Abstract
Phosphenes are experienced sensations of light, when there is no light causing them. The physiological processes underlying this phenomenon are still not well understood. Previously, we proposed a novel biopsychophysical approach concerning the cause of phosphenes based on the assumption that cellular endogenous ultra-weak photon emission (UPE) is the biophysical cause leading to the sensation of phosphenes. Briefly summarized, the visual sensation of light (phosphenes) is likely to be due to the inherent perception of UPE of cells in the visual system. If the intensity of spontaneous or induced photon emission of cells in the visual system exceeds a distinct threshold, it is hypothesized that it can become a conscious light sensation. Discussing several new and previous experiments, we point out that the UPE theory of phosphenes should be really considered as a scientifically appropriate and provable mechanism to explain the physiological basis of phosphenes. In the present paper, we also present our idea that some experiments may support that the cortical phosphene lights are due to the glutamate-related excess UPE in the occipital cortex.
References
Abrahamya, A., Clifford, C.W., Arabzadeh, E., and Harris, J.A. (2011). Improving visual sensitivity with subthreshold transcranial magnetic stimulation. J. Neurosci. 31, 3290–3294.10.1523/JNEUROSCI.6256-10.2011Search in Google Scholar
Afra, P., Funke, M., and Matsuo, F. (2009). Acquired auditory-visual synesthesia: a window to early cross-modal sensory interactions. Psychol. Res. Behav. Manag. 2, 31–37.10.2147/PRBM.S4481Search in Google Scholar
Alekseenko, A.V., Lemeshchenko, V.V., Pekun, T.G., Waseem, T.V., and Fedorovich, S.V. (2012). Glutamate-induced free radical formation in rat brain synaptosomes is not dependent on intrasynaptosomal mitochondria membrane potential. Neurosci. Lett. 513, 238–242.10.1016/j.neulet.2012.02.051Search in Google Scholar
Alvarez, J.G. and Storey, B.T. (1985). Spontaneous lipid peroxidation in rabbit and mouse epididymal spermatozoa: dependence of rate on temperature and oxygen concentration. Biol. Reprod. 32, 342–351.10.1095/biolreprod32.2.342Search in Google Scholar
Alvermann, M., Srivastava, Y.N., Swain, J., and Widom, A. (2015). Biological electric fields and rate equations for biophotons. Eur. Biophys. J. 44, 165–170.10.1007/s00249-015-1011-3Search in Google Scholar
Artem’ev, V.V., Goldobin, A.S., and Gus’kov, L.N. (1967). Recording of light emission from a nerve. Biofizika 12, 1111–1113.Search in Google Scholar
Ashtari, M., Cyckowski, L., Yazdi, A., Viands, A., Marshall, K., Bókkon, I., Maguire, A., and Bennett, J. (2014). fMRI of retina-originated phosphenes experienced by patients with Leber congenital amaurosis. PLoS One 9, e86068.10.1371/journal.pone.0086068Search in Google Scholar
Baker, A. and Kanofsky, J.R. (1991). Direct observation of singlet oxygen phosphorescence at 1270 nm from L1210 leukemia cells exposed to polyporphyrin and light. Arch. Biochem. Biophys. 286, 70–75.10.1016/0003-9861(91)90009-8Search in Google Scholar
Bókkon, I. (2008). Phosphene phenomenon: a new concept. Biosystems 92, 168–174.10.1016/j.biosystems.2008.02.002Search in Google Scholar PubMed
Bókkon, I. and Antal, I. (2011). Schizophrenia: redox regulation and volume transmission. Curr. Neuropharm. 9, 289–300.10.2174/157015911795596504Search in Google Scholar PubMed PubMed Central
Bókkon, I. and Vimal, R.L.P. (2009). Retinal phosphenes and discrete dark noises in rods: a new biophysical framework. J. Photochem. Photobiol. B Biol. 96, 255–259.10.1016/j.jphotobiol.2009.07.002Search in Google Scholar PubMed
Bókkon, I., Salari, V., Tuszynski, J., and Antal, I. (2010). Estimation of the number of biophotons involved in the visual perception of a single-object image: biophoton intensity can be considerably higher inside cells than outside. J. Photochem. Photobiol. B Biol. 100, 160–166.10.1016/j.jphotobiol.2010.06.001Search in Google Scholar PubMed
Blacker, T.S., Mann, Z.F., Gale, J.E., Ziegler, M., Bain, A.J., Szabadkai, G., and Duchen, M.R. (2014). Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 5, 3936.10.1038/ncomms4936Search in Google Scholar PubMed PubMed Central
Bolognini, N., Convento, S., Fusaro, M., and Vallar, G. (2013). The sound-induced phosphene illusion. Exp. Brain Res. 231, 469–478.10.1007/s00221-013-3711-1Search in Google Scholar PubMed
Boroojerdi, B., Prager, A., Muellbacher, W., and Cohen, L.G. (2000). Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology 54, 1529–1531.10.1212/WNL.54.7.1529Search in Google Scholar
Boveris, A., Cadenas, E., and Chance, B. (1980). Low-level chemiluminescence of lipoxygenase reaction. Photochem. Photobiophys. 1, 175–182.Search in Google Scholar
Brennan, A.M., Suh, S.W., Won, S.J., Narasimhan, P., Kauppinen, T.M., Lee, H., Edling, Y., Chan, P.H., and Swanson, R.A. (2009). NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat. Neurosci. 12, 857–863.10.1038/nn.2334Search in Google Scholar PubMed PubMed Central
Brigatti, L. and Maguluri, S. (2005). Reproducibility of self-measured intraocular pressure with the phosphene tonometer in patients with ocular hypertension and early to advanced glaucoma. J. Glaucoma 14, 36–39.10.1097/01.ijg.0000146374.59119.42Search in Google Scholar PubMed
Brindley, G.S. and Lewin, W.S. (1968). The sensation produced by electrical stimulation of visual cortex. J. Physiol. (Lond.) 196, 479–493.10.1113/jphysiol.1968.sp008519Search in Google Scholar PubMed PubMed Central
Campos, F., Pérez-Mato, M., Agulla, J., Blanco, M., Barral, D., Almeida, A., Brea, D., Waeber, C., Castillo, J., and Ramos-Cabrer, P. (2012). Glutamate excitoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke. PLoS One 7, e44191.10.1371/journal.pone.0044191Search in Google Scholar PubMed PubMed Central
Catalá, A. (2006). An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int. J. Biochem. Cell. Biol. 38, 1482–1495.10.1016/j.biocel.2006.02.010Search in Google Scholar PubMed
Cervetto, L., Demontis, G.C., and Gargini, C. (2007). Cellular mechanisms underlying the pharmacological induction of phosphenes. Br. J. Pharmacol. 150, 383–390.10.1038/sj.bjp.0706998Search in Google Scholar PubMed PubMed Central
Chetkovich, D.M., Gray, R., Johnston, D., and Sweatt, J.D. (1991). N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc. Natl. Acad. Sci. U. S. A. 88, 6467–6471.10.1073/pnas.88.15.6467Search in Google Scholar
Cifra, M. and Pospíšil, P. (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B Biol. 139, 2–10.10.1016/j.jphotobiol.2014.02.009Search in Google Scholar
Clements, J.D., Lester, R.A., Tong, G., Jahr, C.E., and Westbrook, G.L. (1992). The time course of glutamate in the synaptic cleft. Science 258, 1498–1501.10.1126/science.1359647Search in Google Scholar
Cilento, G. (1988). Photobiochemistry without light. Experientia 44, 572–576.10.1007/BF01953304Search in Google Scholar
Cohen, S. and Popp, F.A. (1997). Biophoton emission of the human body. J. Photochem. Photobiol. B Biol. 40, 187–189.10.1016/S1011-1344(97)00050-XSearch in Google Scholar
Delbeke, J., Pins, D., Michaux, G., Wanet-Defalque, M.C., Parrini, S., and Veraart, C. (2001). Electrical stimulation of anterior visual pathways in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 42, 291–297.Search in Google Scholar
Dietrich, W.D. and Bramlett, H.M. (2007). Hyperthermia and central nervous system injury. Prog. Brain Res. 162, 201–217.10.1016/S0079-6123(06)62011-6Search in Google Scholar
Dotta, B.T. and Persinger, M.A. (2011). Increased photon emissions from the right but not the left hemisphere while imagining white light in the dark: the potential connection between consciousness and cerebral light. JCER 2, 1463–1473.Search in Google Scholar
Dotta, B.T., Buckner, C.A., Cameron, D., Lafrenie, R.M., and Persinger, M.A. (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen. Physiol. Biophys. 30, 301–309.Search in Google Scholar
Dotta, B.T., Saroka, K.S., and Persinger, M.A. (2012). Increased photon emission from the head while imagining light in the dark is correlated with changes in electroencephalographic power: support for Bókkon’s Biophoton hypothesis. Neurosci. Lett. 513, 151–154.10.1016/j.neulet.2012.02.021Search in Google Scholar PubMed
Faraci, F.M. and Brian, J.E. Jr. (1994). Nitric oxide and the cerebral circulation. Stroke 25, 692–703.10.1161/01.STR.25.3.692Search in Google Scholar PubMed
Fountain, A. (2002). Before you blame the morphine: visual hallucinations in palliative care. CME Cancer Med. 1, 23–26.Search in Google Scholar
Fuglesang, C., Narici, L., Picozza, P., and Sannita, W.G. (2006). Phosphenes in low earth orbit: survey responses from 59 astronauts. Aviat. Space Environ. Med. 77, 449–452.Search in Google Scholar
Imaizumi, S., Kayama, T., and Suzuki, J. (1984). Chemiluminescence in hypoxic brain – the first report. Correlation between energy metabolism and free radical reaction. Stroke 15, 1061–1065.10.1161/01.STR.15.6.1061Search in Google Scholar
Isojima, Y., Isoshima, T., Nagai, K., Kikuchi, K., and Nakagawa, H. (1995). Ultraweak biochemiluminescence detected from rat hippocampal slices. Neuroreport 6, 658–660.10.1097/00001756-199503000-00018Search in Google Scholar PubMed
Karu, T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. 49, 1–17.10.1016/S1011-1344(98)00219-XSearch in Google Scholar
Kataoka, Y., Cui, Y., Yamagata, A., Niigaki, M., Hirohata, T., Oishi, N., and Watanabe, Y. (2001). Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons. Biochem. Biophys. Res. Commun. 285, 1007–1011.10.1006/bbrc.2001.5285Search in Google Scholar
Kato, M., Shinzawa, K., and Yoshikawa, S. (1981). Cytochrome oxidase is a possible photoreceptor in mitochondria. Photobiochem. Photobiophys. 2, 263–269.Search in Google Scholar
Khan, A.U. and Kasha, M.A. (1970). Chemiluminescence arising from simultaneous transitions in pairs of singlet oxygen molecules. J. Am. Chem. Soc. 92, 3293–3300.10.1021/ja00714a010Search in Google Scholar
Kobayashi, M. (2014). Highly sensitive imaging for ultra-weak photon emission from living organisms. J. Photochem. Photobiol. B 139, 34–38.10.1016/j.jphotobiol.2013.11.011Search in Google Scholar
Kobayashi, M., Takeda, M., Ito, K., Kato, H., and Inaba, H. (1999a). Two-dimensional photon counting imaging and spatiotemporal characterization of ultraweak photon emission from a rat’s brain in vivo. J. Neurosci. Methods 93, 163–168.10.1016/S0165-0270(99)00140-5Search in Google Scholar
Kobayashi, M., Takeda, M., Sato, T., Yamazaki, Y., Kaneko, K., Ito, K., Kato, H., and Inaba, H. (1999b). In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci. Res. 34, 103–113.10.1016/S0168-0102(99)00040-1Search in Google Scholar
Kobayashi, K., Okabe, H., Kawano, S., Hidaka, Y., and Hara, K. (2014). Biophoton emission induced by heat shock. PLoS One 9, e105700.10.1371/journal.pone.0105700Search in Google Scholar PubMed PubMed Central
Kruk, I., Lichszteld, K., Michalska T., Wronska, J., and Bounias, M. (1989). The formation of singlet oxygen during oxidation of catechol amines as detected by infrared chemiluminescence and spectrophotometric method. Z. Naturforsch. C 44, 895–900.10.1515/znc-1989-11-1203Search in Google Scholar PubMed
Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. (1993). NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537.10.1038/364535a0Search in Google Scholar PubMed
Lau, A. and Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460, 525–542.10.1007/s00424-010-0809-1Search in Google Scholar PubMed
Liebetanz, D., Nitsche, M.A., Tergau, F., and Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after effects of human motor cortex excitability. Brain 125, 2238–2247.10.1093/brain/awf238Search in Google Scholar
Lindenblatt, G. and Silny, J. (2002). Electrical phosphenes: on the influence of conductivity inhomogeneities and small-scale structures of the orbita on the current density threshold of excitation. Med. Biol. Eng. Comput. 40, 354–359.10.1007/BF02344219Search in Google Scholar
Medeiros, L.F., de Souza, I.C., Vidor, L.P., de Souza A., Deitos, A., Volz, M.S., Fregni, F., Caumo, W., and Torres, I.L. (2012). Neurobiological effects of transcranial direct current stimulation: a review. Front. Psychiatry 3, 110.10.3389/fpsyt.2012.00110Search in Google Scholar
Merabet, L.B., Theoret, H., and Pascual-Leone, A. (2003). Transcranial magnetic stimulation as an investigative tool in the study of visual function. Optom. Vis. Sci. 80, 356–368.10.1097/00006324-200305000-00010Search in Google Scholar
Misík, V., Gergel’, D., Alov P., and Ondrias, K. (1994). An unusual temperature dependence of malondialdehyde formation in Fe2+/H2O2-initiated lipid peroxidation of phosphatidylcholine liposomes. Physiol. Res. 43, 163–167.Search in Google Scholar
Miura, T., Muraoka, S., and Fujimoto, Y. (1998). Temperature-dependent lipid peroxidation of rat brain homogenate. Res. Commun. Mol. Pathol. Pharmacol. 100, 117–128.Search in Google Scholar
Mrozek, S., Vardon, F., and Geeraerts, T. (2012). Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol. Res. Pract. 2012, ID 989487.10.1155/2012/989487Search in Google Scholar
Murphy, M.E. and Sies, H. (1990). Visible-range low-level chemiluminescence in biological systems. Methods Enzymol. 186, 595–610.10.1016/0076-6879(90)86155-OSearch in Google Scholar
Nakanishi, S. (1992). Molecular diversity of glutamate receptor and implications for brain function. Science 258, 597–602.10.1126/science.1329206Search in Google Scholar
Nakano, M. (2005). Low-level chemiluminescence during lipid peroxidations and enzymatic reactions. J. Biolumin. Chemilum. 4, 231–240.10.1002/bio.1170040133Search in Google Scholar
Nakano, M. and Sugioka, K. (1977). Mechanism of chemiluminescence from the linoleate-lipoxygenase system. Arch. Biochem. Biophys. 181, 371–383.10.1016/0003-9861(77)90242-9Search in Google Scholar
Nakano, M., Takayama, K., Shimizu, Y., Tsuji, Y., Inaba, H., and Migita, T. (1976). Spectroscopic evidence for the generation of singlet oxygen in self-reaction of sec-peroxy radicals. J. Am. Chem. Soc. 98, 1974–1975.10.1021/ja00423a060Search in Google Scholar
Narici, L., De Martino, A., Brunetti, V., Rinaldi, A., Sannita, W.G., and Paci, M. (2009). Radicals excess in the retina: a model for light flashes in space. Rad. Meas. 44, 203–205.10.1016/j.radmeas.2009.01.005Search in Google Scholar
Narici, L., Paci, M., Brunetti, V., Rinaldi, A., Sannita, W.G., and De Martino A. (2012). Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids. Free Radic. Biol. Med. 53, 482–487.10.1016/j.freeradbiomed.2012.05.030Search in Google Scholar
Narici, L., Paci, M., Brunetti, V., Rinaldi, A., Sannita, W.G., Carozzo, S., and Demartino, A. (2013). Bovine rod rhodopsin. 2. Bleaching in vitro upon 12C ions irradiation as source of effects as light flash for patients and for humans in space. Int. J. Radiat. Biol. 89, 765–769.10.3109/09553002.2013.800245Search in Google Scholar
Nerudová, M., Červinková, Hašek, K., and Cifra, M. (2015). Optical spectral analysis of ultra-weak photon emission from tissue culture and yeast cells. Proc. SPIE 9450, 94500O.10.1117/12.2069897Search in Google Scholar
Nielsen, J.C., Maude, M.B., Hughes, H., and Anderson, R.E. (1986). Rabbit photoreceptor outer segments contain high levels of docosapentaenoic acid. Invest. Ophthalmol. Vis. Sci. 27, 261–264.Search in Google Scholar
Niggli, H.J. (2003). Temperature dependence of ultraweak photon emission in fibroblastic differentiation after irradiation with artificial sunlight. Indian J. Exp. Biol. 41, 419–423.Search in Google Scholar
Nitsche, M.A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F., and Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553, 293–301.10.1113/jphysiol.2003.049916Search in Google Scholar
Obrenovitch, T.P. (1999). High extracellular glutamate and neuronal death in neurological disorders. Cause, contribution or consequence? Ann. N. Y. Acad. Sci. 890, 273–386.10.1111/j.1749-6632.1999.tb08004.xSearch in Google Scholar
Obrenovitch, T.P., Urenjak, J., Zilkha, E., and Jay, T.M. (2000). Excitotoxicity in neurological disorders—the glutamate paradox. Int. J. Dev. Neurosci. 18, 281–287.10.1016/S0736-5748(99)00096-9Search in Google Scholar
Oliveri, M. and Caltagirone, C. (2006). Suppression of extinction with TMS in humans: from healthy controls to patients. Behav. Neurol. 17, 163–167.10.1155/2006/393924Search in Google Scholar PubMed PubMed Central
Oster, G. (1970). Phosphenes. Sci. Am. 222, 82–87.10.1038/scientificamerican0270-82Search in Google Scholar PubMed
Pandya, J.D., Nukala, V.N., and Sullivan, P.G. (2013). Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front. Neuroenergetics 5, 10.10.3389/fnene.2013.00010Search in Google Scholar PubMed PubMed Central
Paro, F.M., Almeida, M.C., Carnio, E.C., and Branc, L.G.S. (2003). Role of L-glutamate in systemic AVP-induced hypothermia. J. Appl. Physiol. 94, 271–277.10.1152/japplphysiol.00291.2002Search in Google Scholar
Player, T.J. and Hultin, H.O. (1977). Some characteristics of the NAD(P)H-dependent lipid peroxidation system in the microsomal fraction of chicken breast muscle. J. Food Biochem. 1, 153–171.10.1111/j.1745-4514.1977.tb00178.xSearch in Google Scholar
Prasad, A. and Pospíšil, P. (2015). The photon source within the cell. In: Fels, D., Cifra, M., and Scholkmann, F., Eds. Fields of the Cell (Trivandrum: Research Signpost).Search in Google Scholar
Reznikov, I.u.E. (1981). Mechanophosphene in optic nerve changes. Oftalmol. Zh. 36, 218–220.Search in Google Scholar
Salminen-Vaparanta, N., Vanni, S., Noreika, V., Valiulis, V., Móró L., Revonsuo A., Oliverim, M., and Caltagironem, C. (2014). Suppression of extinction with TMS in humans: from healthy controls to subjective characteristics of TMS-induced phosphenes originating in human V1 and V2. Cereb. Cortex 24, 2751–2760.10.1093/cercor/bht131Search in Google Scholar
Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O’Rourke, D.K., and Vallabhanath, P. (1996). Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119, 507–522.10.1016/S0002-9394(14)72149-XSearch in Google Scholar
Scott, R.Q., Roschger, P., Devaraj, B., and Inaba, H. (1991). Monitoring a mammalian nuclear membrane phase transition by intrinsic ultraweak light emission. FEBS Lett. 285, 97–98.10.1016/0014-5793(91)80733-JSearch in Google Scholar
Slawinski, J. (1988). Luminescence research and its relation to ultraweak cell radiation. Experientia 44, 559–571.10.1007/BF01953303Search in Google Scholar
Steele, R.H. (2003). Electromagnetic field generation by ATP-induced reverse electron transfer. Arch. Biochem. Biophys. 411, 1–18.10.1016/S0003-9861(02)00459-9Search in Google Scholar
Sun, Y., Wang, C., and Dai, J. (2010). Biophotons as neural communication signals demonstrated by in situ biophoton autography. Photochem. Photobiol. Sci. 9, 315–322.10.1039/b9pp00125eSearch in Google Scholar
Swerdloff, M.A., Zieker, A.W., and Krohel, G.B. (1981). Movement phosphenes in optic neuritis. J. Clin. Neuroophthalmol. 1, 279–282.Search in Google Scholar
Takeda, M., Tanno, Y., Kobayashi, M., Usa, M., Ohuchi, N., Satomi, S., and Inaba, H. (1998). A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett. 127, 155–160.10.1016/S0304-3835(98)00064-0Search in Google Scholar
Takeda, M., Kobayashi, M., Takayama, M., Suzuki, S., Ishida, T., Ohnuki, K., Moriya, T., and Ohuchi, N. (2004). Biophoton detection as a novel technique for cancer imaging. Cancer Sci. 95, 656–661.10.1111/j.1349-7006.2004.tb03325.xSearch in Google Scholar PubMed
Tamura, H., Hicks, T.P., Hata, Y., Tsumoto, T., and Yamatodani, A. (1990). Release of glutamate and aspartate from the visual cortex of the cat following activation of afferent pathways. Exp. Brain Res. 80, 447–455.10.1007/BF00227986Search in Google Scholar PubMed
Tang, R. and Dai, J. (2014a). Biophoton signal transmission and processing in the brain. J. Photochem. Photobiol. B 139, 71–75.10.1016/j.jphotobiol.2013.12.008Search in Google Scholar PubMed
Tang, R. and Dai, J. (2014b). Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits. PLoS One 9, e85643.10.1371/journal.pone.0085643Search in Google Scholar PubMed PubMed Central
Tehovnik, E.J. and Slocum, W.M. (2007). Phosphene induction by microstimulation of macaque V1. Brain Res. Rev. 53, 337–343.10.1016/j.brainresrev.2006.11.001Search in Google Scholar PubMed PubMed Central
Terhune, D.B., Murray, E., Near, J., Stagg, C.J., Cowey, A., and Cohen Kadosh, R. (2015). Phosphene perception relates to visual cortex glutamate levels and covaries with atypical visuospatial awareness. Cereb. Cortex 25, 4341–4350.10.1093/cercor/bhv015Search in Google Scholar PubMed PubMed Central
Thar, R. and Kühl, M. (2004). Propagation of electromagnetic radiation in mitochondria? J. Theor. Biol. 230, 261–270.10.1016/j.jtbi.2004.05.021Search in Google Scholar PubMed
Tsai, K.-H., Wang, W.-J., Lin, C.-W., Pai, P., Lai, T.-Y., Tsai, C.-Y., and Kuo, W.-W. (2012). NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose. J. Cell. Physiol. 227, 1347–1357.10.1002/jcp.22847Search in Google Scholar PubMed
van de Ven, V. and Sack, A.T. (2013). Transcranial magnetic stimulation of visual cortex in memory: cortical state, interference and reactivation of visual content in memory. Behav. Brain Res. 236, 67–77.10.1016/j.bbr.2012.08.001Search in Google Scholar PubMed
Van Wijk, R. (2014). Light in shaping life: biophotons in biology and medicine (The Netherlands: Meluna, Geldermalsen).Search in Google Scholar
Van Wijk, R., Van Wijk, E.P.A., Schroen, Y., and Van der Greef, J. (2013). Imaging human spontaneous photon emission: historic development, recent data and perspectives. Trends Photochem. Photobiol. 15, 27–40.Search in Google Scholar
Vetter, P., Smith, F.W., and Muckli, L. (2014). Decoding sound and imagery content in early visual cortex. Curr. Biol. 24, 1256–1262.10.1016/j.cub.2014.04.020Search in Google Scholar PubMed PubMed Central
Wang, C., Bókkon, I., Dai, J., and Antal, I. (2011). Spontaneous and visible light-induced ultra-weak photon emission from rat eyes. Brain Res. 1369, 1–9.10.1016/j.brainres.2010.10.077Search in Google Scholar PubMed
Watts, B.P., Barnard, M., and Turrens, J.F. (1995). Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells. Arch. Biochem. Biophys. 317, 324–330.10.1006/abbi.1995.1170Search in Google Scholar
Yoshimatsu, H., Egawa, M., and Bray, G.A. (1993). Sympathetic nerve activity after discrete hypothalamic injection of L-glutamate. Brain Res. 601, 121–128.10.1016/0006-8993(93)91702-TSearch in Google Scholar
You, Z.B., Tzschentke, T.M., Brodin, E., and Wise, R.A. (1998). Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J. Neurosci. 18, 6492–6500.10.1523/JNEUROSCI.18-16-06492.1998Search in Google Scholar
Zhang, J., Yu, W., Sun, T., and Popp, F.A. (1997). Spontaneous and light-induced photon emission from intact brains of chick embryos. Sci. China C Life Sci. 40, 43–51.10.1007/BF02879106Search in Google Scholar PubMed
©2016 by De Gruyter