Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 16, 2016

Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: behavioral and neural studies

  • Ahmed A. Moustafa EMAIL logo , Srinivasa Chakravarthy , Joseph R. Phillips , Jacob J. Crouse , Ankur Gupta , Michael J. Frank , Julie M. Hall and Marjan Jahanshahi


Parkinson’s disease (PD) is characterized by a range of motor symptoms. Besides the cardinal symptoms (tremor, bradykinesia/akinesia, and rigidity), PD patients also show other motor deficits, including gait disturbance, speech deficits, and impaired handwriting. However, along with these key motor symptoms, PD patients also experience cognitive deficits in attention, executive function, working memory, and learning. Recent evidence suggests that these motor and cognitive deficits of PD are not completely dissociable, as aspects of cognitive dysfunction can impact motor performance in PD. In this article, we provide a review of behavioral and neural studies on the associations between motor symptoms and cognitive deficits in PD, specifically akinesia/bradykinesia, tremor, gait, handwriting, precision grip, and speech production. This review paves the way for providing a framework for understanding how treatment of cognitive dysfunction, for example cognitive rehabilitation programs, may in turn influence the motor symptoms of PD.

Corresponding author: Ahmed A. Moustafa, School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales 2214, Australia, e-mail: ; and Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA


Aarsland, D., Andersen, K., Larsen, J.P., Lolk, A., and Kragh-Sorensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch. Neurol. 60, 387–392.10.1001/archneur.60.3.387Search in Google Scholar

Aarsland, D., Bronnick, K., Alves, G., Tysnes, O.B., Pedersen, K.F., Ehrt, U., and Larsen J.P. (2009). The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 80, 928–930.10.1136/jnnp.2008.166959Search in Google Scholar

Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.10.1146/ in Google Scholar

Altmann, L.J. and Troche, M.S. (2011). High-level language production in Parkinson’s disease: a review. Parkinsons Dis. 2011, Article ID 238956, 12.10.4061/2011/238956Search in Google Scholar

Altmann, L.J., Kempler, D., and Andersen, E.S. (2001). Speech errors in Alzheimer’s disease: reevaluating morphosyntactic preservation. J. Speech Lang. Hear. Res. 44, 1069–1082.10.1044/1092-4388(2001/085)Search in Google Scholar

Amboni, M., Cozzolino, A., Longo, K., Picillo, M., and Barone, P. (2008). Freezing of gait and executive functions in patients with Parkinson’s disease. Mov. Disord. 23, 395–400.10.1002/mds.21850Search in Google Scholar PubMed

Ambrose, S.H. (2001). Paleolithic technology and human evolution. Science 291, 1748–1753.10.1126/science.1059487Search in Google Scholar PubMed

Amos, A. (2000). A computational model of information processing in the frontal cortex and basal ganglia. J. Cogn. Neurosci. 12, 505–519.10.1162/089892900562174Search in Google Scholar PubMed

Andres, M., Ostry, D.J., Nicol, F., and Paus, T. (2008). Time course of number magnitude interference during grasping. Cortex 44, 414–419.10.1016/j.cortex.2007.08.007Search in Google Scholar PubMed

Aosaki, T., Miura, M., Suzuki, T., Nishimura, K., and Masuda, M. (2010). Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr. Gerontol. Int. 10, S148–S157.10.1111/j.1447-0594.2010.00588.xSearch in Google Scholar PubMed

Azevedo, L.L.d., Reis, C.A.d.C., Souza, I.S.d., and Cardoso, F.E.C. (2013). Prosody and levodopa in Parkinson’s disease. Arq. Neuropsiquiatr. 71, 835–840.10.1590/0004-282X20130141Search in Google Scholar

Badets, A., Andres, M., Di Luca, S., and Pesenti, M. (2007). Number magnitude potentiates action judgements. Exp. Brain Res. 180, 525–534.10.1007/s00221-007-0870-ySearch in Google Scholar

Ballanger, B., Thobois, S., Baraduc, P., Turner, R.S., Broussolle, E., and Desmurget, M. (2006). “Paradoxical kinesis” is not a hallmark of Parkinson’s disease but a general property of the motor system. Mov. Disord. 21 1490–1495.10.1002/mds.20987Search in Google Scholar

Ballanger, B., Baraduc, P., Broussolle, E., Bars, D.L., Desmurget, M., and Thobois, S. (2008). Motor urgency is mediated by the contralateral cerebellum in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 79, 1110–1116.10.1136/jnnp.2007.141689Search in Google Scholar

Beeler, J.A., Frank, M.J., McDaid, J., Alexander, E., Turkson, S., Bernardez Sarria, M.S., McGehee, D.S., and Zhuang, X. (2012). A role for dopamine-mediated learning in the pathophysiology and treatment of Parkinson’s disease. Cell Rep. 2, 1747–1761.10.1016/j.celrep.2012.11.014Search in Google Scholar

Benamer, H.T., Patterson, J., Wyper, D.J., Hadley, D.M., Macphee, G.J., and Grosset, D.G. (2000). Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov. Disord. 15, 692–698.10.1002/1531-8257(200007)15:4<692::AID-MDS1014>3.0.CO;2-VSearch in Google Scholar

Benamer, H.T., Oertel, W.H., Patterson, J., Hadley, D.M., Pogarell, O., Hoffken, H., Gerstner, A., and Grosset, D.G. (2003). Prospective study of presynaptic dopaminergic imaging in patients with mild parkinsonism and tremor disorders: part 1. Baseline and 3-month observations. Mov. Disord. 18, 977–984.10.1002/mds.10482Search in Google Scholar

Berardelli, A., Rothwell, J.C., Thompson, P.D., and Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124, 2131–2146.10.1093/brain/124.11.2131Search in Google Scholar

Bloem, B.R., Beckley, D.J., van Dijk, J.G., Zwinderman, A.H., Remler, M.P., and Roos, R.A. (1996). Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson’s disease. Mov. Disord. 11, 509–521.10.1002/mds.870110506Search in Google Scholar

Bloem, B.R., Valkenburg, V.V., Slabbekoorn, M., and van Dijk, J.G. (2001). The multiple tasks test. Strategies in Parkinson’s disease. Exp. Brain Res. 137, 478–486.10.1007/s002210000672Search in Google Scholar

Bohnen, N.I. and Albin, R.L. (2011). The cholinergic system and Parkinson disease. Behav. Brain Res. 221, 564–573.10.1016/j.bbr.2009.12.048Search in Google Scholar

Bond, J.M. and Morris, M. (2000). Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Arch. Phys. Med. Rehabil. 81, 110–116.10.1016/S0003-9993(00)90230-2Search in Google Scholar

Burn, D.J., Rowan, E.N., Allan, L.M., Molloy, S., O’Brien, J.T., and McKeith, I.G. (2006). Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 77, 585–589.10.1136/jnnp.2005.081711Search in Google Scholar PubMed PubMed Central

Callesen, M.B., Weintraub, D., Damholdt, M.F., and Moller, A. (2014). Impulsive and compulsive behaviors among Danish patients with Parkinson’s disease: prevalence, depression, and personality. Parkinsonism Relat. Disord. 20, 22–26.10.1016/j.parkreldis.2013.09.006Search in Google Scholar PubMed

Cameron, I.G., Watanabe, M., Pari, G., and Munoz, D.P. (2010). Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia 48, 1948–1957.10.1016/j.neuropsychologia.2010.03.015Search in Google Scholar PubMed

Caproni, S., Muti, M., Di Renzo, A., Principi, M., Caputo, N., Calabresi, P., and Tambasco, N. (2014). Subclinical visuospatial impairment in Parkinson’s disease: the role of basal ganglia and limbic system. Front. Neurol. 5, 7.10.3389/fneur.2014.00152Search in Google Scholar PubMed PubMed Central

Catalan, M.J., Ishii, K., Honda, M., Samii, A., and Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain 122, 483–495.10.1093/brain/122.3.483Search in Google Scholar PubMed

Catalan, M.J., de Pablo-Fernandez, E., Villanueva, C., Fernandez-Diez, S., Lapena-Montero, T., Garcia-Ramos, R., and López-Valdés, E. (2013). Levodopa infusion improves impulsivity and dopamine dysregulation syndrome in Parkinson’s disease. Mov. Disord. 28, 2007–2010.10.1002/mds.25636Search in Google Scholar PubMed

Collins, A.G. and Frank, M.J. (2014). Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121, 337–366.10.1037/a0037015Search in Google Scholar PubMed

Colman, K.S., Koerts, J., van Beilen, M., Leenders, K.L., Post, W.J., and Bastiaanse, R. (2009). The impact of executive functions on verb production in patients with Parkinson’s disease. Cortex 45, 930–942.10.1016/j.cortex.2008.12.010Search in Google Scholar PubMed

Contreras-Vidal, J.L. and Stelmach, G.E. (1995). A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol. Cybern. 73, 467–476.10.1007/BF00201481Search in Google Scholar

Contreras-Vidal, J.L., Teulings, H.L., and Stelmach, G.E. (1995). Micrographia in Parkinson’s disease. Neuroreport 6, 2089–2092.10.1097/00001756-199510010-00032Search in Google Scholar

DeLong, M.R. and Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24.10.1001/archneur.64.1.20Search in Google Scholar

Demura, S. and Uchiyama, M. (2009). Influence of cell phone email use on characteristics of gait. Eur. J. Sport Sci. 9, 303–309.10.1080/17461390902853069Search in Google Scholar

Diaz-Hung, M.L., Blanco, L., Pavon, N., Leon, R., Estupinan, B., Orta, E., MartíDnez, K., and Fernández, I. (2014). Sensory-motor performance after acute glutathione depletion by l-buthionine sulfoximine injection into substantia nigra pars compacta. Behav. Brain Res. 271, 286–293.10.1016/j.bbr.2014.05.066Search in Google Scholar

Djurfeldt, M., Ekeberg, Ö., and Graybiel, A.M. (2001). Cortex-basal ganglia interaction and attractor states. Neurocomputing 3840, 573–579.10.1016/S0925-2312(01)00413-1Search in Google Scholar

Domellof, M.E., Elgh, E., and Forsgren, L. (2011). The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Mov. Disord. 26, 2183–2189.10.1002/mds.23814Search in Google Scholar PubMed

Domellof, M.E., Forsgren, L., and Elgh, E. (2013). Persistence of associations between cognitive impairment and motor dysfunction in the early phase of Parkinson’s disease. J. Neurol. 260, 2228–2236.10.1007/s00415-013-6971-6Search in Google Scholar PubMed

Eggers, C., Pedrosa, D.J., Kahraman, D., Maier, F., Lewis, C.J., Fink, G.R., Schmidt, M., and Timmermann, L. (2012). Parkinson subtypes progress differently in clinical course and imaging pattern. PLoS One 7, e46813, 8.10.1371/journal.pone.0046813Search in Google Scholar PubMed PubMed Central

Elgh, E., Domellof, M., Linder, J., Edstrom, M., Stenlund, H., and Forsgren, L. (2009). Cognitive function in early Parkinson’s disease: a population-based study. Eur. J. Neurol. 16, 1278–1284.10.1111/j.1468-1331.2009.02707.xSearch in Google Scholar PubMed

Ellfolk, U., Joutsa, J., Rinne, J.O., Parkkola, R., Jokinen, P., and Karrasch, M. (2014). Striatal volume is related to phonemic verbal fluency but not to semantic or alternating verbal fluency in early Parkinson’s disease. J. Neural. Transm. 121, 33–40.10.1007/s00702-013-1073-2Search in Google Scholar PubMed PubMed Central

Fellows, S.J., Noth, J., and Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain 121, 1771–1784.10.1093/brain/121.9.1771Search in Google Scholar PubMed

Flanagan, J.R. and Beltzner, M.A. (2000). Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat. Neurosci. 3, 737–741.10.1038/76701Search in Google Scholar PubMed

Foltynie, T., Brayne, C.E., Robbins, T.W., and Barker, R.A. (2004). The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127, 550–560.10.1093/brain/awh067Search in Google Scholar PubMed

Frank, M.J. and O’Reilly, R.C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav. Neurosci. 120, 497–517.10.1037/0735-7044.120.3.497Search in Google Scholar PubMed

Frank, M.J., Loughry, B., and O’Reilly, R.C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect. Behav. Neurosci. 1, 137–160.10.3758/CABN.1.2.137Search in Google Scholar PubMed

Gangadhar, G., Joseph, D., and Chakravarthy, V.S. (2008). Understanding Parkinsonian handwriting through a computational model of basal ganglia. Neural Comput. 20, 2491–2525.10.1162/neco.2008.03-07-498Search in Google Scholar PubMed

Glover, S., Rosenbaum, D.A., Graham, J., and Dixon, P. (2004). Grasping the meaning of words. Exp. Brain Res. 154, 103–108.10.1007/s00221-003-1659-2Search in Google Scholar PubMed

Grafton, S.T. (2010). The cognitive neuroscience of prehension: recent developments. Exp. Brain Res. 204, 475–491.10.1007/s00221-010-2315-2Search in Google Scholar PubMed PubMed Central

Gratwicke, J., Jahanshahi, M., and Foltynie, T. (2015a). Parkinson’s disease dementia: a neural networks perspective. Brain 138, 1454–1476.10.1093/brain/awv104Search in Google Scholar PubMed PubMed Central

Gratwicke, J., Kahan, J., Zrinzo, L., Hariz, M., Limousin, P., Foltynie, T., and Jahanshahi, M. (2015b). The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci. Rev. 37, 2676–2688.10.1016/j.neubiorev.2013.09.003Search in Google Scholar PubMed

Graybiel, A.M. (1998). The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136.10.1006/nlme.1998.3843Search in Google Scholar PubMed

Grimbergen, Y.A., Langston, J.W., Roos, R.A., and Bloem, B.R. (2009). Postural instability in Parkinson’s disease: the adrenergic hypothesis and the locus coeruleus. Exp. Rev. Neurother. 9, 279–290.10.1586/14737175.9.2.279Search in Google Scholar PubMed

Guillery, E., Mouraux, A., and Thonnard, J.-L. (2013). Cognitive-motor interference while grasping, lifting and holding objects. PLoS One 8, e80125, 8.10.1371/journal.pone.0080125Search in Google Scholar PubMed PubMed Central

Gupta, A., Balasubramani, P.P., and Chakravarthy, S. (2013). Computational model of precision grip in Parkinson’s disease: a utility based approach [original research]. Front. Computat. Neurosci. 7, 16.Search in Google Scholar

Hall, J.M., Shine, J.M., Walton, C.C., Gilat, M., Kamsma, Y.P., Naismith, S.L., and Lewis, S.J. (2014). Early phenotypic differences between Parkinson’s disease patients with and without freezing of gait. Parkinsonism Relat. Disord. 20, 604–607.10.1016/j.parkreldis.2014.02.028Search in Google Scholar PubMed

Hausdorff, J.M., Schaafsma, J.D., Balash, Y., Bartels, A.L., Gurevich, T., and Giladi, N. (2003). Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 149, 187–194.10.1007/s00221-002-1354-8Search in Google Scholar PubMed

Haynes, W.I. and Haber, S.N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J. Neurosci. 33, 10.10.1523/JNEUROSCI.4674-12.2013Search in Google Scholar PubMed PubMed Central

Helie, S., Chakravarthy, S., and Moustafa, A.A. (2013). Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front. Comput. Neurosci. 7, 174, 16.10.3389/fncom.2013.00174Search in Google Scholar PubMed PubMed Central

Helmich, R.C., Hallett, M., Deuschl, G., Toni, I., and Bloem, B.R. (2012). Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135, 3206–3226.10.1093/brain/aws023Search in Google Scholar PubMed PubMed Central

Hesse, C. and Deubel, H. (2011). Efficient grasping requires attentional resources. Vision Res. 51, 1223–1231.10.1016/j.visres.2011.03.014Search in Google Scholar PubMed

Hesse, C., Schenk, T., and Deubel, H. (2012). Attention is needed for action control: further evidence from grasping. Vision Res. 71, 37–43.10.1016/j.visres.2012.08.014Search in Google Scholar

Ho, A.K., Iansek, R., Marigliani, C., Bradshaw, J.L., and Gates, S. (1998). Speech impairment in a large sample of patients with Parkinson’s disease. Behav. Neurol. 11, 131–137.10.1155/1999/327643Search in Google Scholar

Horak, F.B., Dimitrova, D., and Nutt, J.G. (2005). Direction-specific postural instability in subjects with Parkinson’s disease. Exp. Neurol. 193, 504–521.10.1016/j.expneurol.2004.12.008Search in Google Scholar

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376.10.1136/jnnp.2007.131045Search in Google Scholar

Jankovic, J. and Tolosa, E. (2007). Parkinson’s Disease and Movement Disorders (Philadelphia: Lippincott Williams and Wilkins).Search in Google Scholar

Jankovic, J., McDermott, M., Carter, J., Gauthier, S., Goetz, C., Golbe, L., Huber, S., Koller, W., Olanow, C., Shoulson, I., et al. (1990). Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology 40, 1529–1534.10.1212/WNL.40.10.1529Search in Google Scholar

Joel, D. and Weiner, I. (1994). The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63, 363–379.10.1016/0306-4522(94)90536-3Search in Google Scholar

Joel, D. and Weiner, I. (1997). The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Res. Brain Res. Rev. 23, 62–78.10.1016/S0165-0173(96)00018-5Search in Google Scholar

Jones, L.A. and Lederman, S.J. (2006). Human Hand Function (New York: Oxford University Press).10.1093/acprof:oso/9780195173154.001.0001Search in Google Scholar

Karachi, C., Grabli, D., Bernard, F.A., Tande, D., Wattiez, N., Belaid, H., Bardinet, E., Prigent, A., Nothacker, H.P., Hunot, S., et al. (2010). Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest. 120, 2745–2754.10.1172/JCI42642Search in Google Scholar

Kassubek, J., Juengling, F.D., Hellwig, B., Spreer, J., and Lucking, C.H. (2002). Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging. Neurosci. Lett. 323, 29–32.10.1016/S0304-3940(02)00111-8Search in Google Scholar

Kim, S.D., Allen, N.E., Canning, C.G., and Fung, V.S. (2013). Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs 27, 97–112.10.1007/s40263-012-0012-3Search in Google Scholar

Kish, S.J., Shannak, K., and Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 318, 876–880.10.1056/NEJM198804073181402Search in Google Scholar

Kojovic, M., Mir, P., Trender-Gerhard, I., Schneider, S.A., Pareés, I., Edwards, M.J., Bhatia, K.P., and Jahanshahi, M. (2014). Motivational modulation of bradykinesia in Parkinson’s disease off and on dopaminergic medication. J. Neurol. 261, 1080–1089.10.1007/s00415-014-7315-xSearch in Google Scholar

Koller, W.C., Glatt, S., Vetere-Overfield, B., and Hassanein, R. (1989). Falls and Parkinson’s disease. Clin. Neuropharmacol. 12, 98–105.10.1097/00002826-198904000-00003Search in Google Scholar

Kostic, V.S., Agosta, F., Pievani, M., Stefanova, E., Jecmenica-Lukic, M., Scarale, A., Spica, V., and Filippi, M. (2012). Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology 78, 409–416.10.1212/WNL.0b013e318245d23cSearch in Google Scholar

Lawrence, A.D., Sahakian, B.J., and Robbins, T.W. (1998). Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends Cogn. Sci. 2, 379–388.10.1016/S1364-6613(98)01231-5Search in Google Scholar

Lee, M.S., Rinne, J.O., and Marsden, C.D. (2000). The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med. J. 41, 167–184.10.3349/ymj.2000.41.2.167Search in Google Scholar

Lee, J.M., Koh, S.B., Chae, S.W., Seo, W.K., Kwon do, Y., Kim, J.H., Oh, K., Baik, J.S., and Park, K.W. (2012). Postural instability and cognitive dysfunction in early Parkinson’s disease. Can. J. Neurol. Sci. 39, 473–482.10.1017/S0317167100013986Search in Google Scholar

Lees, A.J., Hardy, J., and Revesz, T. (2009). Parkinson’s disease. Lancet 373, 2055–2066.10.1016/S0140-6736(09)60492-XSearch in Google Scholar

Lewis, S.J. and Barker, R.A. (2009). A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 15, 333–338.10.1016/j.parkreldis.2008.08.006Search in Google Scholar PubMed

Lewis, S.J.G., Foltynie, T., Blackwell, A.D., Robbins, T.W., Owen, A.M., and Barker, R.A. (2005). Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatry 76, 343–348.10.1136/jnnp.2003.033530Search in Google Scholar

Lieberman, P., Kako, E., Friedman, J., Tajchman, G., Feldman, L.S., and Jiminez, E.B. (1992). Speech production, syntax comprehension, and cognitive deficits in Parkinson’s disease. Brain Lang. 43, 169–189.10.1016/0093-934X(92)90127-ZSearch in Google Scholar

Louis, E.D., Tang, M.X., Cote, L., Alfaro, B., Mejia, H., and Marder, K. (1999). Progression of parkinsonian signs in Parkinson disease. Arch. Neurol. 56, 334–337.10.1001/archneur.56.3.334Search in Google Scholar

Lyros, E., Messinis, L., and Papathanasopoulos, P. (2008). Does motor subtype influence neurocognitive performance in Parkinson’s disease without dementia? Eur. J. Neurol. 15, 262–267.10.1111/j.1468-1331.2007.02046.xSearch in Google Scholar

MacDonald, H.J. and Byblow, W.D. (2015). Does response inhibition have pre- and postdiagnostic utility in Parkinson’s disease? J. Motivated Behav. 47, 29–45.10.1080/00222895.2014.941784Search in Google Scholar

Macoir, J., Fossard, M., Mérette, C., Langlois, M., Chantal, S., and Auclair-Ouellet, N. (2013). The role of basal ganglia in language production: evidence from Parkinson’s disease. J. Parkinsons Dis. 3, 393–397.10.3233/JPD-130182Search in Google Scholar

Mancini, M., Rocchi, L., Horak, F.B., and Chiari, L. (2008). Effects of Parkinson’s disease and levodopa on functional limits of stability. Clin. Biomech. (Bristol, Avon) 23, 450–458.10.1016/j.clinbiomech.2007.11.007Search in Google Scholar

Marzke, M.W. (1997). Precision grips, hand morphology, and tools. Am. J. Phys. Anthropol. 102, 91–110.10.1002/(SICI)1096-8644(199701)102:1<91::AID-AJPA8>3.0.CO;2-GSearch in Google Scholar

Matsui, H., Udaka, F., Miyoshi, T., Hara, N., Tamaura, A., Oda, M., Oda, M., Kubori, T., Nishinaka, K., and Kameyama, M. (2005). Three-dimensional stereotactic surface projection study of freezing of gait and brain perfusion image in Parkinson’s disease. Mov. Disord. 20, 1272–1277.10.1002/mds.20520Search in Google Scholar

Matsumoto, K., Suzuki, W., and Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232.10.1126/science.1084204Search in Google Scholar

McLennan, J.E., Nakano, K., Tyler, H.R., and Schwab, R.S. (1972). Micrographia in Parkinson’s disease. J. Neurol. Sci. 15, 141–152.10.1016/0022-510X(72)90002-0Search in Google Scholar

Middleton, F.A. and Strick, P.L. (1996). The temporal lobe is a target of output from the basal ganglia. Proc. Natl. Acad. Sci. U S A 93, 8683–8687.10.1073/pnas.93.16.8683Search in Google Scholar

Monchi, O., Taylor, J.G., and Dagher, A. (2000). A neural model of working memory processes in normal subjects, Parkinson’s disease and schizophrenia for fMRI design and predictions. Neural Netw. 13, 953–973.10.1016/S0893-6080(00)00058-7Search in Google Scholar

Morris, M., Iansek, R., Matyas, T., and Summers, J. (1998). Abnormalities in the stride length-cadence relation in parkinsonian gait. Mov. Disord. 13, 61–69.10.1002/mds.870130115Search in Google Scholar PubMed

Moustafa, A.A. and Maida, A.S. (2007). Using TD learning to simulate working memory performance in a model of the prefrontal cortex and basal ganglia. Cogn. Syst. Res. 8, 262–281.10.1016/j.cogsys.2007.02.001Search in Google Scholar

Moustafa, A.A. and Poletti, M. (2013). Neural and behavioral substrates of subtypes of Parkinson’s disease. Front. Syst. Neurosci. 7, 117.10.3389/fnsys.2013.00117Search in Google Scholar PubMed PubMed Central

Moustafa, A.A., Sherman, S.J., and Frank, M.J. (2008). A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia 46, 3144–3156.10.1016/j.neuropsychologia.2008.07.011Search in Google Scholar PubMed

Moustafa, A.A., Bell, P., Eissa, A.M., and Hewedi, D.H. (2013a). The effects of clinical motor variables and medication dosage on working memory in Parkinson’s disease. Brain Cogn. 82, 137–145.10.1016/j.bandc.2013.04.001Search in Google Scholar PubMed

Moustafa, A.A., Krishna, R., Eissa, A.M., and Hewedi, D.H. (2013b). Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson’s disease. Neuropsychology 27, 498–510.10.1037/a0032757Search in Google Scholar PubMed

Moyà-Solà, S., Köhler, M., and Rook, L. (1999). Evidence of hominid-like precision grip capability in the hand of the Miocene ape Oreopithecus. Proc. Natl. Acad. Sci. 96, 313–317.10.1073/pnas.96.1.313Search in Google Scholar PubMed PubMed Central

Mure, H., Hirano, S., Tang, C.C., Isaias, I.U., Antonini, A., Ma, Y., Dhawan, V., and Eidelberg, D. (2011). Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54, 1244–1253.10.1016/j.neuroimage.2010.09.028Search in Google Scholar PubMed PubMed Central

Mushiake, H., Saito, N., Sakamoto, K., Itoyama, Y., and Tanji, J. (2006). Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50, 631–641.10.1016/j.neuron.2006.03.045Search in Google Scholar PubMed

Naismith, S.L., Shine, J.M., and Lewis, S.J.G. (2010). The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov. Disord. 25, 1000–1004.10.1002/mds.23005Search in Google Scholar PubMed

Napier, J.R. (1956). The prehensile movements of the human hand. J. Bone Joint Surg. Br. 38-B, 902–913.10.1302/0301-620X.38B4.902Search in Google Scholar PubMed

O’Reilly, R.C. and Frank, M.J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18, 283–328.10.1162/089976606775093909Search in Google Scholar PubMed

Oh, J.Y., Kim, Y.S., Choi, B.H., Sohn, E.H., and Lee, A.Y. (2009). Relationship between clinical phenotypes and cognitive impairment in Parkinson’s disease (PD). Arch. Gerontol. Geriatr. 49, 351–354.10.1016/j.archger.2008.11.013Search in Google Scholar PubMed

Ohbayashi, M., Ohki, K., and Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science 301, 233–236.10.1126/science.1084884Search in Google Scholar PubMed

Olivier, E., Davare, M., Andres, M., and Fadiga, L. (2007). Precision grasping in humans: from motor control to cognition. Curr. Opin. Neurobiol. 17, 644–648.10.1016/j.conb.2008.01.008Search in Google Scholar PubMed

Oliveira, R.M., Gurd, J.M., Nixon, P., Marshall, J.C., and Passingham, R.E. (1997). Micrographia in Parkinson’s disease: the effect of providing external cues. J. Neurol. Neurosurg. Psychiatry 63, 429–433.10.1136/jnnp.63.4.429Search in Google Scholar PubMed PubMed Central

Pagano, G., Rengo, G., Pasqualetti, G., Femminella, G.D., Monzani, F., Ferrara, N., and Tagliati, M. (2015). Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 86, 767–773.10.1136/jnnp-2014-308764Search in Google Scholar PubMed

Pahapill, P.A. and Lozano, A.M. (2000). The pedunculopontine nucleus and Parkinson’s disease. Brain 123, 1767–1783.10.1093/brain/123.9.1767Search in Google Scholar PubMed

Phillips, J.G., Bradshaw, J.L., Iansek, R., and Chiu, E. (1993). Motor functions of the basal ganglia. Psychol. Res. 55, 175–181.10.1007/BF00419650Search in Google Scholar PubMed

Piray, P., Zeighami, Y., Bahrami, F., Eissa, A.M., Hewedi, D.H., and Moustafa, A.A. (2014). Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. J. Neurosci. 34, 7814–7824.10.1523/JNEUROSCI.4063-13.2014Search in Google Scholar PubMed PubMed Central

Pirker, W., Djamshidian, S., Asenbaum, S., Gerschlager, W., Tribl, G., Hoffmann, M., Brücke, T. (2002). Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov. Disord. 17, 45–53.10.1002/mds.1265Search in Google Scholar PubMed

Plotnik, M., Giladi, N., Dagan, Y., and Hausdorff, J.M. (2011). Postural instability and fall risk in Parkinson’s disease: impaired dual tasking, pacing, and bilateral coordination of gait during the “ON” medication state. Exp. Brain Res. 210, 529–538.10.1007/s00221-011-2551-0Search in Google Scholar PubMed

Poletti, M., Emre, M., and Bonuccelli, U. (2011a). Mild cognitive impairment and cognitive reserve in Parkinson’s disease. Parkinsonism Relat. Disord. 17, 579–586.10.1016/j.parkreldis.2011.03.013Search in Google Scholar PubMed

Poletti, M., Frosini, D., Pagni, C., Lucetti, C., Del Dotto, P., Tognoni, G., Ceravolo, R., and Bonuccelli, U. (2011b). The association between motor subtypes and alexithymia in de novo Parkinson’s disease. J. Neurol. 258, 1042–1045.10.1007/s00415-010-5878-8Search in Google Scholar PubMed

Poletti, M., Frosini, D., Pagni, C., Baldacci, F., Nicoletti, V., Tognoni, G., Lucetti, C., Del Dotto, P., Ceravolo, R., and Bonuccelli, U. (2012). Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83, 601–606.10.1136/jnnp-2011-301874Search in Google Scholar PubMed

Probst-Cousin, S., Druschky, A., and Neundorfer, B. (2003). Disappearance of resting tremor after “stereotaxic” thalamic stroke. Neurology 61, 1013–1014.10.1212/01.WNL.0000086810.14643.FCSearch in Google Scholar

Rafal, R.D., Posner, M.I., Walker, J.A., and Friedrich, F.J. (1984). Cognition and the basal ganglia. Separating mental and motor components of performance in Parkinson’s disease. Brain 107, 1083–1094.10.1093/brain/107.4.1083Search in Google Scholar PubMed

Rajput, A.H. (1993). Diagnosis of PD. Neurology 43, 1629–1630.10.1212/WNL.43.8.1629-bSearch in Google Scholar

Randhawa, B.K., Farley, B.G., and Boyd, L.A. (2013). Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinsons Dis. 2013, 751925.10.1155/2013/751925Search in Google Scholar PubMed PubMed Central

Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M.C., Lehericy, S., Bergman, H., Bergman, H., Agid, Y., DeLong, M.R., and Obeso, J.A. (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat. Rev. Neurosci. 11, 760–772.10.1038/nrn2915Search in Google Scholar PubMed PubMed Central

Ricciardi, L., Bloem, B.R., Snijders, A.H., Daniele, A., Quaranta, D., Bentivoglio, A.R., and Fasano, A. (2014). Freezing of gait in Parkinson’s disease: The paradoxical interplay between gait and cognition. Parkinsonism Relat. Disord. 20, 824–829.10.1016/j.parkreldis.2014.04.009Search in Google Scholar PubMed

Riggeal, B.D., Crucian, G.P., Seignourel, P., Jacobson, C.E., Okun, M.S., Rodriguez, R., and Fernandez, H.H. (2007). Cognitive decline tracks motor progression and not disease duration in Parkinson patients. Neuropsychiatr. Dis. Treat. 3, 955–958.Search in Google Scholar

Rocchi, L., Chiari, L., and Horak, F.B. (2002). Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 73, 267–274.10.1136/jnnp.73.3.267Search in Google Scholar PubMed PubMed Central

Rocchi, L., Carlson-Kuhta, P., Chiari, L., Burchiel, K.J., Hogarth, P., and Horak, F.B. (2012). Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease. J. Neurosurg. 117, 1141–1149.10.3171/2012.8.JNS112006Search in Google Scholar PubMed PubMed Central

Rosenberg-Katz, K., Herman, T., Jacob, Y., Giladi, N., Hendler, T., and Hausdorff, J.M. (2013). Gray matter atrophy distinguishes between Parkinson disease motor subtypes. Neurology 80, 1476–1484.10.1212/WNL.0b013e31828cfaa4Search in Google Scholar PubMed PubMed Central

Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., and Schlesinger, I. (2013). Handwriting as an objective tool for Parkinson’s disease diagnosis. J. Neurol. 260, 2357–2361.10.1007/s00415-013-6996-xSearch in Google Scholar PubMed

Rudzinska, M., Bukowczan, S., Stozek, J., Zajdel, K., Mirek, E., Chwala, W., Wójcik-Pędziwiatr, M., Banaszkiewicz, K., and Szczudlik, A. (2013). Causes and consequences of falls in Parkinson disease patients in a prospective study. Neurol. Neurochir. Pol. 47, 423–430.10.5114/ninp.2013.38222Search in Google Scholar PubMed

Schabrun, S.M., van den Hoorn, W., Moorcroft, A., Greenland, C., and Hodges, P.W. (2014). Texting and walking: strategies for postural control and implications for safety. PLoS One 9, e84312, 8.10.1371/journal.pone.0084312Search in Google Scholar PubMed PubMed Central

Schiess, M.C., Zheng, H., Soukup, V.M., Bonnen, J.G., and Nauta, H.J. (2000). Parkinson’s disease subtypes: clinical classification and ventricular cerebrospinal fluid analysis. Parkinsonism Relat. Disord. 6, 69–76.10.1016/S1353-8020(99)00051-6Search in Google Scholar

Schillaci, O., Chiaravalloti, A., Pierantozzi, M., Di Pietro, B., Koch, G., Bruni, C., and Stefani, A. (2011). Different patterns of nigrostriatal degeneration in tremor type versus the akinetic-rigid and mixed types of Parkinson’s disease at the early stages: molecular imaging with 123I-FP-CIT SPECT. Int. J. Mol. Med. 28, 881–886.10.3892/ijmm.2011.764Search in Google Scholar PubMed

Schneider, J.S., Sendek, S., and Yang, C. (2015). Relationship between motor symptoms, cognition, and demographic characteristics in treated mild/moderate Parkinson’s disease. PLoS One 10, 11.10.1371/journal.pone.0123231Search in Google Scholar PubMed PubMed Central

Seger, C.A. (2013). The visual corticostriatal loop through the tail of the caudate: circuitry and function. Front. Syst. Neurosci. 7, 104.10.3389/fnsys.2013.00104Search in Google Scholar PubMed PubMed Central

Shine, J.M., Naismith, S.L., Palavra, N.C., Lewis, S.J., Moore, S.T., Dilda, V., and Morris, T.R. (2012). Attentional set-shifting deficits correlate with the severity of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 19, 388–390.10.1016/j.parkreldis.2012.07.015Search in Google Scholar PubMed

Shine, J.M., Matar, E., Ward, P.B., Bolitho, S.J., Gilat, M., Pearson, M., Naismith, S.L., and Lewis, S.J. (2013a). Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease [randomized controlled trial research support, non-U.S. Gov’t]. Brain 136, 1204–1215.10.1093/brain/awt049Search in Google Scholar PubMed

Shine, J.M., Matar, E., Ward, P.B., Bolitho, S.J., Pearson, M., Naismith, S.L., and Lewis, S.J. (2013b). Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load [research support, non-U.S. Gov’t]. PLoS One 8, e52602, 7.10.1371/journal.pone.0052602Search in Google Scholar PubMed PubMed Central

Shine, J.M., Moustafa, A.A., Matar, E., Frank, M.J., and Lewis, S.J. (2013c). The role of frontostriatal impairment in freezing of gait in Parkinson’s disease. Front. Syst. Neurosci. 7, 61.10.3389/fnsys.2013.00061Search in Google Scholar PubMed PubMed Central

Shine, J.M., Naismith, S.L., and Lewis, S.J.G. (2013d). The differential yet concurrent contributions of motor, cognitive and affective disturbance to freezing of gait in Parkinson’s disease. Clin. Neurol. Neurosurg. 115, 542–545.10.1016/j.clineuro.2012.06.027Search in Google Scholar PubMed

Shine, J.M., Naismith, S.L., Palavra, N.C., Lewis, S.J., Moore, S.T., Dilda, V., and Morris, T.R. (2013e). Attentional set-shifting deficits correlate with the severity of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 19, 388–390.10.1016/j.parkreldis.2012.07.015Search in Google Scholar

Shiner, T., Seymour, B., Symmonds, M., Dayan, P., Bhatia, K.P., and Dolan, R.J. (2012). The effect of motivation on movement: a study of bradykinesia in Parkinson’s disease. PLoS One 7, e47138, 7.10.1371/journal.pone.0047138Search in Google Scholar

Singhal, A., Culham, J.C., Chinellato, E., and Goodale, M.A. (2007). Dual-task interference is greater in delayed grasping than in visually guided grasping. J. Vision 7, 5.10.1167/7.5.5Search in Google Scholar

Smith, M.C. and Fucetola, R. (1995). Effects of delayed visual feedback on handwriting in Parkinson’s disease. Hum. Mov. Sci. 14, 109–123.10.1016/0167-9457(95)00002-ASearch in Google Scholar

Smulders, K., van Nimwegen, M., Munneke, M., Bloem, B.R., Kessels, R.P., and Esselink, R.A. (2012). Involvement of specific executive functions in mobility in Parkinson’s disease. Parkinsonism Relat. Disord. 114, 331–33510.1016/j.parkreldis.2012.06.010Search in Google Scholar

Spiegel, J., Hellwig, D., Samnick, S., Jost, W., Mollers, M.O., Fassbender, K., Kirsch, C.M., and Dillmann, U. (2007). Striatal FP-CIT uptake differs in the subtypes of early Parkinson’s disease. J. Neural. Transm. 114, 331–335.10.1007/s00702-006-0518-2Search in Google Scholar

Susman, R.L. (1998). Hand function and tool behavior in early hominids. J. Hum. Evol. 35, 23–46.10.1006/jhev.1998.0220Search in Google Scholar

Tessitore, A., Amboni, M., Cirillo, G., Corbo, D., Picillo, M., Russo, A., Vitale, C., Santangelo, G., Erro, R., Cirillo, M., et al. (2012). Regional gray matter atrophy in patients with Parkinson disease and freezing of gait. AJNR Am. J. Neuroradiol. 33, 1804–1809.10.3174/ajnr.A3066Search in Google Scholar

Teulings, H.L. and Stelmach, G.E. (1991). Control of stroke size, peak acceleration, and stroke duration in Parkinsonian handwriting. Hum. Mov. Sci. 10, 315–334.10.1016/0167-9457(91)90010-USearch in Google Scholar

Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., and Adler, C.H. (2002). Adaptation of handwriting size under distorted visual feedback in patients with Parkinson’s disease and elderly and young controls. J. Neurol. Neurosurg. Psychiatry 72, 315–324.10.1136/jnnp.72.3.315Search in Google Scholar PubMed PubMed Central

Thomassen, A.J.W.M. and Teulings, H.L. (1985). Time, size, and shape in handwriting: exploring spatio-temporal relationships at different levels. Time, Mind, and Behavior. J.B.J.J.A. Michon, ed. (Heidelberg: Springer-Verlag), pp. 253–263.10.1007/978-3-642-70491-8_17Search in Google Scholar

Troche, M.S. and Lori, J.P.A. (2012). Sentence production in Parkinson disease: effects of conceptual and task complexity. Appl. Psycholinguistics 33, 225–251.10.1017/S0142716411000336Search in Google Scholar

Tucha, O., Mecklinger, L., Thome, J., Reiter, A., Alders, G.L., Sartor, H., Naumann, M., and Lange, K.W. (2006). Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. J. Neural. Transm. 113, 609–623.10.1007/s00702-005-0346-9Search in Google Scholar

Vakil, E. and Herishanu-Naaman, S. (1998). Declarative and procedural learning in Parkinson’s disease patients having tremor or bradykinesia as the predominant symptom. Cortex 34, 611–620.10.1016/S0010-9452(08)70518-5Search in Google Scholar

Van Gemmert, A.W.A., Teulings, H.L., and Stelmach, G.E. (1998). The influence of mental and motor load on handwriting movements in Parkinsonian patients. Acta Psychol. 100, 161–175.10.1016/S0001-6918(98)00032-8Search in Google Scholar

Van Gemmert, A.W., Teulings, H.L., Contreras-Vidal, J.L., and Stelmach, G.E. (1999). Parkinson’s disease and the control of size and speed in handwriting. Neuropsychologia 37, 685–694.10.1016/S0028-3932(98)00122-5Search in Google Scholar

Vandenbossche, J., Deroost, N., Soetens, E., Spildooren, J., Vercruysse, S., Nieuwboer, A., and Kerckhofs, E. (2011). Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabil. Neural Rep. 25, 765–773.10.1177/1545968311403493Search in Google Scholar PubMed

Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., Dolan, R.J., and Hallett, M. (2011). Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain 134, 1438–1446.10.1093/brain/awr080Search in Google Scholar PubMed PubMed Central

Wagle Shukla, A., Ounpraseuth, S., Okun, M.S., Gray, V., Schwankhaus, J., and Metzer, W.S. (2012). Micrographia and related deficits in Parkinson’s disease: a cross-sectional study. BMJ Open 2, 6.10.1136/bmjopen-2011-000628Search in Google Scholar PubMed PubMed Central

Walton, C.C., Shine, J.M., Mowszowski, L., Gilat, M., Hall, J.M., O’Callaghan, C., Naismith, S.L., and Lewis, S.J. (2014). Impaired cognitive control in Parkinson’s disease patients with freezing of gait in response to cognitive load. J. Neural Transm. 122, 653–660.10.1007/s00702-014-1271-6Search in Google Scholar PubMed

Weinberger, M., Hutchison, W.D., Lozano, A.M., Hodaie, M., and Dostrovsky, J.O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J. Neurophysiol. 101, 789–802.10.1152/jn.90837.2008Search in Google Scholar PubMed

Weintraub, D. and Burn, D.J. (2011). Parkinson’s disease: the quintessential neuropsychiatric disorder. Mov. Disord. 26, 1022–1031.10.1002/mds.23664Search in Google Scholar

Wiecki, T.V. and Frank, M.J. (2010). Neurocomputational models of motor and cognitive deficits in Parkinson’s disease. Prog. Brain Res. 183, 275–297.10.1016/S0079-6123(10)83014-6Search in Google Scholar

Wiecki, T.V., Riedinger, K., von Ameln-Mayerhofer, A., Schmidt, W.J., and Frank, M.J. (2009). A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal. Psychopharmacology (Berl) 204, 265–277.10.1007/s00213-008-1457-4Search in Google Scholar

Williams-Gray, C.H., Foltynie, T., Brayne, C.E., Robbins, T.W., and Barker, R.A. (2007a). Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130, 1787–1798.10.1093/brain/awm111Search in Google Scholar

Williams-Gray, C.H., Hampshire, A., Robbins, T.W., Owen, A.M., and Barker, R.A. (2007b). Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J. Neurosci. 27, 4832–4838.10.1523/JNEUROSCI.0774-07.2007Search in Google Scholar

Wiseheart, R., Altmann, L.J., Park, H., and Lombardino, L.J. (2009). Sentence comprehension in young adults with developmental dyslexia. Ann. Dyslexia 59, 151–167.10.1007/s11881-009-0028-7Search in Google Scholar

Woollacott, M. and Shumway-Cook, A. (2002). Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16, 1–14.10.1016/S0966-6362(01)00156-4Search in Google Scholar

Wu, T. and Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain 136, 696–709.10.1093/brain/aws360Search in Google Scholar PubMed PubMed Central

Wylie, S.A., van den Wildenberg, W., Ridderinkhof, K.R., Claassen, D.O., Wooten, G.F., and Manning, C.A. (2012). Differential susceptibility to motor impulsivity among functional subtypes of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83, 1149–1154.10.1136/jnnp-2012-303056Search in Google Scholar PubMed PubMed Central

Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E.S., and Hausdorff, J.M. (2005). Dual tasking, gait rhythmicity, and Parkinso’s disease: which aspects of gait are attention demanding? Eur. J. Neurosci. 22, 1248–1256.10.1111/j.1460-9568.2005.04298.xSearch in Google Scholar PubMed

Young, R.W. (2003). Evolution of the human hand: the role of throwing and clubbing. J. Anat. 202, 165–174.10.1046/j.1469-7580.2003.00144.xSearch in Google Scholar PubMed PubMed Central

Yu, H., Sternad, D., Corcos, D.M., and Vaillancourt, D.E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35, 222–233.10.1016/j.neuroimage.2006.11.047Search in Google Scholar PubMed PubMed Central

Zaidel, A., Arkadir, D., Israel, Z., and Bergman, H. (2009). Akineto-rigid vs. tremor syndromes in Parkinsonism. Curr. Opin. Neurol. 22, 387–393.10.1097/WCO.0b013e32832d9d67Search in Google Scholar PubMed

Zetusky, W.J. and Jankovic, J. (1985). Laterality and symptom association in Parkinson’s disease. Arch. Neurol. 42, 1132–1133.10.1001/archneur.1985.04060110010001Search in Google Scholar PubMed

Zhao-Shea, R., Cohen, B.N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S.R., Salminen, O., Gardner, P.D., Lester, H.A., and Tapper, A.R. (2010). Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive {alpha}4 nicotinic receptors via a cholinergic-dependent mechanism. FASEB J. 24, 49–57.10.1096/fj.09-137034Search in Google Scholar PubMed PubMed Central

Received: 2015-12-15
Accepted: 2016-2-21
Published Online: 2016-3-16
Published in Print: 2016-7-1

©2016 by De Gruyter

Downloaded on 3.3.2024 from
Scroll to top button