, E., Graybiel, A.M., and Agid, Y.A. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348.10.1038/334345a0Search in Google Scholar PubMed

Hoozemans, J.J., Veerhuis, R., Van Haastert, E.S., Rozemuller, J.M., Baas, F., Eikelenboom, P., and Scheper, W. (2005). The unfolded protein response is activated in Alzheimer’s disease. Acta. Neuropathol. 110, 165–172.10.1007/s00401-005-1038-0Search in Google Scholar PubMed

Hoozemans, J.J., van Haastert, E.S., Nijholt, D.A., Rozemuller, A.J., Eikelenboom, P., and Scheper, W. (2009). The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am. J. Pathol. 174, 1241–1251.10.2353/ajpath.2009.080814Search in Google Scholar PubMed PubMed Central

Hosoki, R., Matsuki, N., and Kimura, H. (1997). The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 237, 527–531.10.1006/bbrc.1997.6878Search in Google Scholar PubMed

Hsu, C.C., Lin, R.L., Lee, L.Y., and Lin, Y.S. (2013). Hydrogen sulfide induces hypersensitivity of rat capsaicin-sensitive lung vagal neurons: role of TRPA1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R769–779.10.1152/ajpregu.00202.2013Search in Google Scholar PubMed PubMed Central

Hu, L.F., Lu, M., Tiong, C.X., Dawe, G.S., Hu, G., and Bian, J.S. (2010). Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9, 135–146.10.1111/j.1474-9726.2009.00543.xSearch in Google Scholar PubMed

Ichinohe, A., Kanaumi, T., Takashima, S., Enokido, Y., Nagai, Y., and Kimura, H. (2005). Cystathionine beta-synthase is enriched in the brains of Down’s patients. Biochem. Biophys. Res. Commun. 338, 1547–1550.10.1016/j.bbrc.2005.10.118Search in Google Scholar PubMed

Ishigami, M., Hiraki, K., Umemura, K., Ogasawara, Y., Ishii, K., and Kimura, H. (2009). A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal. 11, 205–214.10.1089/ars.2008.2132Search in Google Scholar PubMed

Ishii, I., Akahoshi, N., Yamada, H., Nakano, S., Izumi, T., and Suematsu, M. (2010). Cystathionine gamma-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J. Biol. Chem. 285, 26358–26368.10.1074/jbc.M110.147439Search in Google Scholar PubMed PubMed Central

Jang, H., Oh, M.Y., Kim, Y.J., Choi, I.Y., Yang, H.S., Ryu, W.S., Lee, S.H., and Yoon, B.W. (2014). Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J. Neurosci. Res. 92, 1520–1528.10.1002/jnr.23427Search in Google Scholar PubMed

Johansen, D., Ytrehus, K., and Baxter, G.F. (2006). Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury – evidence for a role of K ATP channels. Basic Res. Cardiol. 101, 53–60.10.1007/s00395-005-0569-9Search in Google Scholar PubMed

Kawabata, A., Ishiki, T., Nagasawa, K., Yoshida, S., Maeda, Y., Takahashi, T., Sekiguchi, F., Wada, T., Ichida, S., and Nishikawa, H. (2007). Hydrogen sulfide as a novel nociceptive messenger. Pain 132, 74–81.10.1016/j.pain.2007.01.026Search in Google Scholar PubMed

Kida, K., Yamada, M., Tokuda, K., Marutani, E., Kakinohana, M., Kaneki, M., and Ichinose, F. (2011). Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid. Redox Signal. 15, 343–352.10.1089/ars.2010.3671Search in Google Scholar PubMed PubMed Central

Kimura, H. (2010). Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal. 12, 1111–1123.10.1089/ars.2009.2919Search in Google Scholar PubMed

Kimura, H. (2012). [Hydrogen sulfide: production, release, and functions]. Nihon Yakurigaku Zasshi. 139, 6–8.10.1254/fpj.139.6Search in Google Scholar PubMed

Kimura, H. (2014). Signaling molecules: hydrogen sulfide and polysulfide. Antioxid. Redox Signal. Available at: http://www.ncbi.nlm.nih.gov/pubmed/?term=Signaling+molecules%3A+hydrogen+sulfide+and+polysulfide.+Antioxid.Search in Google Scholar

Kimura, Y., Dargusch, R., Schubert, D., and Kimura, H. (2006). Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal. 8, 661–670.10.1089/ars.2006.8.661Search in Google Scholar PubMed

Kimura, Y., Goto, Y., and Kimura, H. (2010). Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12, 1–13.10.1089/ars.2008.2282Search in Google Scholar PubMed

Kimura, H., Shibuya, N., and Kimura, Y. (2012). Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid. Redox Signal. 17, 45–57.10.1089/ars.2011.4345Search in Google Scholar PubMed PubMed Central

Lee, M., Schwab, C., Yu, S., McGeer, E., and McGeer, P.L. (2009). Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol. Aging 30, 1523–1534.10.1016/j.neurobiolaging.2009.06.001Search in Google Scholar PubMed

Lee, M., Tazzari, V., Giustarini, D., Rossi, R., Sparatore, A., Del Soldato, P., McGeer, E., and McGeer, P.L. (2010). Effects of hydrogen sulfide-releasing l-DOPA derivatives on glial activation: potential for treating Parkinson disease. J. Biol. Chem. 285, 17318–17328.10.1074/jbc.M110.115261Search in Google Scholar PubMed PubMed Central

Lee, Z.W., Low, Y.L., Huang, S., Wang, T., and Deng, L.W. (2014). The cystathionine gamma-lyase/hydrogen sulfide system maintains cellular glutathione status. Biochem. J. 460, 425–435.10.1042/BJ20131434Search in Google Scholar

Li, Z., Wang, Y., Xie, Y., Yang, Z., and Zhang, T. (2011). Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem. Res. 36, 1840–1849.10.1007/s11064-011-0502-6Search in Google Scholar

Li, G.F., Luo, H.K., Li, L.F., Zhang, Q.Z., Xie, L.J., Jiang, H., Li, L.P., Hao, N., Wang, W.W., and Zhang, J.X. (2012). Dual effects of hydrogen sulphide on focal cerebral ischaemic injury via modulation of oxidative stress-induced apoptosis. Clin. Exp. Pharmacol. Physiol. 39, 765–771.10.1111/j.1440-1681.2012.05731.xSearch in Google Scholar

Lipscombe, D., Helton, T.D., and Xu, W. (2004). l-type calcium channels: the low down. J. Neurophysiol. 92, 2633–2641.10.1152/jn.00486.2004Search in Google Scholar

Lowicka, E. and Beltowski, J. (2007). Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol. Rep. 59, 4–24.Search in Google Scholar

Lu, M., Zhao, F.F., Tang, J.J., Su, C.J., Fan, Y., Ding, J.H., Bian, J.S., and Hu, G. (2012). The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid. Redox Signal. 17, 849–859.10.1089/ars.2011.4507Search in Google Scholar

Maeda, Y., Aoki, Y., Sekiguchi, F., Matsunami, M., Takahashi, T., Nishikawa, H., and Kawabata, A. (2009). Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain 142, 127–132.10.1016/j.pain.2008.12.021Search in Google Scholar

Malekova, L., Krizanova, O., and Ondrias, K. (2009). H(2)S and HS(-) donor NaHS inhibits intracellular chloride channels. Gen. Physiol. Biophys. 28, 190–194.10.4149/gpb_2009_02_190Search in Google Scholar

Martinos, M.M., Yoong, M., Patil, S., Chin, R.F., Neville, B.G., Scott, R.C., and de Haan, M. (2012). Recognition memory is impaired in children after prolonged febrile seizures. Brain 135, 3153–3164.10.1093/brain/aws213Search in Google Scholar

Meister, A., Fraser, P.E., and Tice, S.V. (1954). Enzymatic desulfuration of beta-mercaptopyruvate to pyruvate. J. Biol. Chem. 206, 561–575.10.1016/S0021-9258(19)50824-9Search in Google Scholar

Mikami, Y., Shibuya, N., Kimura, Y., Nagahara, N., Ogasawara, Y., and Kimura, H. (2011a). Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem. J. 439, 479–485.10.1042/BJ20110841Search in Google Scholar PubMed

Mikami, Y., Shibuya, N., Kimura, Y., Nagahara, N., Yamada, M., and Kimura, H. (2011b). Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J. Biol. Chem. 286, 39379–39386.10.1074/jbc.M111.298208Search in Google Scholar PubMed PubMed Central

Miller, C. (2006). ClC chloride channels viewed through a transporter lens. Nature 440, 484–489.10.1038/nature04713Search in Google Scholar PubMed

Mustafa, A.K., Sikka, G., Gazi, S.K., Steppan, J., Jung, S.M., Bhunia, A.K., Barodka, V.M., Gazi, F.K., Barrow, R.K., Wang, R., et al. (2011). Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 109, 1259–1268.10.1161/CIRCRESAHA.111.240242Search in Google Scholar PubMed PubMed Central

Nagahara, N., Ito, T., Kitamura, H., and Nishino, T. (1998). Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem. Cell Biol. 110, 243–250.10.1007/s004180050286Search in Google Scholar PubMed

Nagasawa, K., Tarui, T., Yoshida, S., Sekiguchi, F., Matsunami, M., Ohi, A., Fukami, K., Ichida, S., Nishikawa, H., and Kawabata, A. (2009). Hydrogen sulfide evokes neurite outgrowth and expression of high-voltage-activated Ca2+ currents in NG108-15 cells: involvement of T-type Ca2+ channels. J. Neurochem. 108, 676–684.10.1111/j.1471-4159.2008.05808.xSearch in Google Scholar PubMed

Nilius, B. and Droogmans, G. (2003). Amazing chloride channels: an overview. Acta. Physiol. Scand. 177, 119–147.10.1046/j.1365-201X.2003.01060.xSearch in Google Scholar PubMed

Osborne, N.N., Ji, D., Majid, A.S., Del Soldata, P., and Sparatore, A. (2012). Glutamate oxidative injury to RGC-5 cells in culture is necrostatin sensitive and blunted by a hydrogen sulfide (H2S)-releasing derivative of aspirin (ACS14). Neurochem. Int. 60, 365–378.10.1016/j.neuint.2012.01.015Search in Google Scholar PubMed

Peers, C., Bauer, C.C., Boyle, J.P., Scragg, J.L., and Dallas, M.L. (2012). Modulation of ion channels by hydrogen sulfide. Antioxid. Redox Signal. 17, 95–105.10.1089/ars.2011.4359Search in Google Scholar PubMed

Puljak, L. and Kilic, G. (2006). Emerging roles of chloride channels in human diseases. Biochim. Biophys. Acta. 1762, 404–413.10.1016/j.bbadis.2005.12.008Search in Google Scholar PubMed

Qu, K., Chen, C.P., Halliwell, B., Moore, P.K., and Wong, P.T. (2006). Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37, 889–893.10.1161/01.STR.0000204184.34946.41Search in Google Scholar PubMed

Ren, C., Du, A., Li, D., Sui, J., Mayhan, W.G., and Zhao, H. (2010). Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats. Brain Res. 1345, 197–205.10.1016/j.brainres.2010.05.017Search in Google Scholar PubMed

Schechter, L.E., Ring, R.H., Beyer, C.E., Hughes, Z.A., Khawaja, X., Malberg, J.E., and Rosenzweig-Lipson, S. (2005). Innovative approaches for the development of antidepressant drugs: current and future strategies. NeuroRx 2, 590–611.10.1602/neurorx.2.4.590Search in Google Scholar PubMed PubMed Central

Schicho, R., Krueger, D., Zeller, F., Von Weyhern, C.W., Frieling, T., Kimura, H., Ishii, I., De Giorgio, R., Campi, B., and Schemann, M. (2006). Hydrogen sulfide is a novel prosecretory neuromodulator in the guinea-pig and human colon. Gastroenterology 131, 1542–1552.10.1053/j.gastro.2006.08.035Search in Google Scholar PubMed

Shao, J.L., Wan, X.H., Chen, Y., Bi, C., Chen, H.M., Zhong, Y., Heng, X.H., and Qian, J.Q. (2011). H2S protects hippocampal neurons from anoxia-reoxygenation through cAMP-mediated PI3K/Akt/p70S6K cell-survival signaling pathways. J. Mol. Neurosci. 43, 453–460.10.1007/s12031-010-9464-4Search in Google Scholar PubMed

Shibuya, N. and Kimura, H. (2013). Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Front. Endocrinol. (Lausanne). 4, 87.10.3389/fendo.2013.00087Search in Google Scholar PubMed PubMed Central

Shibuya, N., Mikami, Y., Kimura, Y., Nagahara, N., and Kimura, H. (2009a). Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem. 146, 623–626.10.1093/jb/mvp111Search in Google Scholar PubMed

Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii, K., and Kimura, H. (2009b). 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11, 703–714.10.1089/ars.2008.2253Search in Google Scholar PubMed

Shibuya, N., Koike, S., Tanaka, M., Ishigami-Yuasa, M., Kimura, Y., Ogasawara, Y., Fukui, K., Nagahara, N., and Kimura, H. (2013). A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat. Commun. 4, 1366.10.1038/ncomms2371Search in Google Scholar PubMed

Shinnar, S. and Glauser, T.A. (2002). Febrile seizures. J. Child Neurol. 17 Suppl 1, S44–52.10.1177/08830738020170010601Search in Google Scholar PubMed

Spencer, K.A., Tompkins, C.A., and Schulz, R. (1997). Assessment of depression in patients with brain pathology: the case of stroke. Psychol. Bull. 122, 132–152.10.1037/0033-2909.122.2.132Search in Google Scholar PubMed

Strege, P.R., Bernard, C.E., Kraichely, R.E., Mazzone, A., Sha, L., Beyder, A., Gibbons, S.J., Linden, D.R., Kendrick, M.L., Sarr, M.G., et al. (2011). Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1105–1114.Search in Google Scholar

Stutzbach, L.D., Xie, S.X., Naj, A.C., Albin, R., Gilman S; PSP Genetics Study Group, Lee, V.M., Trojanowski, J.Q., Devlin, B., and Schellenberg, G.D. (2013). The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta. Neuropathol. Commun. 1, 31.10.1186/2051-5960-1-31Search in Google Scholar PubMed PubMed Central

Sun, Y.G., Cao, Y.X., Wang, W.W., Ma, S.F., Yao, T., and Zhu, Y.C. (2008). Hydrogen sulphide is an inhibitor of l-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc. Res. 79, 632–641.10.1093/cvr/cvn140Search in Google Scholar PubMed

Sutherland, B.A., Harrison, J.C., Nair, S.M., and Sammut, I.A. (2013). Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia. Curr. Drug Targets 14, 56–73.10.2174/138945013804806433Search in Google Scholar PubMed

Szabo, C. (2007). Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935.10.1038/nrd2425Search in Google Scholar PubMed

Taliaz, D., Stall, N., Dar, D.E., and Zangen, A. (2010). Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol. Psychiatry 15, 80–92.10.1038/mp.2009.67Search in Google Scholar PubMed PubMed Central

Tang, X.Q., Yang, C.T., Chen, J., Yin, W.L., Tian, S.W., Hu, B., Feng, J.Q., and Li, Y.J. (2008). Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin. Exp. Pharmacol. Physiol. 35, 180–186.Search in Google Scholar

Tang, G., Wu, L., and Wang, R. (2010a). Interaction of hydrogen sulfide with ion channels. Clin. Exp. Pharmacol. Physiol. 37, 753–763.10.1111/j.1440-1681.2010.05351.xSearch in Google Scholar PubMed

Tang, X.Q., Shen, X.T., Huang, Y.E., Ren, Y.K., Chen, R.Q., Hu, B., He, J.Q., Yin, W.L., Xu, J.H., and Jiang, Z.S. (2010b). Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci. Res. 68, 241–249.10.1016/j.neures.2010.07.2039Search in Google Scholar PubMed

Tang, X.Q., Fan, L.L., Li, Y.J., Shen, X.T., Zhuan, Y.Y., He, J.Q., Xu, J.H., Hu, B., and Li, Y.J. (2011). Inhibition of hydrogen sulfide generation contributes to 1-methy-4-phenylpyridinium ion-induced neurotoxicity. Neurotox. Res. 19, 403–411.10.1007/s12640-010-9180-4Search in Google Scholar PubMed

Tang, X.Q., Zhuang, Y.Y., Fan, L.L., Fang, H.R., Zhou, C.F., Zhang, P., and Hu, B. (2012). Involvement of K(ATP)/PI (3)K/AKT/Bcl-2 pathway in hydrogen sulfide-induced neuroprotection against the toxicity of 1-methy-4-phenylpyridinium ion. J. Mol. Neurosci. 46, 442–449.10.1007/s12031-011-9608-1Search in Google Scholar PubMed

Tay, A.S., Hu, L.F., Lu, M., Wong, P.T., and Bian, J.S. (2010). Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience 167, 277–286.10.1016/j.neuroscience.2010.02.006Search in Google Scholar PubMed

Telezhkin, V., Brazier, S.P., Cayzac, S.H., Wilkinson, W.J., Riccardi, D., and Kemp, P.J. (2010). Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir. Physiol. Neurobiol. 172, 169–178.10.1016/j.resp.2010.05.016Search in Google Scholar PubMed

Ubuka, T., Umemura, S., Yuasa, S., Kinuta, M., and Watanabe, K. (1978). Purification and characterization of mitochondrial cysteine aminotransferase from rat liver. Physiol. Chem. Phys. 10, 483–500.Search in Google Scholar

Vandiver, M.S., Paul, B.D., Xu, R., Karuppagounder, S., Rao, F., Snowman, A.M., Ko, H.S., Lee, Y.I., Dawson, V.L., Dawson, T.M., et al. (2013). Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 4, 1626.10.1038/ncomms2623Search in Google Scholar PubMed PubMed Central

Wang, R. (2009). Hydrogen sulfide: a new EDRF. Kidney Int. 76, 700–704.10.1038/ki.2009.221Search in Google Scholar PubMed

Wang, R. (2010). Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid. Redox Signal. 12, 1061–1064.10.1089/ars.2009.2938Search in Google Scholar PubMed

Wang, R. (2012). Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92, 791–896.10.1152/physrev.00017.2011Search in Google Scholar PubMed

Wei, H.J., Xu, J.H., Li, M.H., Tang, J.P., Zou, W., Zhang, P., Wang, L., Wang, C.Y., and Tang, X.Q. (2014). Hydrogen sulfide inhibits homocysteine-induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway. Acta. Pharmacol. Sin. 35, 707–715.10.1038/aps.2013.197Search in Google Scholar PubMed PubMed Central

Wen, X., Qi, D., Sun, Y., Huang, X., Zhang, F., Wu, J., Fu, Y., Ma, K., Du, Y., Dong, H., et al. (2014). H(2)S attenuates cognitive deficits through Akt1/JNK3 signaling pathway in ischemic stroke. Behav. Brain Res. 269, 6–14.10.1016/j.bbr.2014.04.027Search in Google Scholar PubMed

Whitfield, N.L., Kreimier, E.L., Verdial, F.C., Skovgaard, N., and Olson, K.R. (2008). Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1930–1937.10.1152/ajpregu.00025.2008Search in Google Scholar PubMed

Wisniewski, K.E., Wisniewski, H.M., and Wen, G.Y. (1985). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.10.1002/ana.410170310Search in Google Scholar PubMed

Xu, M., Wu, Y.M., Li, Q., Liu, S., Li, Q., and He, R.R. (2011). Electrophysiological effects of hydrogen sulfide on human atrial fibers. Chin. Med. J. (Engl) 124, 3455–3459.Search in Google Scholar

Yang, G.D. and Wang, R. (2007). H(2)S and cellular proliferation and apoptosis. Sheng Li Xue Bao 59, 133–140.Search in Google Scholar

Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Mustafa, A.K., Mu, W., Zhang, S., et al. (2008). H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322, 587–590.10.1126/science.1162667Search in Google Scholar PubMed PubMed Central

Yin, W.L., He, J.Q., Hu, B., Jiang, Z.S., and Tang, X.Q. (2009). Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci. 85, 269–275.10.1016/j.lfs.2009.05.023Search in Google Scholar PubMed

Yin, J., Tu, C., Zhao, J., Ou, D., Chen, G., Liu, Y., and Xiao, X. (2013). Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res. 1491, 188–196.10.1016/j.brainres.2012.10.046Search in Google Scholar PubMed

Zanardo, R.C., Brancaleone, V., Distrutti, E., Fiorucci, S., Cirino, G., and Wallace, J.L. (2006). Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20, 2118–2120.10.1096/fj.06-6270fjeSearch in Google Scholar PubMed

Zhao, H., Chan, S.J., Ng, Y.-K., and Wong, P.T.-H. (2013). Brain 3-mercaptopyruvate sulfurtransferase (3MST): cellular localization and downregulation after acute stroke. PLoS One 8, e67322.10.1371/journal.pone.0067322Search in Google Scholar PubMed PubMed Central

Received: 2014-7-25
Accepted: 2014-10-1
Published Online: 2014-12-22
Published in Print: 2015-4-1

©2015 by De Gruyter

Scroll Up Arrow