Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 4, 2015

Phytochemical constituents as future antidepressants: a comprehensive review

  • Roodabeh Bahramsoltani , Mohammad Hosein Farzaei , Marzieh Sarbandi Farahani and Roja Rahimi EMAIL logo

Abstract

Depression is a major mental disease that is ranked as the fourth leading cause of disability. In order to avoid unwanted adverse reactions, as well as improve efficacy, current researches are seeking alternatives to conventional antidepressants. Phytochemicals provide an extensive research area in antidepressant therapies. The aim of the present study is to comprehensively review neurological evidences demonstrating the efficacy of phytochemicals in depression. For this purpose, electronic databases were searched to collect all data on the antidepressant mechanisms of phytochemicals from 1966 up to 2015. Plant metabolites from different categories including polyphenols (flavonoids, phenolic acids, lignanes, coumarins), alkaloids, terpenes and terpenoids, saponins and sapogenins, amines, and carbohydrates were found to possess antidepressant activity. Naringenin, quercetin derivatives, eugenol, piperine, diterpene alkaloids, berberine, hyperforin, riparin derivatives, ginsenosides, as well as β-carboline alkaloids are among the most relevant ones. Naringenin has represented its antidepressant effect by elevation of serotonin (5-HT), norepinephrine, brain-derived neurotrophic factor (BDNF), and glucocorticoid receptors. Piperine demonstrated inhibition of monoamine oxidase enzymes, elevation of brain 5-HT and BDNF levels, and modulation of the hypothalamus-pituitary-adrenal axis. The serotonergic, noradrenergic, and dopaminergic effect of berberine has been proven in several studies. Quercetin derivatives have revealed antidepressant potential via elevating pro-opiomelanocortin and neuroprotective properties, as well as reduction of proinflammatory cytokines. Assessing the structure-activity relationship of highly potent antidepressant phytochemicals is suggested to find future natural, semisynthetic, or synthetic antidepressants. Further clinical studies are also necessary for confirmation of natural antidepressant efficacy and completion of their safety profile.


Corresponding author: Roja Rahimi, Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical sciences, Tehran 1417653761, Iran, e-mail:

References

Adolphe, J.L., Whiting, S.J., Juurlink, B.H., Thorpe, L.U., and Alcorn, J. (2010). Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br. J. Nutr. 103, 929–938.10.1017/S0007114509992753Search in Google Scholar PubMed

Alramadhan, E., Hanna, M.S., Hanna, M.S., Goldstein, T.A., Avila, S.M., and Weeks, B.S. (2012). Dietary and botanical anxiolytics. Med. Sci. Monit. 18, RA40–RA48.Search in Google Scholar

Anlar, B., Sullivan, K.A., and Feldman, E.L. (1999). Insulin-like growth factor-I and central nervous system development. Horm. Metab. Res. 31, 120–125.10.1055/s-2007-978708Search in Google Scholar PubMed

Bahi, A., Al Mansouri, S., Al Memari, E., Al Ameri, M., Nurulain, S.M., and Ojha, S. (2014). β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav. 135, 119–124.10.1016/j.physbeh.2014.06.003Search in Google Scholar PubMed

Bahramsoltani, R., Farzaei, M.H., and Rahimi, R. (2014). Medicinal plants and their natural components as future drugs for the treatment of burn wounds, an integrative review. Arch. Dermatol. Res. 306, 601–617.10.1007/s00403-014-1474-6Search in Google Scholar PubMed

Barbosa-Filho, J.M., Piuvezam, M.R., Moura, M.D., Silva, M.S., Batista Lima, K.V., Leitão da-Cunha, E.V., Fechine, I.M., and Takemura, O.S. (2006). Anti-inflammatory activity of alkaloids, a twenty-century review. Braz. J. Pharmacogn. 16, 109–139.10.1590/S0102-695X2006000100020Search in Google Scholar

Bergman, J., Miodownik, C., Bersudsky, Y., Sokolik, S., Lerner, P.P., Kreinin, A., Polakiewicz, J., and Lerner V. (2013). Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study. Clin. Neuropharmacol. 36, 73–77.10.1097/WNF.0b013e31828ef969Search in Google Scholar PubMed

Binfaré, R.W., Rosa, A.O., Lobato, K.R., Santos, A.R., and Rodrigues, A.L. (2009). Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 530–540.10.1016/j.pnpbp.2009.02.003Search in Google Scholar PubMed

Braida, D., Capurro, V., Zani, A., Rubino, T., Viganò, D., Parolaro, D., and Sala, M. (2009). Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br. J. Pharmacol. 157, 844–853.10.1111/j.1476-5381.2009.00230.xSearch in Google Scholar PubMed PubMed Central

Bromet, E., Andrade, L.H., Hwang, I., Sampson, N.A., Alonso, J., de Girolamo, G., de Graaf, R., Demyttenaere, K., Hu, C., Iwata, N., et al. (2011). Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 9, 90.10.1186/1741-7015-9-90Search in Google Scholar PubMed PubMed Central

Cai, B., Cui, C., Chen, Y., Xu, Y., Luo, Z., Yang, M., and Yao, Z. (1996). Antidepressant effect of inulin-type oligosaccharides from Morinda officinalis How in mice. Chin. J. Pharmacol. Toxicol. 10, 109–112.Search in Google Scholar

Capra, J.C., Cunha, M.P., Machado, D.G., Zomkowski, A.D., Mendes, B.G., Santos, A.R., Pizzolatti, M.G., and Rodrigues, A.L. (2010). Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol. 643, 232–238.10.1016/j.ejphar.2010.06.043Search in Google Scholar PubMed

Cascales, A.B.H., Torres, A.H., Gil, M.A.I., Alarcon, P.P., Ruiz, A.L., Gil, M.D.H., and Barrancos, J.M. (2014). Hypertension unusual cause. Pharmacol. Parm. 5, 1–3.10.4236/pp.2014.51001Search in Google Scholar

Charoenputtakun, P., Pamornpathomkul, B., Opanasopit, P., Rojanarata, T., and Ngawhirunpat, T. (2014). Terpene composited lipid nanoparticles for enhanced dermal delivery of all-trans-retinoic acids. Biol. Pharm. Bull. 37, 1139–1148.10.1248/bpb.b14-00015Search in Google Scholar

Chen, Z. and Huo, J.R. (2010). Hepatic veno-occlusive disease associated with toxicity of pyrrolizidine alkaloids in herbal preparations. Neth. J. Med. 68, 252–260.Search in Google Scholar

Chen, Y., Wang, H., Zhang, R., Wang, H., Peng, Z., Sun, R., and Tan, Q. (2012). Microinjection of sanguinarine into the ventrolateral orbital cortex inhibits Mkp-1 and exerts an antidepressant-like effect in rats. Neurosci. Lett. 506, 327–331.10.1016/j.neulet.2011.11.038Search in Google Scholar

Chhillar, R. and Dhingra, D. (2013). Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam. Clin. Pharmacol. 27, 409–418.10.1111/j.1472-8206.2012.01040.xSearch in Google Scholar

Colla, A.R., Oliveira, A., Pazini, F.L., Rosa, J.M., Manosso, L.M., Cunha, M.P., and Rodrigues, A.L. (2014). Serotonergic and noradrenergic systems are implicated in the antidepressant-like effect of ursolic acid in mice. Pharmacol. Biochem. Behav. 124C, 108–116.10.1016/j.pbb.2014.05.015Search in Google Scholar

Committee on Herbal Medicinal Products. (2005). Publication Statement on the Use of Herbal Medicinal Products Containing Pulegone and Menthofuran (London: European Medicines Agency, Evaluation of Medicines for Human Use).Search in Google Scholar

De la Peña, J.B., Kim, C.A., Lee, H.L., Yoon, S.Y., Kim, H.J., Hong, E.Y., Kim, G.H., Ryu, J.H., Lee, Y.S., Kim, K.M., et al. (2014). Luteolin mediates the antidepressant-like effects of Cirsium japonicum in mice, possibly through modulation of the GABA receptor. Arch. Pharm. Res. 37, 263–269.10.1007/s12272-013-0229-9Search in Google Scholar

De Sousa, F.C., Oliveira, I.C., Silva, M.I., de Melo, C.T., Santiagom V.R., de Castro Chaves, R., Fernandes, M.L., Gutierrez, S.J., Vasconcelos, S.M., Macêdo, D.S., et al. (2014). Involvement of monoaminergic system in the antidepressant-like effect of riparin I from Aniba riparia (Nees) Mez (Lauraceae) in mice. Fundam. Clin. Pharmacol. 28, 95–103.10.1111/j.1472-8206.2012.01069.xSearch in Google Scholar

Dhingra, D. and Sharma, A. (2005). Evaluation of antidepressant-like activity of glycyrrhizin in mice. Indian J. Pharmacol. 37, 390–394.10.4103/0253-7613.19077Search in Google Scholar

Dhingra, D. and Chhillar, R. (2012). Antidepressant-like activity of ellagic acid in unstressed and acute immobilization-induced stressed mice. Pharmacol. Rep. 64, 796–807.10.1016/S1734-1140(12)70875-7Search in Google Scholar

Dhingra, D. and Bansal, Y. (2014a). Antidepressant-like activity of β-carotene in unstressed and chronic unpredictable mild stressed mice. J. Funct. Foods 7, 425–434.10.1016/j.jff.2014.01.015Search in Google Scholar

Dhingra, D. and Bhankher, A. (2014b). Behavioral and biochemical evidences for antidepressant-like activity of palmatine in mice subjected to chronic unpredictable mild stress. Pharmacol. Rep. 66, 1–9.10.1016/j.pharep.2013.06.001Search in Google Scholar

Dhingra, D. and Valecha, R. (2014c). Punarnavine, an alkaloid isolated from ethanolic extract of Boerhaavia diffusa Linn. reverses depression-like behaviour in mice subjected to chronic unpredictable mild stress. Indian. J. Exp. Biol. 52, 799–807.10.3109/13880209.2013.870583Search in Google Scholar

Do Amaral, J.F., Silva, M.I., de Aquino Neto, M.R., Moura, B.A., de Carvalho, A.M., Vasconcelos, P.F., Barbosa Filho, J.M., Gutierrez, S.J., Vasconcelos, S.M., Macêdo, D.S., et al. (2013). Antidepressant-like effect of bis-eugenol in the mice forced swimming test. Evidence for the involvement of the monoaminergic system. Fundam. Clin. Pharmacol. 27, 471–482.10.1111/j.1472-8206.2012.01058.xSearch in Google Scholar

Do Rego, J.C., Benkiki, N., Chosson, E., Kabouche, Z., Seguin, E., and Costentin, J. (2007). Antidepressant-like effect of hyperfoliatin, a polyisoprenylated phloroglucinol derivative from Hypericum perfoliatum (Clusiaceae) is associated with an inhibition of neuronal monoamines uptake. Eur. J. Pharmacol. 569, 197–203.10.1016/j.ejphar.2007.05.008Search in Google Scholar

Eid, T.J., Morris, A.A., Chau, T., and Halperin, M.L. (2011). Hypertension secondary to ingestion of licorice root tea. J. Pharm. Technol. 27, 266–268.10.1177/875512251102700605Search in Google Scholar

Fajemiroye, J.O., Galdino, P.M., Florentino, I.F., Da Rocha, F.F., Ghedini, P.C., Polepally, P.R., Zjawiony, J.K., and Costa E.A. (2014). Plurality of anxiety and depression alteration mechanism by oleanolic acid. J. Psychopharmacol. 28, 923–934.10.1177/0269881114536789Search in Google Scholar

Fakhraei, N., Abdolghaffari, A.H., Delfan, B., Abbasi, A., Rahimi, N., Khansari, A., Rahimian, R., and Dehpour, A.R. (2014). Protective effect of hydroalcoholic olive leaf extract on experimental model of colitis in rat: involvement of nitrergic and opioidergic systems. Phytother. Res. 28, 1367–1373.10.1002/ptr.5139Search in Google Scholar

Farzaei, M.H., Abbasabadi, Z. Ardekani, M.R., Rahimi, R., and Farzaei, F. (2013). Parsley, a review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 33, 815–826.10.1016/S0254-6272(14)60018-2Search in Google Scholar

Farzaei, M.H., Khanavi, M., Moghaddam, G., Dolatshahi, F., Rahimi, R., Shams-Ardekani, M.R., Amin, G.H., and Hajimahmoodi, M. (2014). Standardization of Tragopogon graminifolius DC extracts based on phenolic compounds and antioxidant activity. J. Chem. 2014, 425965.10.1155/2014/425965Search in Google Scholar

Farzaei, M.H., Rahimi, R., and Abdollahi, M. (2015). The role of dietary polyphenols in the management of inflammatory bowel disease. Curr. Pharm. Biotechnol. 16, 196–210.10.2174/1389201016666150118131704Search in Google Scholar PubMed

Farzin, D. and Mansouri, N. (2006). Antidepressant-like effect of harmane and other β-carbolines in the mouse forced swim test. Eur. Neuropsychopharmacol. 16, 324–328.10.1016/j.euroneuro.2005.08.005Search in Google Scholar PubMed

Felgines, C., Texier, O., Morand, C., Manach, C., Scalbert, A., Régerat, F., and Rémésy, C. (2000). Bioavailability of the flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver. Physiol. 279, G1148–G1154.10.1152/ajpgi.2000.279.6.G1148Search in Google Scholar PubMed

Filho, C.B,. Del Fabbro, L., de Gomes, M.G., Goes, A.T., Souza, L.C., Boeira, S.P., and Jesse, C.R. (2013). Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test. Eur. J. Pharmacol. 698, 286–291.10.1016/j.ejphar.2012.11.003Search in Google Scholar PubMed

Filho, C.B., Jesse, C.R., Donato, F., Giacomeli, R., Del Fabbro, L., da Silva Antunes, M., de Gomes, M.G., Goes, A.T., Boeira, S.P., Prigol, M., and Souza, L.C. (2015). Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience 289C, 367–380.10.1016/j.neuroscience.2014.12.048Search in Google Scholar PubMed

Fortunato, J.J., Réus, G.Z., Kirsch, T.R., Stringari, R.B., Fries, G.R., Kapczinski, F., Hallak, J.E., Zuardi, A.W., Crippa, J.A., and Quevedo, J. (2010). Effects of β-carboline harmine on behavioral and physiological parameters observed in the chronic mild stress model: further evidence of antidepressant properties. Brain. Res. Bull. 81, 491–496.10.1016/j.brainresbull.2009.09.008Search in Google Scholar PubMed

Fournier, N.M. and Duman, R.S. (2012). Role of vascular endothelial growth factor in adult hippocampal neurogenesis: implications for the pathophysiology and treatment of depression. Behav. Brain Res. 227, 440–449.10.1016/j.bbr.2011.04.022Search in Google Scholar PubMed PubMed Central

Freitas, A.E., Moretti, M., Budni, J., Balen, G.O., Fernandes, S.C., Veronezi, P.O., Heller, M., Micke, G.A., Pizzolatti, M.G., and Rodrigues, A.L. (2013). NMDA receptors and the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway are implicated in the antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice. J. Med. Food. 16, 1030–1038.10.1089/jmf.2012.0276Search in Google Scholar PubMed PubMed Central

Gao, S., Cui, Y.L., Yu, C.Q., Wang, Q.S., and Zhang, Y. (2013). Tetrandrine exerts antidepressant-like effects in animal models: role of brain-derived neurotrophic factor. Behav. Brain. Res. 238, 79–85.10.1016/j.bbr.2012.10.015Search in Google Scholar PubMed

Garcia-Salas, P., Morales-Soto, M., Yu, C.Q., Wang, Q.S., and Zhang, Y. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15, 8813–8826.10.3390/molecules15128813Search in Google Scholar PubMed PubMed Central

Gaur, V., Bodhankar, S.L., Mohan, V., and Thakurdesai, P. (2012). Antidepressant-like effect of 4-hydroxyisoleucine from Trigonella foenum graecum L. seeds in mice. Biomed. Aging Pathol. 2, 121–125.10.1016/j.biomag.2012.07.002Search in Google Scholar

Ge, J.F., Gao, W.C., Cheng, W.M., Lu, W.L., Tang, J., Peng, L., Li, N., and Chen, F.H. (2014). Orcinol glucoside produces antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress. Eur. Neuropsychopharmacol. 24, 172–180.10.1016/j.euroneuro.2013.05.007Search in Google Scholar PubMed

Gershenzon, J. and Dudareva, N. (2007). The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414.10.1038/nchembio.2007.5Search in Google Scholar PubMed

Gibon, J., Deloulme, J.C., Chevallier, T., Ladevèze, E., Abrous, D.N., and Bouron, A. (2013). The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner. Int. J. Neuropsychopharmacol. 16, 189–198.10.1017/S146114571100188XSearch in Google Scholar PubMed

Girish, C., Raj, V., Arya, J., and Balakrishnan, S. (2012). Evidence for the involvement of the monoaminergic system, but not the opioid system in the antidepressant-like activity of ellagic acid in mice. Eur. J. Pharmacol. 682, 118–125.10.1016/j.ejphar.2012.02.034Search in Google Scholar PubMed

Gonçalves, A.E., Bürger, C., Amoah, S.K., Tolardo, R., Biavatti, M.W., and de Souza, M.M. (2012). The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice, evidence for the involvement of adrenergic, dopaminergic and serotonergic systems. Eur. J. Pharmacol. 674, 307–314.10.1016/j.ejphar.2011.11.009Search in Google Scholar PubMed

Henderson, L., Yue, Q.Y., Bergquist, C., Gerden, B., and Arlett, P. (2002). St John’s wort (Hypericum perforatum): drug interactions and clinical outcomes. Br. J. Clin. Pharmacol. 54, 349–356.10.1046/j.1365-2125.2002.01683.xSearch in Google Scholar PubMed PubMed Central

Hu, Y., Liu, M., Liu, P., Guo, D.H., Wei, R.B., and Rahman, K. (2011). Possible mechanism of the antidepressant effect of 3,6′-disinapoyl sucrose from Polygala tenuifolia Willd. J. Pharm. Pharmacol. 63, 869–874.10.1111/j.2042-7158.2011.01281.xSearch in Google Scholar PubMed

Hurley, L.L., Akinfiresoye, L., Nwulia, E., Kamiya, A., Kulkarni, A.A., and Tizabi, Y. (2013). Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav. Brain. Res. 239, 27–30.10.1016/j.bbr.2012.10.049Search in Google Scholar PubMed PubMed Central

Idayu, N.F., Hidayat, M.T., Moklas, M.A., Sharida, F., Raudzah, A.R., Shamima, A.R., and Apryani, E. (2011). Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa Korth in mice model of depression. Phytomedicine. 18, 402–407.10.1016/j.phymed.2010.08.011Search in Google Scholar PubMed

Iosif, R.E., Ekdahl, C.T., Ahlenius, H., Pronk, C.J., Bonde, S., Kokaia, Z., Jacobsen, S.E., and Lindvall, O. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. 26, 9703–9712.10.1523/JNEUROSCI.2723-06.2006Search in Google Scholar PubMed PubMed Central

Irie, Y., Itokazu, N., Anjiki, N., Ishige, A., Watanabe, K., and Keung, W.M. (2004). Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus. Brain Res. 1011, 243–246.10.1016/j.brainres.2004.03.040Search in Google Scholar PubMed

Ishisaka, M., Kakefuda, K., Yamauchi, M., Tsuruma, K., Shimazawa, M., Tsuruta, A., and Hara, H. (2011). Luteolin shows an antidepressant-like effect via suppressing endoplasmic reticulum stress. Biol. Pharm. Bull. 34, 1481–1486.10.1248/bpb.34.1481Search in Google Scholar PubMed

Ishola, I.O., Chatterjee, M., Tota, S., Tadigopulla, N., Adeyemi, O.O., Palit, G., and Shukla, R. (2012). Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol. Biochem. Behav. 103, 322–331.10.1016/j.pbb.2012.08.017Search in Google Scholar PubMed

Ito, N., Yabe, T., Gamo, Y., Nagai, T., Oikawa, T., Yamada, H., and Hanawa, T. (2008). Rosmarinic acid from Perillae Herba produces an antidepressant-like effect in mice through cell proliferation in the hippocampus. Biol. Pharm. Bull. 31, 1376–1380.10.1248/bpb.31.1376Search in Google Scholar PubMed

Jiang, B., Xiong, Z., Yang, J., Wang, W., Wang, Y., Hu, Z.L., Wang, F., and Chen, J.G. (2012). Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br. J. Pharmacol. 166, 1872–1887.10.1111/j.1476-5381.2012.01902.xSearch in Google Scholar PubMed PubMed Central

Jiang, H., Wang, Z., Wang, Y., Xie, K., Zhang, Q., Luan, Q., Chen, W., and Liu, D. (2013). Antidepressant-like effects of curcumin in chronic mild stress of rats: involvement of its anti-inflammatory action. Prog. Neuropsychopharmacol. Biol. Psychiatry 2, 33–39.10.1016/j.pnpbp.2013.07.009Search in Google Scholar PubMed

Kessler, R.C., Merikangas, K.R., and Wang, P.S. (2008). The prevalence and correlates of workplace depression in the national comorbidity survey replication. J. Occup. Environ. Med. 50, 381–390.10.1097/JOM.0b013e31816ba9b8Search in Google Scholar PubMed PubMed Central

Kessler, R.C. and Bromet, E.J. (2013). The epidemiology of depression across cultures. Annu. Rev. Public Health 34, 119–138.10.1146/annurev-publhealth-031912-114409Search in Google Scholar PubMed PubMed Central

Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., and Tai, T.C. (2013). Polyphenols, benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779–3827.10.3390/nu5103779Search in Google Scholar PubMed PubMed Central

Kim, S.J., Lee, L. Kim, J.H., Lee, T.H., and Shim, I. (2013). Antidepressant-like effects of Lycii radicis cortex and betaine in the forced swimming test in rats. Biomol. Ther. (Seoul) 21, 79–83.10.4062/biomolther.2012.072Search in Google Scholar PubMed PubMed Central

Kulkarni, S.K. and Dhir, A. (2007). Possible involvement of l-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling pathway in the antidepressant activity of berberine chloride. Eur. J. Pharmacol. 569, 77–83.10.1016/j.ejphar.2007.05.002Search in Google Scholar PubMed

Kulkarni, S.K. and Dhir, A. (2008a). On the mechanism of antidepressant-like action of berberine chloride. Eur. J. Pharmacol. 589, 163–172.10.1016/j.ejphar.2008.05.043Search in Google Scholar PubMed

Kulkarni, S.K., Bhutani, M.K., and Bishnoi, M. (2008b). Antidepressant activity of curcumin, involvement of serotonin and dopamine system. Psychopharmacology (Berl) 201, 435–442.10.1007/s00213-008-1300-ySearch in Google Scholar PubMed

Kumar, S. and Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013, 162750.10.1155/2013/162750Search in Google Scholar PubMed PubMed Central

Lakhan, S.E. and Vieira, K.F. (2010). Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr. J. 9, 42.10.1186/1475-2891-9-42Search in Google Scholar PubMed PubMed Central

Lee, S.A., Hong, S.S., Han, X.H., Hwang, J.S., Oh, G.J., Lee, K.S., Lee, M.K., Hwang, B.Y., and Ro, J.S. (2005). Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem. Pharm. Bull (Tokyo). 53, 832–835.10.1248/cpb.53.832Search in Google Scholar PubMed

Li, Y., Ming, Y., Li, Y., Yimin, Z., and Zhipou, L. (2000). Antidepressant effect of quercetin 3-O-apiosyl (l→2)-(rhamnosyl(1→6))-glucoside in mice. Chin. J. Pharmacol. Toxicol. 14, 125–127.Search in Google Scholar

Li, S., Wang, C., Li, W., Koike, K., Nikaido, T., and Wang, M.W. (2007a). Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J. Asian. Nat. Prod. Res. 9, 421–430.10.1080/10286020500384302Search in Google Scholar PubMed

Li, S., Wang, C., Wang, M., Li, W., Matsumoto, K., and Tang, Y. (2007b). Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life. Sci. 80, 1373–1381.10.1016/j.lfs.2006.12.027Search in Google Scholar PubMed

Li, Y.C., Wang, F.M., Pan, Y., Qiang, L.Q., Cheng, G., Zhang, W.Y., and Kong, L.D. (2009). Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 435–449.Search in Google Scholar

Li, L.F., Lu, J., Li, X.M., Xu, C.L., Deng, J.M., Qu, R., and Ma, S.P. (2012). Antidepressant-like effect of magnolol on BDNF up-regulation and serotonergic system activity in unpredictable chronic mild stress treated rats. Phytother. Res. 26, 1189–1194.10.1002/ptr.3706Search in Google Scholar PubMed

Li, J., Geng, D., Xu, J., Weng, L.J., Liu, Q., and Yi, L.T. (2013). Antidepressant-like effect of macranthol isolated from Illicium dunnianum tutch in mice. Eur. J. Pharmacol. 707, 112–119.10.1016/j.ejphar.2013.03.010Search in Google Scholar PubMed

Liu, P., Wang, D.X., Liu, P., Guo, D.H., Wei, R.B., and Rahman, K. (2008). Antidepressant effect of 3′, 6-disinapoyl sucrose from Polygala tenuifolia Willd in pharmacological depression model. Chin. Pharm. J. 43, 1391–1394.Search in Google Scholar

Liu, X., Liu, F., Yue, R., Li, Y., Zhang, J., Wang, S., Zhang, S., Wang, R., Shan, L., and Zhang, W. (2013). The antidepressant-like effect of bacopaside I: possible involvement of the oxidative stress system and the noradrenergic system. Pharmacol. Biochem. Behav. 110, 224–230.10.1016/j.pbb.2013.07.007Search in Google Scholar PubMed

Liu D., Wang Z., Gao Z., Xie K., Zhang Q., Jiang H., and Pang Q. (2014). Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav. Brain Res. 271, 116–121.10.1016/j.bbr.2014.05.068Search in Google Scholar PubMed

Lobato, K.R., Cardoso, C.C., Binfaré, R.W., Budni, J., Wagner, C.L., Brocardo, P.S., de Souza, L.F., Brocardo, C., Flesch, S., Freitas, A.E., et al. (2010). α-Tocopherol administration produces an antidepressant-like effect in predictive animal models of depression. Behav. Brain. Res. 209, 249–259.10.1016/j.bbr.2010.02.002Search in Google Scholar PubMed

Lopresti A.L., Maes M., Maker G.L., Hood S.D., and Drummond P.D. (2014). Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J. Affect. Disord. 167, 368–375.10.1016/j.jad.2014.06.001Search in Google Scholar PubMed

Machado, D.G., Bettio, L.E., Cunha, M.P., Santos, A.R., Pizzolatti, M.G., Brighente, I.M., and Rodrigues, A.L. (2008). Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur. J. Pharmacol. 587, 163–168.10.1016/j.ejphar.2008.03.021Search in Google Scholar PubMed

Machado, D.G., Neis, V.B., Balen, G.O., Colla, A., Cunha, M.P., Dalmarco, J.B., Pizzolatti, M.G., Prediger, R.D., and Rodrigues, A.L. (2012). Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: evidence for the involvement of the dopaminergic system. Pharmacol. Biochem. Behav. 103, 204–211.10.1016/j.pbb.2012.08.016Search in Google Scholar PubMed

Manosso L.M., Neis V.B., Moretti M., Daufenbach J.F., Freitas A.E., Colla A.R., and Rodrigues A.L. (2013). Antidepressant-like effect of α-tocopherol in a mouse model of depressive-like behavior induced by TNF-α. Prog. Neuropsychopharmacol. Biol. Psychiatry 46, 48–57.Search in Google Scholar

Mao, Q.Q., Xian, Y.F., Ip, S.P., and Che, C.T. (2011). Involvement of serotonergic system in the antidepressant-like effect of piperine. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1144–1147.Search in Google Scholar

Melo, F.H., Moura, B.A., de Sousa, D.P., de Vasconcelos, S.M., Macedo, D.S., Fonteles, M.M., Viana, G.S., and de Sousa, F.C. (2011). Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam. Clin. Pharmacol. 25, 362–367.10.1111/j.1472-8206.2010.00850.xSearch in Google Scholar PubMed

Melo, C.T., De Carvalho, A.M., Moura, B.A., Teixeira, C.P., Vasconcelos, L.F., Feitosa, M.L., de Oliveira, G.V., Barbosa-Filho, J.M., Chavez Gutierrez, S.J., de França Fonteles, M.M., et al. (2013). Evidence for the involvement of the serotonergic, noradrenergic, and dopaminergic systems in the antidepressant-like action of riparin III obtained from Aniba riparia (Nees) Mez (Lauraceae) in mice. Fundam. Clin. Pharmacol. 27, 104–112.10.1111/j.1472-8206.2011.00968.xSearch in Google Scholar PubMed

Monje, M.L., Toda, H., and Palmar, T.D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765.10.1126/science.1088417Search in Google Scholar PubMed

Moretti M., Freitas A.E., Budni J., Fernandes S.C., Balen Gde O., and Rodrigues A.L. (2011). Involvement of nitric oxide-cGMP pathway in the antidepressant-like effect of ascorbic acid in the tail suspension test. Behav. Brain. Res. 225, 328–333.10.1016/j.bbr.2011.07.024Search in Google Scholar PubMed

Moretti M., Budni J., Ribeiro C.M., and Rodrigues A.L. (2012). Involvement of different types of potassium channels in the antidepressant-like effect of ascorbic acid in the mouse tail suspension test. Eur. J. Pharmacol. 687, 21–27.10.1016/j.ejphar.2012.04.041Search in Google Scholar PubMed

Moretti M., Budni J., Freitas A.E., Rosa P.B., and Rodrigues A.L. (2014). Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J. Psychiatr. Res. 48, 16–24.10.1016/j.jpsychires.2013.10.014Search in Google Scholar PubMed

Muray, C.J.L. and Lopez, A.D. (1996). Evidence-based health policy – lessons from the global burden of disease study. Science 274, 740–743.10.1126/science.274.5288.740Search in Google Scholar PubMed

Nakazawa, T., Yasuda, T., and Ohsawa, K. (2003). Antidepressant-like effects of magnolol from Magnolia officinalis in the forced swimming test. Nat. Med. 57, 221–226.Search in Google Scholar

Nesterova, Y.V., Povetieva, T.N., Suslov, N.I., Semenov, A.A., and Pushkarskiy S.V. (2011). Antidepressant activity of diterpene alkaloids of Aconitum baicalense Turcz. Bull. Exp. Biol. Med. 151, 425–428.10.1007/s10517-011-1347-3Search in Google Scholar PubMed

O’Keane, V., Frodl, T., and Dinan, T.G. (2012). A review of atypical depression in relation to the course of depression and changes in HPA axis organization. Psychoneuroendocrinology 37, 1589–1599.10.1016/j.psyneuen.2012.03.009Search in Google Scholar PubMed

Palazidou, E. (2012). The neurobiology of depression. Br. Med. Bull. 101, 127–145.10.1093/bmb/lds004Search in Google Scholar PubMed

Pan, Y., Kong, L., Xia, X., Zhang, W., Xia, Z., and Jiang, F. (2005). Antidepressant-like effect of icariin and its possible mechanism in mice. Pharmacol. Biochem. Behav. 82, 686–694.10.1016/j.pbb.2005.11.010Search in Google Scholar PubMed

Papakostas, G.I. (2008). Tolerability of modern antidepressants. J. Clin. Psychiatry. 69 (Suppl E1), 8–13.Search in Google Scholar

Park, S.H., Sim, Y.B., Han, P.L., Lee, J.K., and Suh, H.W. (2010). Antidepressant-like effect of kaempferol and quercitirin, isolated from Opuntia ficus-indica var. saboten. Exp. Neurobiol. 19, 30–38.10.5607/en.2010.19.1.30Search in Google Scholar PubMed PubMed Central

Pathak, L., Agrawal, Y., and Dhir, A. (2013). Natural polyphenols in the management of major depression. Expert. Opin. Investig. Drugs 22, 863–880.10.1517/13543784.2013.794783Search in Google Scholar PubMed

Peng, W.H., Lo, K.L., Lee, Y.H., Hung, T.H., and Lin, Y.C. (2007). Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci. 81, 933–938.10.1016/j.lfs.2007.08.003Search in Google Scholar PubMed

Podolak, I., Galanty, A., and Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochem. Rev. 9, 425–474.10.1007/s11101-010-9183-zSearch in Google Scholar PubMed PubMed Central

Qiu, F.M., Zhong, X.M., Mao, Q.Q., and Huang, Z. (2013a). The antidepressant-like effects of paeoniflorin in mouse models. Exp. Ther. Med. 5, 1113–1116.10.3892/etm.2013.925Search in Google Scholar PubMed PubMed Central

Qiu, F.M., Zhong, X.M., Mao, Q.Q., and Huang, Z. (2013b). Antidepressant-like effects of paeoniflorin on the behavioural, biochemical, and neurochemical patterns of rats exposed to chronic unpredictable stress. Neurosci. Lett. 541, 209–213.10.1016/j.neulet.2013.02.029Search in Google Scholar PubMed

Rahimi, R. and Abdollahi, M. (2012). An update on the ability of St. John’s wort to affect the metabolism of other drugs. Expert. Opin. Drug. Metab. Toxicol. 8, 691–708.10.1517/17425255.2012.680886Search in Google Scholar PubMed

Rahimi, R., Nikfar, S., and Abdollahi, M. (2009). Efficacy and tolerability of Hypericum perforatum in major depressive disorder in comparison with selective serotonin reuptake inhibitors: a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 118–127.10.1016/j.pnpbp.2008.10.018Search in Google Scholar PubMed

Raison, C.L., Capuron, L., and Miller, A.H. (2006). Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends. Immunol. 27, 24–31.10.1016/j.it.2005.11.006Search in Google Scholar PubMed PubMed Central

Rakofsky, J.J., Holtzheimer, P.E., and Nemeroff, C.B. (2009). Emerging targets for antidepressant therapies. Curr. Opin. Chem. Biol. 13, 291–302.10.1016/j.cbpa.2009.04.617Search in Google Scholar PubMed PubMed Central

Ren, L.X., Luo, Y.F., Li, X., Zuo, D.Y., and Wu, Y.L. (2006). Antidepressant-like effects of sarsasapogenin from Anemarrhena asphodeloides BUNGE (Liliaceae). Biol. Pharm. Bull. 29, 2304–2306.10.1248/bpb.29.2304Search in Google Scholar PubMed

Rinwa, P. and Kumar, A. (2013). Quercetin suppresses the microglial neuroinflammatory response and induces antidepressant like effect in olfactory bulbectomized rats. Neuroscience 255, 86–98.10.1016/j.neuroscience.2013.09.044Search in Google Scholar PubMed

Salvamani, S., Gunasekaran, B., Shaharuddin, N.A., Ahmad, S.A., and Shukor, M.Y. (2014). Antiartherosclerotic effects of plant flavonoids. Biomed. Res. Int. 2014, 480258.10.1155/2014/480258Search in Google Scholar PubMed PubMed Central

Sanmukhani J., Satodia V., Trivedi J., Patel T., Tiwari D., Panchal B., Goel A., and Tripathi C.B. (2014). Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother. Res. 28, 579–585.10.1002/ptr.5025Search in Google Scholar

Sarbandi Farahani, M., Bahramsoltani, R., Farzaei, M.H., Abdollahi, M., and Rahimi, R. (2015). Plant-derived natural medicines for the management of depression: an overview of mechanisms of action. Rev. Neurosci. 26, 305–321.10.1515/revneuro-2014-0058Search in Google Scholar

Schalekamp, T., Klungel, O.H., Souverein, P.C., and de Boer, A. (2008). Increased bleeding risk with concurrent use of selective serotonin reuptake inhibitors and coumarins. Arch. Intern. Med. 168, 180–185.10.1001/archinternmed.2007.32Search in Google Scholar

Seki, H., Ohyama, K., Mizutani, M., Ohnishi, T., Sudo, H., Akashi, T., Aoki, T., Saito, K., and Muranaka, T. (2008). Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc. Natl. Acad. Sci. USA 105, 14204–14209.10.1073/pnas.0803876105Search in Google Scholar

Shapiro, H., Singer, P., Halpern, Z., and Bruck, R. (2007). Polyphenols in the treatment of inflammatory bowel disease and acute pancreatitis. Gut 56, 426–435.10.1136/gut.2006.094599Search in Google Scholar

Song, D.K., Suh, H.W., Jung, J.S., Wie, M.B., Son, K.H., and Kim, Y.H. (1996). Antidepressant-like effects of p-synephrine in mouse models of immobility tests. Neurosci. Lett. 214, 107–110.10.1016/0304-3940(96)12895-0Search in Google Scholar

Souza, L.C., De Gomes, M.G., Goes, A.T., Del Fabbro, L., Filho, C.B., Boeira, S.P., and Jesse, C.R. (2013). Evidence for the involvement of the serotonergic 5-HT(1A) receptors in the antidepressant-like effect caused by hesperidin in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 103–109.Search in Google Scholar

Spina, E. and Perucca, E. (1994). Newer and older antidepressants: a comparative review of drug interactions. CNS Drugs 2, 479–497.10.2165/00023210-199402060-00008Search in Google Scholar

Spina, E., Santoro, V., and D’Arrigo, C. (2008). Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin. Ther. 30, 1206–1227.10.1016/S0149-2918(08)80047-1Search in Google Scholar

Stein, A.C., Viana, A.F., Müller, L.G., Nunes, J.M., Stolz, E.D., Do Rego, J.C., Costentin, J., von Poser, G.L., and Rates, S.M. (2012). Uliginosin B, a phloroglucinol derivative from Hypericum polyanthemum: a promising new molecular pattern for the development of antidepressant drugs. Behav. Brain. Res. 228, 66–73.10.1016/j.bbr.2011.11.031Search in Google Scholar

Subarnas, A., Tadano, T., Nakahata, N., Arai, Y., Kinemuchi, H., Oshima, Y., Kisara, K., and Ohizumi, Y. (1993). A possible mechanism of antidepressant activity of beta-amyrin palmitate isolated from Lobelia inflata leaves in the forced swimming test. Life. Sci. 52, 289–296.10.1016/0024-3205(93)90220-WSearch in Google Scholar

Sugimoto, Y., Furutani, S., Nishimura, K., Itoh, A., Tanahashi, T., Nakajima, H., Oshiro, H., Sun, S., and Yamada, J. (2010). Antidepressant-like effects of neferine in the forced swimming test involve the serotonin1A (5-HT1A) receptor in mice. Eur. J. Pharmacol. 634, 62–67.10.1016/j.ejphar.2010.02.016Search in Google Scholar

Tao, G., Irie, Y., Li, D.J., and Keung, W.M. (2005). Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity. Bioorg. Med. Chem. 13, 4777–4788.10.1016/j.bmc.2005.04.081Search in Google Scholar

Teixeira, C.P., De Melo, C.T., de Araújo, F.L., de Carvalho, A.M., Silva, M.I., Barbosa-Filho, J.M., Macêdo, D.S., de Barros Viana, G.S., and de Sousa, F.C. (2013). Antidepressant-like effect of riparin II from Aniba riparia in mice, evidence for the involvement of the monoaminergic system. Fundam. Clin. Pharmacol. 27, 129–137.10.1111/j.1472-8206.2011.00973.xSearch in Google Scholar

Tian, J.S., Cui, Y.L., Hu, L.M., Gao, S., Chi, W., Dong, T.J., and Liu, L.P. (2010). Antidepressant-like effect of genipin in mice. Neurosci. Lett. 479, 236–239.10.1016/j.neulet.2010.05.069Search in Google Scholar

Trivedi, M.H., Rush, A.J., Wisniewski, S.R., Nierenberg, A.A., Warden, D., Ritz, L., Norquist, G., Howland, R.H., Lebowitz, B., McGrath, P.J., et al. (2006). Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry 163, 28–40.10.1176/appi.ajp.163.1.28Search in Google Scholar

Umukoro, S., Akinyinka, A.O., and Aladeokin, A.C. (2011). Antidepressant activity of methyl jasmonate, a plant stress hormone in mice. Pharmacol. Biochem. Behav. 98, 8–11.10.1016/j.pbb.2010.12.001Search in Google Scholar

Vanderkooy, J.D., Kennedy, S.H., and Aladeokin, A.C. (2002). Antidepressant side effects in depression patients treated in a naturalistic setting: a study of bupropion, moclobemide, paroxetine, sertraline, and venlafaxine. Can. J. Psychiatry 47, 174–180.10.1177/070674370204700208Search in Google Scholar

Vincken, J.P., Heng, L., de Groot, A., and Gruppen, H., (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68, 275–297.10.1016/j.phytochem.2006.10.008Search in Google Scholar

Wang, G., Tang, W., and Bidigari, R.R. (2005). Natural Products (Springer, Chapter 9), pp. 197–227.Search in Google Scholar

Wang, P.S., Aguilar-Gaxiola, S., Alonso, J., Angermeyer, M.C., Borges, G., Bromet, E.J., Bruffaerts, R., de Girolamo, G., de Graaf, R., Gureje, O., et al. (2007). Use of mental health services for anxiety, mood, and substance disorders in 17 countries in the WHO world mental health surveys. Lancet 370, 841–850.10.1016/S0140-6736(07)61414-7Search in Google Scholar

Wang, R., Xu, Y., Wu, H.L., Li, Y.B., Li, Y.H., Guo, J.B., and Li, X.J. (2008a). The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur. J. Pharmacol. 578, 43–50.10.1016/j.ejphar.2007.08.045Search in Google Scholar PubMed

Wang, W., Hu, X., Zhao, Z., Liu, P., Hu, Y., Zhou, J., Zhou, D., Wang, Z., Guo, D., and Guo, H. (2008b). Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1179–1184.10.1016/j.pnpbp.2007.12.021Search in Google Scholar

Wang, H., Zhang, R., Qiau, Y., Xue, F., Nie, H., Zhang, Z., Wang, Y., Peng, Z., and Tan, Q. (2014a). Gastrodin ameliorates depression-like behaviors and up-regulates proliferation of hippocampal-derived neural stem cells in rats: Involvement of its anti-inflammatory action. Behav. Brain. Res. 266, 153–160.10.1016/j.bbr.2014.02.046Search in Google Scholar

Wang, Q.S., Tian, J.S., Cui, L.Y., and Gao, S. (2014b). Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression. Neuroscience 275, 365–373.10.1016/j.neuroscience.2014.06.032Search in Google Scholar

Wimbiscus, M., Kostenko, O., and Malone, D. (2010). MAO inhibitors: risks, benefits, and lore. Cleve. Clin. J. Med. 77, 859–882.10.3949/ccjm.77a.09103Search in Google Scholar

Xie, C.L., Gu, Y., Wang, W.W., Lu, L., Fu, D.L., Liu, A.J., Li, H.Q., Li, J.H., Lin, Y., Tang, W.J., et al. (2013). Efficacy and safety of Suanzaoren decoction for primary insomnia: a systematic review of randomized controlled trials. BMC Complement. Altern. Med. 13, 18.10.1186/1472-6882-13-18Search in Google Scholar

Xiong, Z., Jiang, B., Wu, P.F., Tian, J., Shi, L.L., Gu, J., Hu, Z.L., Fu, H., Wang, F., and Chen J.G. (2011). Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade. Biol. Pharm. Bull. 34, 253–259.10.1248/bpb.34.253Search in Google Scholar

Xu, Y., Ku, B.S., Yao, H.Y., Ma, X., Zhang, Y.H., and Li, X.J. (2005a). Antidepressant effect of curcumin in mice. Chin. J. Clin. Rehabil. 9, 162–164.Search in Google Scholar

Xu, Y., Ku, B.S., Yao, H.Y., Lin, Y.H., Ma, X., Zhang, Y.H., and Li, X.J. (2005b). Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rat. Pharmacol. Biochem. Behav. 82, 200–206.10.1016/j.pbb.2005.08.009Search in Google Scholar

Xu, Q., Pan, Y., Yi, L.T., Li, Y.C., Mo, S.F., Jiang, F.X., Qiao, C.F., Xu, H.X., Lu, X.B., Kong, L.D., et al. (2008). Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biol. Pharm. Bull. 6, 1109–1114.10.1248/bpb.31.1109Search in Google Scholar

Xu, C., Teng, J., Chen, W., Ge, Q., Yang, Z., Yu, C., Yang, Z., and Jia, W. (2010). 20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests. Prog. Neuropsychopharmacol. Biol Psychiatry 34, 1402–1411.Search in Google Scholar

Yan, H.C., Qu, H.D., Sun, L.R., Li, S.J., Cao, X., Fang, Y.Y., Jie, W., Bean, J.C., Wu, W.K., Zhu, X.H., et al. (2010). Fuzi polysaccharide-1 produces antidepressant-like effects in mice. Int. J. Neuropsychopharmacol. 13, 623–633.10.1017/S1461145709990733Search in Google Scholar

Yao, Y., Sang, W., Yang, X., Zhai, M., Wang, L.L., Qin, P., Wu, L., Zhou, X., Wang, L.J., Li, J., Zhu, Z., et al. (2012). Antidepressant effects of ginsenosides from Panax notoginseng. J. Integr. Agric. 11, 483–488.10.1016/S2095-3119(12)60034-3Search in Google Scholar

Yao, Y., Huang, H.Y., Yang, Y.X., and Guo, J.Y. (2015). Cinnamic aldehyde treatment alleviates chronic unexpected stress-induced depressive-like behaviors via targeting cyclooxygenase-2 in mid-aged rats. J. Ethnopharmacol. 162, 97–103.10.1016/j.jep.2014.12.047Search in Google Scholar

Yen, G.C., Duh, P.D., and Tsai, H.L. (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food. Chem. 79, 307–313.10.1016/S0308-8146(02)00145-0Search in Google Scholar

Yi, L.T., Li, Y.C., Pan, Y., Li, J.M., Xu, Q., Mo, S.F., Qiao, C.F., Jiang, F.X., Xu, H.X., Lu, X.B., et al. (2008a). Antidepressant-like effects of psoralidin isolated from the seeds of Psoralea corylifolia in the forced swimming test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2, 510–519.10.1016/j.pnpbp.2007.10.005Search in Google Scholar PubMed

Yi, L.T., Li, J.M., Li, Y.C., Pan, Y., Xu, Q., and Kong, L.D. (2008b). Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life. Sci. 82, 741–751.10.1016/j.lfs.2008.01.007Search in Google Scholar PubMed

Yi, L.T., Li, C.F., Zhan, X., Cui, C.C., Xiao, F., Zhou, L.P., and Xie, Y. (2010). Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 1223–1228.Search in Google Scholar

Yi, L.T., Xu, H.L., Feng, J., Zhan, X., Zhou, L.P., and Cui, C.C. (2011). Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin. Physiol. Behav. 102, 1–6.10.1016/j.physbeh.2010.10.008Search in Google Scholar PubMed

Yi, L.T., Li, J., Li, H.C., Su, D.X., Quan, X.B., He, X.C., and Wang, X.H. (2012). Antidepressant-like behavioral, neurochemical and neuroendocrine effects of naringenin in the mouse repeated tail suspension test. Prog. Neuropsychopharmacol. Biol. Psychiatry 39, 175–181.Search in Google Scholar

Yi, L.T., Li, J., Liu, Q., Geng, D., Zhou, Y.F., Ke, X.Q., Chen, H., and Weng, L.J. (2013). Antidepressant-like effect of oleanolic acid in mice exposed to the repeated forced swimming test. J. Psychopharmacol. 27, 459–468.10.1177/0269881112467090Search in Google Scholar PubMed

Yi, L.T., Liu, B.B., Li, J., Luo, L., Liu, Q., Geng, D., Tang, Y., Xia, Y., and Wu, D. (2014). BDNF signaling is necessary for the antidepressant-like effect of naringenin. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 135–141.Search in Google Scholar

Yu, K., Chen, F., and Li, C. (2012). Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs: what do we know and what do we need to know more? Curr. Drug. Metab. 13, 577–598.10.2174/1389200211209050577Search in Google Scholar PubMed

Yu, Y., Wang, R., Chen, C., Du, X., Ruan, L., Sun, J., Li, J., Zhang, L., O’Donnell, J.M., Pan, J., et al. (2013). Antidepressant-like effect of trans-resveratrol in chronic stress model: behavioral and neurochemical evidences. J. Psychiatr. Res. 47, 315–322.10.1016/j.jpsychires.2012.10.018Search in Google Scholar PubMed

Yu, C.H., Ishii, R., Yu, S.C., and Takeda, M. (2014). Yokukansan and its ingredients as possible treatment options for schizophrenia. Neuropsychiatr. Dis. Treat. 10, 1629–34.Search in Google Scholar

Zanelati, T.V., Biojone, C., Moreira, F.A., Guimarães, F.S., and Joca, S.R. (2010). Antidepressant-like effects of cannabidiol in mice, possible involvement of 5-HT1A receptors. Br. J. Pharmacol. 159, 122–128.10.1111/j.1476-5381.2009.00521.xSearch in Google Scholar PubMed PubMed Central

Zeni, A.L., Zomkowski, A.D., Maraschin, M., Rodrigues, A.L., and Tasca, C.I. (2012a). Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice, evidence for the involvement of the serotonergic system. Eur. J. Pharmacol. 679, 68–74.10.1016/j.ejphar.2011.12.041Search in Google Scholar PubMed

Zeni, A.L., Zomkowski, A.D., Maraschin, M., Rodrigues, A.L., and Tasca, C.I. (2012b). Involvement of PKA, CaMKII, PKC, MAPK/ERK and PI3K in the acute antidepressant-like effect of ferulic acid in the tail suspension test. Pharmacol. Biochem. Behav. 103, 181–186.10.1016/j.pbb.2012.08.020Search in Google Scholar PubMed

Zhao, Z., Wang, W., Guo, H., and Zhou, D. (2008). Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav. Brain. Res. 194, 108–113.10.1016/j.bbr.2008.06.030Search in Google Scholar PubMed

Zhen, L., Zhu, J., Zhao, X., Huang, W., An, Y., Li, S., Du, X., Lin, M., Wang, Q., Xu, Y., et al. (2012). The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav. Brain. Res. 228, 359–366.10.1016/j.bbr.2011.12.017Search in Google Scholar PubMed

Zheng, M., Liu, C., Pan, F., Shi, D., and Zhang, Y. (2012). Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms. Phytomedicine 19, 145–149.10.1016/j.phymed.2011.06.029Search in Google Scholar PubMed

Zhou, D., Jin, H., Lin, H.B., Yang, X.M., Cheng, Y.F., Deng, F.J., and Xu, J.P. (2010). Antidepressant effect of the extracts from Fructus akebiae. Pharmacol. Biochem. Behav. 94, 488–495.10.1016/j.pbb.2009.11.003Search in Google Scholar PubMed

Zhu, W., Ma, S., Qu, R., Kang, D., and Liu, Y. (2006a). Antidepressant effect of baicalin extracted from the root of Scutellaria baicalensis in mice and rats. Pharm. Biol. 44, 503–510.10.1080/13880200600878684Search in Google Scholar

Zhu, W., Ma, S. Qu, R., and Kang, D. (2006b). Antidepressant-like effect of paeonol. Pharm. Boil. 44, 229–235.10.1080/13880200600685576Search in Google Scholar

Received: 2015-2-25
Accepted: 2015-4-19
Published Online: 2015-7-4
Published in Print: 2015-12-1

©2015 by De Gruyter

Downloaded on 2.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2015-0009/html
Scroll to top button