Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 22, 2017

Neurotransmission systems in Parkinson’s disease

Hossein Sanjari Moghaddam, Ameneh Zare-Shahabadi, Farzaneh Rahmani and Nima Rezaei

Abstract

Parkinson’s disease (PD) is histologically characterized by the accumulation of α-synuclein particles, known as Lewy bodies. The second most common neurodegenerative disorder, PD is widely known because of the typical motor manifestations of active tremor, rigidity, and postural instability, while several prodromal non-motor symptoms including REM sleep behavior disorders, depression, autonomic disturbances, and cognitive decline are being more extensively recognized. Motor symptoms most commonly arise from synucleinopathy of nigrostriatal pathway. Glutamatergic, γ-aminobutyric acid (GABA)ergic, cholinergic, serotoninergic, and endocannabinoid neurotransmission systems are not spared from the global cerebral neurodegenerative assault. Wide intrabasal and extrabasal of the basal ganglia provide enough justification to evaluate network circuits disturbance of these neurotransmission systems in PD. In this comprehensive review, English literature in PubMed, Science direct, EMBASE, and Web of Science databases were perused. Characteristics of dopaminergic and non-dopaminergic systems, disturbance of these neurotransmitter systems in the pathophysiology of PD, and their treatment applications are discussed.

References

Abbott, R.A., Cox, M., Markus, H., and Tomkins, A. (1992). Diet, body size and micronutrient status in Parkinson’s disease. Eur. J. Clin. Nutr. 46, 879–884.Search in Google Scholar

Aceves, J.J., Rueda-Orozco, P.E., Hernandez-Martinez, R., Galarraga, E., and Bargas, J. (2011). Bidirectional plasticity in striatonigral synapses: a switch to balance direct and indirect basal ganglia pathways. Learn. Mem 18, 764–773.10.1101/lm.023432.111Search in Google Scholar

Adermark, L., Talani, G., and Lovinger, D.M. (2009). Endocannabinoid-dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity. Eur. J. Neurosci. 29, 32–41.10.1111/j.1460-9568.2008.06551.xSearch in Google Scholar

Aharon-Peretz, J., Rosenbaum, H., and Gershoni-Baruch, R. (2004). Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med. 351, 1972–1977.10.1056/NEJMoa033277Search in Google Scholar

Ahn, K., Mckinney, M.K., and Cravatt, B.F. (2008). Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem. Rev. 108, 1687–1707.10.1021/cr0782067Search in Google Scholar

Aid, S. and Bosetti, F. (2011). Targeting cyclooxygenases-1 and -2 in neuroinflammation: therapeutic implications. Biochimie 93, 46–51.10.1016/j.biochi.2010.09.009Search in Google Scholar

Albin, R.L. and Greenamyre, J.T. (1992). Alternative excitotoxic hypotheses. Neurology 42, 733–738.10.1212/WNL.42.4.733Search in Google Scholar

Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375.10.1016/0166-2236(89)90074-XSearch in Google Scholar

Albin, R.L., Koeppe, R.A., Bohnen, N.I., Wernette, K., Kilbourn, M.A., and Frey, K.A. (2008). Spared caudal brainstem SERT binding in early Parkinson’s disease. J. Cereb. Blood Flow Metab. 28, 441–444.10.1038/sj.jcbfm.9600599Search in Google Scholar PubMed

Allaman, I., Belanger, M., and Magistretti, P.J. (2011). Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 34, 76–87.10.1016/j.tins.2010.12.001Search in Google Scholar PubMed

Allen Reish, H.E. and Standaert, D.G. (2015). Role of a-synuclein in inducing innate and adaptive immunity in Parkinson disease. J. Parkinson’s Dis. 5, 1–19.10.3233/JPD-140491Search in Google Scholar PubMed PubMed Central

Amadio, S., Montilli, C., Picconi, B., Calabresi, P., and Volonte, C. (2007). Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: an immunohistological study. Purinergic Signal. 3, 389–398.10.1007/s11302-007-9069-8Search in Google Scholar

Anderson, L.A., Anderson, J.J., Chase, T.N., and Walters, J.R. (1995). The cannabinoid agonists WIN 55,212-2 and CP 55,940 attenuate rotational behavior induced by a dopamine D1 but not a D2 agonist in rats with unilateral lesions of the nigrostriatal pathway. Brain Res. 691, 106–114.10.1016/0006-8993(95)00645-7Search in Google Scholar

Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.T., Michel, P.P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E.C., and Agid, Y. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 12, 25–31.Search in Google Scholar

Ankarcrona, M., Dypbukt, J.M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S.A., and Nicotera, P. (1995). Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.10.1016/0896-6273(95)90186-8Search in Google Scholar

Ansari, M., Rahmani, F., Dolatshahi, M., Pooyan, A., and Aarabi, M.H. (2016). Brain pathway differences between Parkinson’s disease patients with and without REM sleep behavior disorder. Sleep Breath. 20, 1–7.10.1007/s11325-016-1435-8Search in Google Scholar PubMed

Antonelli, T., Fuxe, K., Agnati, L., Mazzoni, E., Tanganelli, S., Tomasini, M.C., and Ferraro, L. (2006). Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson’s disease. Relevance for L-dopa induced dyskinesias. J. Neurol. Sci. 248, 16–22.10.1016/j.jns.2006.05.019Search in Google Scholar PubMed

Appel, S.H., Beers, D.R., and Henkel, J.S. (2010). T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol. 31, 7–17.10.1016/j.it.2009.09.003Search in Google Scholar PubMed PubMed Central

Armentero, M.T., Pinna, A., Ferre, S., Lanciego, J.L., Muller, C.E., and Franco, R. (2011). Past, present and future of A (2A) adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol. Ther. 132, 280–299.10.1016/j.pharmthera.2011.07.004Search in Google Scholar PubMed PubMed Central

Asenbaum, S., Pirker, W., Angelberger, P., Bencsits, G., Pruckmayer, M., and Brucke, T. (1998). [123I]beta-CIT and SPECT in essential tremor and Parkinson’s disease. J. Neural. Transm. (Vienna) 105, 1213–1228.10.1007/s007020050124Search in Google Scholar PubMed

Ballanger, B., Strafella, A.P., Van Eimeren, T., Zurowski, M., Rusjan, P.M., Houle, S., and Fox, S.H. (2010). Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch. Neurol. 67, 416–421.10.1001/archneurol.2010.35Search in Google Scholar PubMed

Ballanger, B., Klinger, H., Eche, J., Lerond, J., Vallet, A.E., Le Bars, D., Tremblay, L., Sgambato-Faure, V., Broussolle, E., and Thobois, S. (2012). Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson’s disease. Mov. Disord. 27, 84–89.10.1002/mds.23895Search in Google Scholar PubMed

Bamford, N.S., Robinson, S., Palmiter, R.D., Joyce, J.A., Moore, C., and Meshul, C.K. (2004). Dopamine modulates release from corticostriatal terminals. J. Neurosci. 24, 9541–9552.10.1523/JNEUROSCI.2891-04.2004Search in Google Scholar

Barage, S.H. and Sonawane, K.D. (2015). Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52, 1–18.10.1016/j.npep.2015.06.008Search in Google Scholar

Barkholt, P., Sanchez-Guajardo, V., Kirik, D., and Romero-Ramos, M. (2012). Long-term polarization of microglia upon a-synuclein overexpression in nonhuman primates. Neuroscience 208, 85–96.10.1016/j.neuroscience.2012.02.004Search in Google Scholar

Barone, P., Poewe, W., Albrecht, S., Debieuvre, C., Massey, D., Rascol, O., Tolosa, E., and Weintraub, D. (2010). Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 9, 573–80.10.1016/S1474-4422(10)70106-XSearch in Google Scholar

Barrantes, F.J. (2015). Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. Biochim. Biophys. Acta 1848, 1796–805.10.1016/j.bbamem.2015.03.028Search in Google Scholar PubMed

Battaglia, G., Busceti, C.L., Molinaro, G., Biagioni, F., Storto, M., Fornai, F., Nicoletti, F., and Bruno, V. (2004). Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J. Neurosci. 24, 828–35.10.1523/JNEUROSCI.3831-03.2004Search in Google Scholar PubMed PubMed Central

Beaulieu, J.M. and Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217.10.1124/pr.110.002642Search in Google Scholar PubMed

Beckstead, M.J. and Williams, J.T. (2007). Long-term depression of a dopamine IPSC. J. Neurosci. 27, 2074–2080.10.1523/JNEUROSCI.3251-06.2007Search in Google Scholar PubMed PubMed Central

Bell, C.J., Hood, S.D., and Nutt, D.J. (2005). Acute tryptophan depletion. Part II: clinical effects and implications. Aust. N. Z. J. Psychiatry 39, 565–574.10.1080/j.1440-1614.2005.01628.xSearch in Google Scholar PubMed

Benard, G., Massa, F., Puente, N., Lourenco, J., Bellocchio, L., Soria-Gomez, E., Matias, I., Delamarre, A., Metna-Laurent, M., Cannich, A., et al. (2012). Mitochondrial CB (1) receptors regulate neuronal energy metabolism. Nat. Neurosci. 15, 558–564.10.1038/nn.3053Search in Google Scholar PubMed

Benarroch, E. (2007). Endocannabinoids in basal ganglia circuits: implications for Parkinson disease. Neurology 69, 306–309.10.1212/01.wnl.0000267407.79757.75Search in Google Scholar

Benveniste, E.N., Liu, Y., Mcfarland, B.C., and Qin, H. (2014). Involvement of the Janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J. Interferon Cytokine Res. 34, 577–588.10.1089/jir.2014.0012Search in Google Scholar

Beyer, P.L., Palarino, M.Y., Michalek, D., Busenbark, K., and Koller, W.C. (1995). Weight change and body composition in patients with Parkinson’s disease. J. Am. Diet. Assoc. 95, 979–983.10.1016/S0002-8223(95)00269-3Search in Google Scholar

Bigford, G.E., Alonso, O.F., Dietrich, D., and Keane, R.W. (2009). A novel protein complex in membrane rafts linking the NR2B glutamate receptor and autophagy is disrupted following traumatic brain injury. J. Neurotrauma 26, 703–720.10.1089/neu.2008.0783Search in Google Scholar PubMed PubMed Central

Bisogno, T., Berrendero, F., Ambrosino, G., Cebeira, M., Ramos, J.A., Fernandez-Ruiz, J.J., and Di Marzo, V. (1999). Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem. Biophys. Res. Commun. 256, 377–380.10.1006/bbrc.1999.0254Search in Google Scholar PubMed

Blaszczyk, J.W. and Orawiec, R. (2011). Assessment of postural control in patients with Parkinson’s disease: sway ratio analysis. Hum. Mov. Sci. 30, 396–404.10.1016/j.humov.2010.07.017Search in Google Scholar PubMed

Blaszczyk, J.W., Orawiec, R., Duda-Klodowska, D., and Opala, G. (2007). Assessment of postural instability in patients with Parkinson’s disease. Exp. Brain Res. 183, 107–114.10.1007/s00221-007-1024-ySearch in Google Scholar PubMed

Block, M.L. and Hong, J.S. (2007). Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem. Soc. Trans. 35, 1127–1132.10.1042/BST0351127Search in Google Scholar PubMed

Boonstra, T.A., Van Der Kooij, H., Munneke, M., and Bloem, B.R. (2008). Gait disorders and balance disturbances in Parkinson’s disease: clinical update and pathophysiology. Curr. Opin. Neurol. 21, 461–471.10.1097/WCO.0b013e328305bdafSearch in Google Scholar PubMed

Booz, G.W. (2011). Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic. Biol. Med. 51, 1054–1061.10.1016/j.freeradbiomed.2011.01.007Search in Google Scholar PubMed PubMed Central

Borroto-Escuela, D.O., Romero-Fernandez, W., Tarakanov, A.O., Gomez-Soler, M., Corrales, F., Marcellino, D., Narvaez, M., Frankowska, M., Flajolet, M., Heintz, N., et al. (2010). Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem Biophys. Res. Commun. 402, 801–807.10.1016/j.bbrc.2010.10.122Search in Google Scholar

Borroto-Escuela, D.O., Romero-Fernandez, W., Tarakanov, A.O., Ciruela, F., Agnati, L.F., and Fuxe, K. (2011). On the existence of a possible A2A-D2-beta-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced beta-arrestin2 recruitment. J. Mol. Biol. 406, 687–699.10.1016/j.jmb.2011.01.022Search in Google Scholar

Bosboom, J.L., Stoffers, D., and Wolters, E. (2004). Cognitive dysfunction and dementia in Parkinson’s disease. J. Neural Transm. (Vienna) 111, 1303–1315.10.1007/s00702-004-0168-1Search in Google Scholar

Braak, H., Del Tredici, K., Rub, U., De Vos, R.A., Jansen Steur, E.N., and Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211.10.1016/S0197-4580(02)00065-9Search in Google Scholar

Braak, H., De Vos, R.A., Bohl, J., and Del Tredici, K. (2006). Gastric a-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396, 67–72.10.1016/j.neulet.2005.11.012Search in Google Scholar PubMed

Braak, H., Sastre, M., Bohl, J.R., De Vos, R.A., and Del Tredici, K. (2007). Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 113, 421–429.10.1007/s00401-007-0193-xSearch in Google Scholar PubMed

Bracci, E., Centonze, D., Bernardi, G., and Calabresi, P. (2002). Dopamine excites fast-spiking interneurons in the striatum. J. Neurophysiol. 87, 2190–2194.10.1152/jn.00754.2001Search in Google Scholar PubMed

Breysse, N., Baunez, C., Spooren, W., Gasparini, F., and Amalric, M. (2002). Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J. Neurosci. 22, 5669–5678.10.1523/JNEUROSCI.22-13-05669.2002Search in Google Scholar

Brooks, D.J., Ibanez, V., Sawle, G.V., Quinn, N., Lees, A.J., Mathias, C.J., Bannister, R., Marsden, C.D., and Frackowiak, R.S. (1990). Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann. Neurol. 28, 547–555.10.1002/ana.410280412Search in Google Scholar PubMed

Brooks, D.J., Playford, E.D., Ibanez, V., Sawle, G.V., Thompson, P.D., Findley, L.J., and Marsden, C.D. (1992). Isolated tremor and disruption of the nigrostriatal dopaminergic system: an 18F-dopa PET study. Neurology 42, 1554–1560.10.1212/WNL.42.8.1554Search in Google Scholar

Brotchie, J.M. (2003). CB1 cannabinoid receptor signalling in Parkinson’s disease. Curr. Opin. Pharmacol. 3, 54–61.10.1016/S1471-4892(02)00011-5Search in Google Scholar

Buczynski, M.W. and Parsons, L.H. (2010). Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br. J. Pharmacol. 160, 423–442.10.1111/j.1476-5381.2010.00787.xSearch in Google Scholar

Burnstock, G. (2006). Historical review: ATP as a neurotransmitter. Trends Pharmacol. Sci. 27, 166–176.10.1016/j.tips.2006.01.005Search in Google Scholar

Burnstock, G. (2013). Purinergic signalling: pathophysiology and therapeutic potential. Keio J. Med. 62, 63–73.10.2302/kjm.2013-0003-RESearch in Google Scholar

Calabresi, P., Centonze, D., Gubellini, P., Pisani, A., and Bernardi, G. (2000). Acetylcholine-mediated modulation of striatal function. Trends Neurosci. 23, 120–126.10.1016/S0166-2236(99)01501-5Search in Google Scholar

Calabresi, P., Castrioto, A., Di Filippo, M., and Picconi, B. (2013). New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol. 12, 811–821.10.1016/S1474-4422(13)70118-2Search in Google Scholar

Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., and Di Filippo, M. (2014). Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci. 17, 1022–1030.10.1038/nn.3743Search in Google Scholar PubMed

Canals, M., Burgueno, J., Marcellino, D., Cabello, N., Canela, E.I., Mallol, J., Agnati, L., Ferre, S., Bouvier, M., Fuxe, K., et al. (2004). Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Neurochem. 88, 726–734.10.1046/j.1471-4159.2003.02200.xSearch in Google Scholar PubMed

Cancino, G.I., Toledo, E.M., Leal, N.R., Hernandez, D.E., Yevenes, L.F., Inestrosa, N.C., and Alvarez, A.R. (2008). STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer’s beta-amyloid deposits. Brain 131, 2425–2442.10.1093/brain/awn125Search in Google Scholar PubMed

Cao, J.L., Covington, H.E., 3rd, Friedman, A.K., Wilkinson, M.B., Walsh, J.J., Cooper, D.C., Nestler, E.J., and Han, M.H. (2010). Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J. Neurosci. 30, 16453–16458.10.1523/JNEUROSCI.3177-10.2010Search in Google Scholar PubMed PubMed Central

Carmo, M.R., Menezes, A.P., Nunes, A.C., Pliassova, A., Rolo, A.P., Palmeira, C.M., Cunha, R.A., Canas, P.M., and Andrade, G.M. (2014). The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology 81, 142–152.10.1016/j.neuropharm.2014.01.045Search in Google Scholar

Castillo, P.E., Younts, T.J., Chavez, A.E., and Hashimotodani, Y. (2012). Endocannabinoid signaling and synaptic function. Neuron 76, 70–81.10.1016/j.neuron.2012.09.020Search in Google Scholar

Cenci, M.A. (2007). Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci. 30, 236–243.10.1016/j.tins.2007.03.005Search in Google Scholar

Centonze, D., Finazzi-Agro, A., Bernardi, G., and Maccarrone, M. (2007). The endocannabinoid system in targeting inflammatory neurodegenerative diseases. Trends Pharmacol. Sci. 28, 180–187.10.1016/j.tips.2007.02.004Search in Google Scholar

Chakrabarty, P., Ceballos-Diaz, C., Lin, W.L., Beccard, A., Jansen-West, K., Mcfarland, N.R., Janus, C., Dickson, D., Das, P.,and Golde, T.E. (2011). Interferon-gamma induces progressive nigrostriatal degeneration and basal ganglia calcification. Nat. Neurosci. 14, 694–696.10.1038/nn.2829Search in Google Scholar

Chaudhuri, K.R. and Schapira, A.H. (2009). Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 464–474.10.1016/S1474-4422(09)70068-7Search in Google Scholar

Chaudhuri, K.R., Healy, D.G., and Schapira, A.H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 5, 235–245.10.1016/S1474-4422(06)70373-8Search in Google Scholar

Chen, H., O’reilly, E.J., Schwarzschild, M.A., and Ascherio, A. (2008). Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am. J. Epidemiol. 167, 90–95.10.1093/aje/kwm260Search in Google Scholar PubMed

Christopher, L., Marras, C., Duff-Canning, S., Koshimori, Y., Chen, R., Boileau, I., Segura, B., Monchi, O., Lang, A.E., Rusjan, P., et al. (2014). Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain 137, 565–575.10.1093/brain/awt337Search in Google Scholar PubMed PubMed Central

Chung, Y.C., Bok, E., Huh, S.H., Park, J.Y., Yoon, S.H., Kim, S.R., Kim, Y.S., Maeng, S., Park, S.H., and Jin B.K. (2011). Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J. Immunol. (Baltimore) 187, 6508–6517.10.4049/jimmunol.1102435Search in Google Scholar PubMed

Ciruela, F., Casadó, V., Rodrigues, R.J., Luján, R., Burgueño, J., Canals, M., Borycz, J., Rebola, N., Goldberg, S.R., Mallol, J., et al. (2006). Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci. 26, 2080–2087.10.1523/JNEUROSCI.3574-05.2006Search in Google Scholar

Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A., and Guo, M. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166.10.1038/nature04779Search in Google Scholar

Cooper, A.A., Gitler, A.D., Cashikar, A., Haynes, C.M., Hill, K.J., Bhullar, B., Liu, K., Xu, K, Strathearn, K.E., Liu, F., et al. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313, 324–328.10.1126/science.1129462Search in Google Scholar

Coppi, E., Pedata, F., and Gibb, A.J. (2012). P2Y1 receptor modulation of Ca2+-activated K+ currents in medium-sized neurons from neonatal rat striatal slices. J. Neurophysiol. 107, 1009–1021.10.1152/jn.00816.2009Search in Google Scholar

Correa, F., Mestre, L., Molina-Holgado, E., Arevalo-Martin, A., Docagne, F., Romero, E., Molina-Holgado, F., Borrell, J., and Guaza, C. (2005). The role of cannabinoid system on immune modulation: therapeutic implications on CNS inflammation. Mini Rev. Med. Chem. 5, 671–675.10.2174/1389557054368790Search in Google Scholar

Correa, F., Docagne, F., Mestre, L., Clemente, D., Hernangomez, M., Loria, F., and Guaza, C. (2009). A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem. Pharmacol. 77, 86–100.10.1016/j.bcp.2008.09.014Search in Google Scholar

Corti, F., Cellai, L., Melani, A., Donati, C., Bruni, P., and Pedata, F. (2013). Adenosine is present in rat brain synaptic vesicles. Neuroreport 24, 982–987.10.1097/WNR.0000000000000033Search in Google Scholar

Costa, C., Sgobio, C., Siliquini, S., Tozzi, A., Tantucci, M., Ghiglieri, V., Di Filippo, M., Pendolino, V., de Iure, A., Marti, M., et al. (2012). Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain 135, 1884–1899.10.1093/brain/aws101Search in Google Scholar

Covey, D.P., Roitman, M.F., and Garris, P.A. (2014). Illicit dopamine transients: reconciling actions of abused drugs. Trends Neurosci. 37, 200–210.10.1016/j.tins.2014.02.002Search in Google Scholar

Crawley, J.N., Corwin, R.L., Robinson, J.K., Felder, C.C., Devane, W.A., and Axelrod, J. (1993). Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacol. Biochem. Behav. 46, 967–972.10.1016/0091-3057(93)90230-QSearch in Google Scholar

Creed, M.C. and Luscher, C. (2013). Drug-evoked synaptic plasticity: beyond metaplasticity. Curr. Opin. Neurobiol. 23, 553–558.10.1016/j.conb.2013.03.005Search in Google Scholar

Crossman, A.R. (1987). Primate models of dyskinesia: the experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21, 1–40.10.1016/0306-4522(87)90322-8Search in Google Scholar

Crow, J.P. and Ischiropoulos, H. (1996). Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite. Methods Enzymol. 269, 185–194.10.1016/S0076-6879(96)69020-XSearch in Google Scholar

Cummings, J.L. and Masterman, D.L. (1999). Depression in patients with Parkinson’s disease. Int J. Geriatr. Psychiatry 14, 711–718.10.1002/(SICI)1099-1166(199909)14:9<711::AID-GPS4>3.0.CO;2-1Search in Google Scholar

Damier, P., Hirsch, E.C., Agid, Y., and Graybiel, A.M. (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8), 1437–1448.10.1093/brain/122.8.1437Search in Google Scholar

Dardou, D., Chassain, C., and Durif, F. (2014). Chronic pramipexole treatment increases tolerance for sucrose in normal and ventral tegmental lesioned rats. Front. Neurosci. 8, 437.10.3389/fnins.2014.00437Search in Google Scholar

Dasilva, M., Grieve, K.L., Cudeiro, J., and Rivadulla, C. (2014). Anandamide activation of CB1 receptors increases spontaneous bursting and oscillatory activity in the thalamus. Neuroscience 265, 72–82.10.1016/j.neuroscience.2014.01.049Search in Google Scholar

Dawson, T.M. and Dawson, V.L. (2014). Parkin plays a role in sporadic Parkinson’s disease. Neurodegener. Dis. 13, 69–71.10.1159/000354307Search in Google Scholar

Day, M., Wang, Z., Ding, J., An, X., Ingham, C.A., Shering, A.F., Wokosin, D., Ilijic, E., Sun, Z., Sampson, A.R., et al. (2006). Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251–259.10.1038/nn1632Search in Google Scholar

De Lago, E., De Miguel, R., Lastres-Becker, I., Ramos, J.A., and Fernandez-Ruiz, J. (2004). Involvement of vanilloid-like receptors in the effects of anandamide on motor behavior and nigrostriatal dopaminergic activity: in vivo and in vitro evidence. Brain Res. 1007, 152–159.10.1016/j.brainres.2004.02.016Search in Google Scholar

Delong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285.10.1016/0166-2236(90)90110-VSearch in Google Scholar

Deremer, D.L., Ustun, C., and Natarajan, K. (2008). Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin. Ther. 30, 1956–1975.10.1016/j.clinthera.2008.11.014Search in Google Scholar PubMed

Di Maio, R., Barrett, P.J., Hoffman, E.K., Barrett, C.W., Zharikov, A., Borah, A., Hu, X., Mccoy, J., Chu, C.T., Burton, E.A., et al. (2016). Alpha-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. 8, 342ra78.Search in Google Scholar

Di Marzo, V., Berrendero, F., Bisogno, T., Gonzalez, S., Cavaliere, P., Romero, J., Cebeira, M., Ramos, J.A., and Fernández-Ruiz, J.J. (2000a). Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of d9-tetrahydrocannabinol-tolerant rats. J. Neurochem. 74, 1627–1635.10.1046/j.1471-4159.2000.0741627.xSearch in Google Scholar PubMed

Di Marzo, V., Hill, M.P., Bisogno, T., Crossman, A.R., and Brotchie, J.M. (2000b). Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 14, 1432–1438.10.1096/fj.14.10.1432Search in Google Scholar PubMed

Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61.Search in Google Scholar

Dinh, T.P., Carpenter, D., Leslie, F.M., Freund, T.F., Katona, I., Sensi, S.L., Kathuria, S., and Piomelli, D. (2002). Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 99, 10819–10824.10.1073/pnas.152334899Search in Google Scholar PubMed PubMed Central

Doder, M., Rabiner, E.A., Turjanski, N., Lees, A.J., and Brooks, D.J. (2003). Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 60, 601–605.10.1212/01.WNL.0000031424.51127.2BSearch in Google Scholar

Dragicevic, E., Schiemann, J., and Liss, B. (2015). Dopamine midbrain neurons in health and Parkinson’s disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels. Neuroscience 284, 798–814.10.1016/j.neuroscience.2014.10.037Search in Google Scholar PubMed

Dunah, A.W. and Standaert, D.G. (2001). Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J. Neurosci. 21, 5546–5558.10.1523/JNEUROSCI.21-15-05546.2001Search in Google Scholar

Dungo, R. and Deeks, E.D. (2013). Istradefylline: first global approval. Drugs 73, 875–882.10.1007/s40265-013-0066-7Search in Google Scholar PubMed

Durante, P., Cardenas, C.G., Whittaker, J.A., Kitai, S.T., and Scroggs, R.S. (2004). Low-threshold L-type calcium channels in rat dopamine neurons. J. Neurophysiol. 91, 1450–1454.10.1152/jn.01015.2003Search in Google Scholar PubMed

El-Banoua, F., Caraballo, I., Flores, J.A., Galan-Rodriguez, B., and Fernandez-Espejo, E. (2004). Effects on turning of microinjections into basal ganglia of D (1) and D (2) dopamine receptors agonists and the cannabinoid CB (1) antagonist SR141716A in a rat Parkinson’s model. Neurobiol. Dis. 16, 377–385.10.1016/j.nbd.2004.03.002Search in Google Scholar PubMed

Eserian, J.K. (2013). Vitamin D as an effective treatment approach for drug abuse and addiction. J. Med. Hypotheses Ideas 7, 35–39.10.1016/j.jmhi.2013.02.001Search in Google Scholar

Everitt, B.J., Belin, D., Economidou, D., Pelloux, Y., Dalley, J.W., and Robbins, T.W. (2008). Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3125–3135.10.1098/rstb.2008.0089Search in Google Scholar PubMed PubMed Central

Fahn, S. (2008). The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov. Disord. 23(Suppl. 3), S497–S508.10.1002/mds.22028Search in Google Scholar PubMed

Faust, T.W., Assous, M., Shah, F., Tepper, J.M., and Koos, T. (2015). Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur. J. Neurosci. 42, 1764–1774.10.1111/ejn.12915Search in Google Scholar PubMed PubMed Central

Fearnley, J.M. and Lees, A.J. (1991). Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114, 2283–2301.10.1093/brain/114.5.2283Search in Google Scholar PubMed

Fernandez-Ruiz, J. (2009). The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol. 156, 1029–1040.10.1111/j.1476-5381.2008.00088.xSearch in Google Scholar PubMed PubMed Central

Fernandez-Ruiz, J., Moreno-Martet, M., Rodriguez-Cueto, C., Palomo-Garo, C., Gomez-Canas, M., Valdeolivas, S., Guaza, C., Romero, J., Guzmán, M., Mechoulam, R., et al. (2011). Prospects for cannabinoid therapies in basal ganglia disorders. Br. J. Pharmacol. 163, 1365–1378.10.1111/j.1476-5381.2011.01365.xSearch in Google Scholar PubMed PubMed Central

Fernandez-Ruiz, J., Sagredo, O., Pazos, M. R., Garcia, C., Pertwee, R., Mechoulam, R., and Martinez-Orgado, J. (2013). Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br. J. Clin. Pharmacol. 75, 323–333.10.1111/j.1365-2125.2012.04341.xSearch in Google Scholar PubMed PubMed Central

Ferre, S., Goldberg, S.R., Lluis, C., and Franco, R. (2009). Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology 56(Suppl. 1), 226–234.10.1016/j.neuropharm.2008.06.076Search in Google Scholar PubMed PubMed Central

Ford, C.P. (2014). The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 282, 13–22.10.1016/j.neuroscience.2014.01.025Search in Google Scholar

Fox, S.H., Henry, B., Hill, M., Crossman, A., and Brotchie, J. (2002). Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov. Disord. 17, 1180–1187.10.1002/mds.10289Search in Google Scholar

Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K. (1999). The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147.10.1136/jnnp.66.2.137Search in Google Scholar

Francois, C., Savy, C., Jan, C., Tande, D., Hirsch, E.C., and Yelnik, J. (2000). Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson’s disease patients. J. Comp. Neurol. 425, 121–129.10.1002/1096-9861(20000911)425:1<121::AID-CNE10>3.0.CO;2-GSearch in Google Scholar

Fredholm, B.B., Fuxe, K., and Agnati, L. (1976). Effect of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur.J. Pharmacol. 38, 31–38.10.1016/0014-2999(76)90198-9Search in Google Scholar

Fuxe, K. and Ungerstedt, U. (1974). Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with DOPA and dopamine receptor agonists. Med. Biol. 52, 48–54.Search in Google Scholar

Fuxe, K., Agnati, L.F., Benfenati, F., Celani, M., Zini, I., Zoli, M., and Mutt, V. (1983). Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. Neural Transm. Suppl. 18, 165–179.Search in Google Scholar

Fuxe, K., Ferré, S., Snaprud, P., Von Euler, G., Johansson, B., and Ferdholm, B. (1993). Antagonistic A2a/D2 receptor interactions in the striatum as a basis for adenosine/dopamine interactions in the central nervous system. Drug Dev. Res. 28, 374–380.10.1002/ddr.430280334Search in Google Scholar

Fuxe, K., Ferre, S., Zoli, M., and Agnati, L.F. (1998). Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res. Brain Res. Rev. 26, 258–273.10.1016/S0165-0173(97)00049-0Search in Google Scholar

Fuxe, K., Ferre, S., Genedani, S., Franco, R., and Agnati, L.F. (2007a). Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav. 92, 210–217.10.1016/j.physbeh.2007.05.034Search in Google Scholar

Fuxe, K., Marcellino, D., Genedani, S., and Agnati, L. (2007b). Adenosine A (2A) receptors, dopamine D (2) receptors and their interactions in Parkinson’s disease. Mov. Disord. 22, 1990–2017.10.1002/mds.21440Search in Google Scholar

Fuxe, K., Marcellino, D., Borroto-Escuela, D.O., Guescini, M., Fernández-Dueñas, V., Tanganelli, S., Rivera, A., Ciruela, F., Agnati, L.F. (2010). Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci. Ther. 16, e18–e42.10.1111/j.1755-5949.2009.00126.xSearch in Google Scholar

Fuxe, K., Guidolin, D., Agnati, L.F., and Borroto-Escuela, D.O. (2015). Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert Opin. Ther. Targets 19, 377–398.10.1517/14728222.2014.981529Search in Google Scholar

Galiegue, S., Mary, S., Marchand, J., Dussossoy, D., Carriere, D., Carayon, P., Bouaboula, M., Shire, D, Le Fur, G., Casellas, P. (1995). Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232, 54–61.10.1111/j.1432-1033.1995.tb20780.xSearch in Google Scholar

Gan, M., Moussaud, S., Jiang, P., and Mclean, P.J. (2015). Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiol. Aging 36, 1209–1220.10.1016/j.neurobiolaging.2014.10.037Search in Google Scholar

Gan-Or, Z., Giladi, N., Rozovski, U., Shifrin, C., Rosner, S., Gurevich, T., Bar-Shira, A., and Orr-Urtreger, A. (2008). Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 70, 2277–2283.10.1212/01.wnl.0000304039.11891.29Search in Google Scholar

Gao, H.M., Liu, B., and Hong, J.S. (2003). Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 23, 6181–6187.10.1523/JNEUROSCI.23-15-06181.2003Search in Google Scholar

Garcia-Arencibia, M., Gonzalez, S., De Lago, E., Ramos, J.A., Mechoulam, R., and Fernandez-Ruiz, J. (2007). Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res. 1134, 162–170.10.1016/j.brainres.2006.11.063Search in Google Scholar

Garcia, C., Palomo-Garo, C., Garcia-Arencibia, M., Ramos, J., Pertwee, R., and Fernandez-Ruiz, J. (2011). Symptom-relieving and neuroprotective effects of the phytocannabinoid Delta (9)-THCV in animal models of Parkinson’s disease. Br. J. Pharmacol. 163, 1495–1506.10.1111/j.1476-5381.2011.01278.xSearch in Google Scholar

Garcia, M.C., Cinquina, V., Palomo-Garo, C., Rabano, A., and Fernandez-Ruiz, J. (2015). Identification of CB (2) receptors in human nigral neurons that degenerate in Parkinson’s disease. Neurosci. Lett. 587, 1–4.10.1016/j.neulet.2014.12.003Search in Google Scholar

Geissmann, F., Gordon, S., Hume, D.A., Mowat, A.M., and Randolph, G.J. (2010). Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 10, 453–460.10.1038/nri2784Search in Google Scholar

Gesi, M., Soldani, P., Giorgi, F.S., Santinami, A., Bonaccorsi, I., and Fornai, F. (2000). The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci. Biobehav. Rev. 24, 655–668.10.1016/S0149-7634(00)00028-2Search in Google Scholar

Gines, S., Hillion, J., Torvinen, M., Le Crom, S., Casado, V., Canela, E.I., Rondin, S., Lew, J.Y., Watson, S., Zoli, M., et al. (2000). Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. USA 97, 8606–8611.10.1073/pnas.150241097Search in Google Scholar

Giuffrida, A., Parsons, L. H., Kerr, T. M., Rodriguez De Fonseca, F., Navarro, M., and Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat. Neurosci. 2, 358–363.10.1038/7268Search in Google Scholar

Glass, M., Dragunow, M., and Faull, R.L. (1997). Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77, 299–318.10.1016/S0306-4522(96)00428-9Search in Google Scholar

Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., and Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934.10.1016/j.cell.2010.02.016Search in Google Scholar PubMed PubMed Central

Gobbel, G.T. and Chan, P.H. (2001). Neuronal death is an active, caspase-dependent process after moderate but not severe DNA damage. J. Neurochem. 76, 520–531.10.1046/j.1471-4159.2001.00070.xSearch in Google Scholar PubMed

Goker-Alpan, O., Schiffmann, R., Lamarca, M.E., Nussbaum, R.L., Mcinerney-Leo, A., and Sidransky, E. (2004). Parkinsonism among Gaucher disease carriers. J. Med. Genet. 41, 937–940.10.1136/jmg.2004.024455Search in Google Scholar PubMed PubMed Central

Gonfloni, S., Maiani, E., Di Bartolomeo, C., Diederich, M., and Cesareni, G. (2012). Oxidative stress, DNA damage, and c-Abl signaling: at the crossroad in neurodegenerative diseases? Int. J. Cell Biol. 2012, 7.10.1155/2012/683097Search in Google Scholar PubMed PubMed Central

Gonzales, K.K. and Smith, Y. (2015). Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann. N. Y. Acad. Sci. 1349, 1–45.10.1111/nyas.12762Search in Google Scholar PubMed PubMed Central

Goto, Y., Otani, S., and Grace, A.A. (2007). The yin and yang of dopamine release: a new perspective. Neuropharmacology 53, 583–587.10.1016/j.neuropharm.2007.07.007Search in Google Scholar PubMed PubMed Central

Gotti, C., Riganti, L., Vailati, S., and Clementi, F. (2006). Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des. 12, 407–428.10.2174/138161206775474486Search in Google Scholar PubMed

Grabli, D., Karachi, C., Welter, M.L., Lau, B., Hirsch, E.C., Vidailhet, M., and Francois, C. (2012). Normal and pathological gait: what we learn from Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83, 979–985.10.1136/jnnp-2012-302263Search in Google Scholar

Grace, A.A. (2008). Physiology of the normal and dopamine-depleted basal ganglia: insights into levodopa pharmacotherapy. Mov. Disord. 23(Suppl. 3), S560–S569.10.1002/mds.22020Search in Google Scholar

Grace, A.A., Floresco, S.B., Goto, Y., and Lodge, D.J. (2007). Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227.10.1016/j.tins.2007.03.003Search in Google Scholar

Graham, E.S., Angel, C.E., Schwarcz, L.E., Dunbar, P.R., and Glass, M. (2010). Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int. J. Immunopathol. Pharmacol. 23, 25–34.10.1177/039463201002300103Search in Google Scholar

Graybiel, A.M., Canales, J.J., and Capper-Loup, C. (2000). Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci. 23, S71–S77.10.1016/S1471-1931(00)00027-6Search in Google Scholar

Greenamyre, J.T. and Porter, R.H. (1994). Anatomy and physiology of glutamate in the CNS. Neurology 44, S7–13.Search in Google Scholar

Greene, J.G. and Greenamyre, J.T. (1996). Bioenergetics and glutamate excitotoxicity. Prog. Neurobiol. 48, 613–634.10.1016/0301-0082(96)00006-8Search in Google Scholar

Greffard, S., Verny, M., Bonnet, A.M., Seilhean, D., Hauw, J.J., and Duyckaerts, C. (2010). A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol. Aging 31, 99–103.10.1016/j.neurobiolaging.2008.03.015Search in Google Scholar PubMed

Grillner, S., Hellgren, J., Menard, A., Saitoh, K., and Wikstrom, M.A. (2005). Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci. 28, 364–370.10.1016/j.tins.2005.05.004Search in Google Scholar PubMed

Guo, W., Urizar, E., Kralikova, M., Mobarec, J.C., Shi, L., Filizola, M., and Javitch, J.A. (2008). Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 27, 2293–2304.10.1038/emboj.2008.153Search in Google Scholar PubMed PubMed Central

Guttman, M., Boileau, I., Warsh, J., Saint-Cyr, J.A., Ginovart, N., Mccluskey, T., Houle, S., Wilson, A., Mundo, E., Rusjan, P., et al. (2007). Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur. J. Neurol. 14, 523–528.10.1111/j.1468-1331.2007.01727.xSearch in Google Scholar PubMed

Guzman, J.N., Sanchez-Padilla, J., Chan, C.S., and Surmeier, D.J. (2009). Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29, 11011–11019.10.1523/JNEUROSCI.2519-09.2009Search in Google Scholar

Haber, S.N. (2014). The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 282, 248–257.10.1016/j.neuroscience.2014.10.008Search in Google Scholar

Halliday, G., Hely, M., Reid, W., and Morris, J. (2008). The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol. 115, 409–415.10.1007/s00401-008-0344-8Search in Google Scholar

Halliday, G.M., Leverenz, J.B., Schneider, J.S., and Adler, C.H. (2014). The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov. Disord. 29, 634–650.10.1002/mds.25857Search in Google Scholar

Hamza, T.H., Zabetian, C.P., Tenesa, A., Laederach, A., Montimurro, J., Yearout, D., Kay, D.M., Doheny, K.F., Paschall, J., Pugh, E., et al. (2010). Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785.10.1038/ng.642Search in Google Scholar

Harms, A.S., Cao, S., Rowse, A.L., Thome, A.D., Li, X., Mangieri, L.R., Cron, R.Q., Shacka, J.J., Raman, C., Standaert, D.G. (2013). MHCII is required for alpha-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J. Neurosci. 33, 9592–9600.10.1523/JNEUROSCI.5610-12.2013Search in Google Scholar

Hasbi, A., Fan, T., Alijaniaram, M., Nguyen, T., Perreault, M.L., O’dowd, B.F., and George, S. R. (2009). Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc. Natl. Acad. Sci. USA 106, 21377–21382.10.1073/pnas.0903676106Search in Google Scholar

Hashimotodani, Y., Ohno-Shosaku, T., and Kano, M. (2007). Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J. Neurosci. 27, 1211–1219.10.1523/JNEUROSCI.4159-06.2007Search in Google Scholar

Hasselmo, M.E., Wyble, B.P., and Wallenstein, G.V. (1996). Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6, 693–708.10.1002/(SICI)1098-1063(1996)6:6<693::AID-HIPO12>3.0.CO;2-WSearch in Google Scholar

Hauser, R.A. (2011). Future treatments for Parkinson’s disease: surfing the PD pipeline. Int. J. Neurosci. 121, 53–62.10.3109/00207454.2011.620195Search in Google Scholar

Healy, D.G., Falchi, M., O’sullivan, S.S., Bonifati, V., Durr, A., Bressman, S., Brice, A., Aasly, J., Zabetian, C.P., Goldwurm, S., et al. (2008). Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 7, 583–590.10.1016/S1474-4422(08)70117-0Search in Google Scholar

Hebert-Chatelain, E., Reguero, L., Puente, N., Lutz, B., Chaouloff, F., Rossignol, R., Piazza, P. V., Benard, G., Grandes, P., Marsicano, G. (2014). Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor. Mol. Metab. 3, 495–504.10.1016/j.molmet.2014.03.007Search in Google Scholar

Hebron, M.L., Lonskaya, I., and Moussa, C.E. (2013a). Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of a-synuclein in Parkinson’s disease models. Hum. Mol. Genet. 22, 3315–3328.10.1093/hmg/ddt192Search in Google Scholar

Hebron, M.L., Lonskaya, I., and Moussa, C. E. (2013b). Tyrosine kinase inhibition facilitates autophagic SNCA/a-synuclein clearance. Autophagy 9, 1249–1250.10.4161/auto.25368Search in Google Scholar

Hegyi, Z., Hollo, K., Kis, G., Mackie, K., and Antal, M. (2012). Differential distribution of diacylglycerol lipase-a and N-acylphosphatidylethanolamine-specific phospholipase d immunoreactivity in the superficial spinal dorsal horn of rats. Glia 60, 1316–1329.10.1002/glia.22351Search in Google Scholar

Herkenham, M., Lynn, A.B., Johnson, M.R., Melvin, L.S., De Costa, B.R., and Rice, K.C. (1991). Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583.10.1523/JNEUROSCI.11-02-00563.1991Search in Google Scholar

Hernandez-Echeagaray, E., Galarraga, E., and Bargas, J. (1998). 3-aChloro-imperialine, a potent blocker of cholinergic presynaptic modulation of glutamatergic afferents in the rat neostriatum. Neuropharmacology 37, 1493–1502.10.1016/S0028-3908(98)00131-2Search in Google Scholar

Hernandez-Lopez, S., Tkatch, T., Perez-Garci, E., Galarraga, E., Bargas, J., Hamm, H., and Surmeier, D.J. (2000). D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[b]1-IP3-calcineurin-signaling cascade. J. Neurosci. 20, 8987–8995.10.1523/JNEUROSCI.20-24-08987.2000Search in Google Scholar

Hikosaka, O., Nakamura, K., Sakai, K., and Nakahara, H. (2002). Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222.10.1016/S0959-4388(02)00307-0Search in Google Scholar

Hillion, J., Canals, M., Torvinen, M., Casado, V., Scott, R., Terasmaa, A., Hansson, A., Watson, S., Olah, M.E., Mallol, J., et al. (2002). Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem. 277, 18091–18097.10.1074/jbc.M107731200Search in Google Scholar PubMed

Hines, D.J. and Haydon, P.G. (2014). Astrocytic adenosine: from synapses to psychiatric disorders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130594.10.1098/rstb.2013.0594Search in Google Scholar

Hirsch, E.C., Hunot, S., Faucheux, B., Agid, Y., Mizuno, Y., Mochizuki, H., Tatton, W.G., Tatton, N., Olanow, W.C. (1999). Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov. Disord. 14, 383–385.10.1002/1531-8257(199903)14:2<383::AID-MDS1037>3.0.CO;2-FSearch in Google Scholar

Hohmann, A.G. and Herkenham, M. (2000). Localization of cannabinoid CB1 receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse (New York) 37, 71–80.10.1002/(SICI)1098-2396(200007)37:1<71::AID-SYN8>3.0.CO;2-KSearch in Google Scholar

Hornung, J.P. (2003). The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 26, 331–343.10.1016/j.jchemneu.2003.10.002Search in Google Scholar

Hornykiewicz, O. (1966). Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 18, 925–964.Search in Google Scholar

Howlett, A.C. (2002). The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 68–69, 619–631.10.1201/9780429276279-2Search in Google Scholar

Howlett, A.C., Barth, F., Bonner, T.I., Cabral, G., Casellas, P., Devane, W.A., Felder, C.C., Herkenham, M., Mackie, K., Martin, B.R., et al. (2002). International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161–202.10.1124/pr.54.2.161Search in Google Scholar

Hung, H.C. and Lee, E.H. (1998). MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic. Biol. Med. 24, 76–84.10.1016/S0891-5849(97)00206-2Search in Google Scholar

Hurley, M.J., Brandon, B., Gentleman, S.M., and Dexter, D.T. (2013). Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136, 2077–2097.10.1093/brain/awt134Search in Google Scholar

Hwang, O. (2013). Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol. 22, 11–17.10.5607/en.2013.22.1.11Search in Google Scholar

Ibanez, C.F. and Andressoo, J.O. (2017). Biology of GDNF and its receptors – relevance for disorders of the central nervous system. Neurobiol. Dis. 97, 80–89.10.1016/j.nbd.2016.01.021Search in Google Scholar

Imam, S.Z., Zhou, Q., Yamamoto, A., Valente, A.J., Ali, S.F., Bains, M., Roberts, J.L., Kahle, P.J., Clark, R.A., and Li, S. (2011). Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J. Neurosci. 31, 157–163.10.1523/JNEUROSCI.1833-10.2011Search in Google Scholar PubMed PubMed Central

Ivanov, I., Borchert, P., and Hinz, B. (2015). A simple method for simultaneous determination of N-arachidonoylethanolamine, N-oleoylethanolamine, N-palmitoylethanolamine and 2-arachidonoylglycerol in human cells. Anal. Bioanal. Chem. 407, 1781–1787.10.1007/s00216-014-8384-5Search in Google Scholar PubMed

Jing, Z., Caltagarone, J., and Bowser, R. (2009). Altered subcellular distribution of c-Abl in Alzheimer’s disease. J. Alzheimers Dis. 17, 409–422.10.3233/JAD-2009-1062Search in Google Scholar PubMed PubMed Central

Jouvet, M. (1972). The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb. Physiol. 64, 166–307.10.1007/3-540-05462-6_2Search in Google Scholar

Kamat, P.K., Kalani, A., Kyles, P., Tyagi, S.C., and Tyagi, N. (2014). Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease. Cell Biochem. Biophys. 70, 707–719.10.1007/s12013-014-0006-5Search in Google Scholar PubMed PubMed Central

Kannari, K., Yamato, H., Shen, H., Tomiyama, M., Suda, T., and Matsunaga, M. (2001). Activation of 5-HT (1A) but not 5-HT (1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered L-DOPA in the striatum with nigrostriatal denervation. J. Neurochem. 76, 1346–1353.10.1046/j.1471-4159.2001.00184.xSearch in Google Scholar PubMed

Kannarkat, G.T., Boss, J.M., and Tansey, M.G. (2013). The role of innate and adaptive immunity in Parkinson’s disease. J. Parkinsons Dis. 3, 493–514.10.3233/JPD-130250Search in Google Scholar PubMed PubMed Central

Kar, S., Slowikowski, S.P., Westaway, D., and Mount, H.T. (2004). Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J. Psychiatry Neurosci. 29, 427–441.Search in Google Scholar

Karuppagounder, S.S., Brahmachari, S., Lee, Y., Dawson, V.L., Dawson, T.M., and Ko, H.S. (2014). The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci. Rep. 4, 4874.10.1038/srep04874Search in Google Scholar PubMed PubMed Central

Katzenschlager, R., Sampaio, C., Costa, J., and Lees, A. (2002). Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst. Rev. Cd003735.10.1002/14651858.CD003735Search in Google Scholar PubMed PubMed Central

Kerenyi, L., Ricaurte, G.A., Schretlen, D.J., Mccann, U., Varga, J., Mathews, W.B., Ravert, H.T., Dannals, R.F., Hilton, J., Wong, D.F., et al. (2003). Positron emission tomography of striatal serotonin transporters in Parkinson disease. Arch. Neurol. 60, 1223–1229.10.1001/archneur.60.9.1223Search in Google Scholar PubMed

Kim, H.F. and Hikosaka, O. (2015). Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 138, 1776–1800.10.1093/brain/awv134Search in Google Scholar PubMed PubMed Central

Kim, Y.S. and Joh, T.H. (2006). Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med. 38, 333–347.10.1038/emm.2006.40Search in Google Scholar

Kim, W.G., Mohney, R.P., Wilson, B., Jeohn, G.H., Liu, B., and Hong, J.S. (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309–6316.10.1523/JNEUROSCI.20-16-06309.2000Search in Google Scholar

Kingsbury, A.E., David Mardsen, C., and Foster, O.J.F. (1998). DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov. Disord. 13, 877–884.10.1002/mds.870130604Search in Google Scholar

Kish, S.J. (2003). Biochemistry of Parkinson’s disease: is a brain serotonergic deficiency a characteristic of idiopathic Parkinson’s disease? Adv. Neurol. 91, 39–49.Search in Google Scholar

Kish, S.J., Tong, J., Hornykiewicz, O., Rajput, A., Chang, L.J., Guttman, M., and Furukawa, Y. (2008). Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131, 120–131.10.1093/brain/awm239Search in Google Scholar

Kita, H. (2007). Globus pallidus external segment. Prog. Brain Res. 160, 111–133.10.1016/S0079-6123(06)60007-1Search in Google Scholar

Kita, H., Tachibana, Y., Nambu, A., and Chiken, S. (2005). Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J. Neurosci. 25, 8611–8619.10.1523/JNEUROSCI.1719-05.2005Search in Google Scholar

Kittner, H., Krügel, U., and Illes, P. (2001). The purinergic P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2′4′-disulphonic acid prevents both the acute locomotor effects of amphetamine and the behavioural sensitization caused by repeated amphetamine injections in rats. Neuroscience 102, 241–243.10.1016/S0306-4522(00)00555-8Search in Google Scholar

Klegeris, A., Bissonnette, C.J., and Mcgeer, P.L. (2003). Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br. J. Pharmacol. 139, 775–786.10.1038/sj.bjp.0705304Search in Google Scholar PubMed PubMed Central

Klockgether, T., Turski, L., Honore, T., Zhang, Z.M., Gash, D.M., Kurlan, R., and Greenamyre, J.T. (1991). The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann. Neurol. 30, 717–723.10.1002/ana.410300513Search in Google Scholar PubMed

Ko, H.S., Lee, Y., Shin, J.H., Karuppagounder, S.S., Gadad, B.S., Koleske, A.J., Pletnikova, O., Troncoso, J.C., Dawson, V.L., and Dawson, T.M. (2010). Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc. Natl. Acad. Sci. USA 107, 16691–16696.10.1073/pnas.1006083107Search in Google Scholar PubMed PubMed Central

Kondabolu, K., Roberts, E.A., Bucklin, M., Mccarthy, M.M., Kopell, N., and Han, X. (2016). Striatal cholinergic interneurons generate b and g oscillations in the corticostriatal circuit and produce motor deficits. Proc. Natl. Acad. Sci. USA 113, E3159–E3168.10.1073/pnas.1605658113Search in Google Scholar

Kontzias, A., Kotlyar, A., Laurence, A., Changelian, P., and O’shea, J.J. (2012). Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr. Opin. Pharmacol. 12, 464–470.10.1016/j.coph.2012.06.008Search in Google Scholar

Kosel, S., Egensperger, R., Von Eitzen, U., Mehraein, P., and Graeber, M.B. (1997). On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol. 93, 105–108.10.1007/s004010050590Search in Google Scholar

Kreiss, D.S., Anderson, L.A., and Walters, J.R. (1996). Apomorphine and dopamine D (1) receptor agonists increase the firing rates of subthalamic nucleus neurons. Neuroscience 72, 863–876.10.1016/0306-4522(95)00583-8Search in Google Scholar

Kreitzer, A.C. and Malenka, R.C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445, 643–647.10.1038/nature05506Search in Google Scholar

Krügel, U., Kittner, H., Franke, H., and Illes, P. (2001). Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 40, 1084–1093.10.1016/S0028-3908(01)00033-8Search in Google Scholar

Krugel, U., Kittner, H., and Illes, P. (2001). Mechanisms of adenosine 5′-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Synapse 39, 222–232.10.1002/1098-2396(20010301)39:3<222::AID-SYN1003>3.0.CO;2-RSearch in Google Scholar

Kucinski, A. and Sarter, M. (2015). Modeling Parkinson’s disease falls associated with brainstem cholinergic systems decline. Behav. Neurosci. 129, 96–104.10.1037/bne0000048Search in Google Scholar

Kuusisto, E., Parkkinen, L., and Alafuzoff, I. (2003). Morphogenesis of Lewy bodies: dissimilar incorporation of a-synuclein, ubiquitin, and p62. J. Neuropathol. Exp. Neurol. 62, 1241–1253.10.1093/jnen/62.12.1241Search in Google Scholar

Lanciego, J.L., Barroso-Chinea, P., Rico, A.J., Conte-Perales, L., Callen, L., Roda, E., Gomez-Bautista, V., Lopez, I.P., Lluis, C., Labandeira-García, J.L., et al. (2011). Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J. Psychopharmacol. 25, 97–104.10.1177/0269881110367732Search in Google Scholar

Langston, J.W. (2006). The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 59, 591–596.10.1002/ana.20834Search in Google Scholar

Lastres-Becker, I., Cebeira, M., De Ceballos, M.L., Zeng, B.Y., Jenner, P., Ramos, J.A., and Fernandez-Ruiz, J.J. (2001). Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur. J. Neurosci. 14, 1827–1832.10.1046/j.0953-816x.2001.01812.xSearch in Google Scholar

Lee, S.P., O’dowd, B.F., and George, S.R. (2003). Homo- and hetero-oligomerization of G protein-coupled receptors. Life Sci. 74, 173–180.10.1016/j.lfs.2003.09.028Search in Google Scholar

Lee, J., Giordano, S., and Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523–540.10.1042/BJ20111451Search in Google Scholar

Lee, Y., Karuppagounder, S.S., Shin, J.H., Lee, Y.I., Ko, H.S., Swing, D., Jiang, H., Kang, S.U., Lee, B.D., Kang, H.C., et al. (2013). Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16, 1392–1400.10.1038/nn.3500Search in Google Scholar

Lees, A.J., Shaw, K.M., and Stern, G.M. (1977). “Off period” dystonia and “on period” choreoathetosis in levodopa-treated patients with Parkinson’s disease. Lancet 2, 1034.10.1016/S0140-6736(77)92939-7Search in Google Scholar

Lei, W., Jiao, Y., Del Mar, N., and Reiner, A. (2004). Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J. Neurosci. 24, 8289–8299.10.1523/JNEUROSCI.1990-04.2004Search in Google Scholar

Levy, R., Hazrati, L.N., Herrero, M.T., Vila, M., Hassani, O.K., Mouroux, M., Ruberg, M., Asensi, H., Agid, Y., Féger, J., et al. (1997). Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience 76, 335–343.10.1016/S0306-4522(96)00409-5Search in Google Scholar

Lewitt, P.A., Rezai, A.R., Leehey, M.A., Ojemann, S.G., Flaherty, A.W., Eskandar, E.N., Kostyk, S.K., Thomas, K., Sarkar, A., Siddiqui, M.S., et al. (2011). AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10, 309–319.10.1016/S1474-4422(11)70039-4Search in Google Scholar

Ligresti, A., Petrosino, S., and Di Marzo, V. (2009). From endocannabinoid profiling to ‘endocannabinoid therapeutics’. Curr. Opin. Chem. Biol. 13, 321–331.10.1016/j.cbpa.2009.04.615Search in Google Scholar PubMed

Liu, W., Liu, R., Chun, J.T., Bi, R., Hoe, W., Schreiber, S.S., and Baudry, M. (2001). Kainate excitotoxicity in organotypic hippocampal slice cultures: evidence for multiple apoptotic pathways. Brain Res. 916, 239–248.10.1016/S0006-8993(01)03006-2Search in Google Scholar

Loane, C., Wu, K., Bain, P., Brooks, D.J., Piccini, P., and Politis, M. (2013). Serotonergic loss in motor circuitries correlates with severity of action-postural tremor in PD. Neurology 80, 1850–1855.10.1212/WNL.0b013e318292a31dSearch in Google Scholar PubMed PubMed Central

Lobb, C.J., Wilson, C.J., and Paladini, C.A. (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J. Neurophysiol. 104, 403–413.10.1152/jn.00204.2010Search in Google Scholar PubMed PubMed Central

Long, J.Z. and Cravatt, B.F. (2011). The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111, 6022–6063.10.1021/cr200075ySearch in Google Scholar PubMed PubMed Central

Long, J.Z., Li, W., Booker, L., Burston, J.J., Kinsey, S.G., Schlosburg, J.E., Pavon, F.J., Serrano, A.M., Selley, D.E., Parsons, L.H., et al. (2009). Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5, 37–44.10.1038/nchembio.129Search in Google Scholar PubMed PubMed Central

Lourenco, J., Cannich, A., Carta, M., Coussen, F., Mulle, C., and Marsicano, G. (2010). Synaptic activation of kainate receptors gates presynaptic CB (1) signaling at GABAergic synapses. Nat. Neurosci. 13, 197–204.10.1038/nn.2481Search in Google Scholar PubMed

Lovatt, D., Xu, Q., Liu, W., Takano, T., Smith, N.A., Schnermann, J., Tieu, K., and Nedergaard, M. (2012). Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc. Natl. Acad. Sci. USA 109, 6265–6270.10.1073/pnas.1120997109Search in Google Scholar PubMed PubMed Central

Luo, C., Song, W., Chen, Q., Yang, J., Gong, Q., and Shang, H.F. (2016). Cortical thinning in drug-naive Parkinson’s disease patients with depression. J. Neurol. 263, 2114–2119.10.1007/s00415-016-8241-xSearch in Google Scholar PubMed

Mackie, K., Lai, Y., Westenbroek, R. and Mitchell, R. (1995). Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J. Neurosci. 15, 6552–6261.10.1523/JNEUROSCI.15-10-06552.1995Search in Google Scholar

Maclaren, D.A., Santini, J.A., Russell, A.L., Markovic, T., and Clark, S.D. (2014). Deficits in motor performance after pedunculopontine lesions in rats – impairment depends on demands of task. Eur. J. Neurosci. 40, 3224–3236.10.1111/ejn.12666Search in Google Scholar PubMed

Maeda, T., Nagata, K., Yoshida, Y., and Kannari, K. (2005). Serotonergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-DOPA. Brain Res. 1046, 230–233.10.1016/j.brainres.2005.04.019Search in Google Scholar

Mahul-Mellier, A.L., Fauvet, B., Gysbers, A., Dikiy, I., Oueslati, A., Georgeon, S., Lamontanara, A.J., Bisquertt, A., Eliezer, D., Masliah, E., et al. (2014). c-Abl phosphorylates alpha-synuclein and regulates its degradation: implication for a-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum. Mol. Genet. 23, 2858–2879.10.1093/hmg/ddt674Search in Google Scholar

Mailleux, P. and Vanderhaeghen, J.J. (1992). Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48, 655–668.10.1016/0306-4522(92)90409-USearch in Google Scholar

Mallet, N., Le Moine, C., Charpier, S., and Gonon, F. (2005). Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J. Neurosci. 25, 3857–3869.10.1523/JNEUROSCI.5027-04.2005Search in Google Scholar

Mallet, N., Ballion, B., Le Moine, C., and Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J. Neurosci. 26, 3875–3884.10.1523/JNEUROSCI.4439-05.2006Search in Google Scholar

Marcellino, D., Suárez-Boomgaard, D., Sánchez-Reina, M.D., Aguirre, J.A., Yoshitake, T., Yoshitake, S., Hagman, B., Kehr, J., Agnati, L.F., Fuxe, K., et al. (2010). On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X7 receptor antagonist A-438079. J. Neural. Transm. 117, 681–687.10.1007/s00702-010-0400-0Search in Google Scholar

Maresz, K., Pryce, G., Ponomarev, E.D., Marsicano, G., Croxford, J.L., Shriver, L.P., Ledent, C., Cheng, X., Carrier, E.J., Mann, M.K., et al. (2007). Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat. Med. 13, 492–497.10.1038/nm1561Search in Google Scholar

Marinelli, M. and Mccutcheon, J.E. (2014). Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 282, 176–197.10.1016/j.neuroscience.2014.07.034Search in Google Scholar

Marsden, C.D. (1990). Parkinson’s disease. Lancet 335, 948–952.10.1016/0140-6736(90)91006-VSearch in Google Scholar

Marsden, C.D. and Obeso, J.A. (1994). The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 117, 877–897.10.1093/brain/117.4.877Search in Google Scholar PubMed

Martin, A.B., Fernandez-Espejo, E., Ferrer, B., Gorriti, M.A., Bilbao, A., Navarro, M., Rodriguez De Fonseca, F., and Moratalla, R. (2008). Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology 33, 1667–1679.10.1038/sj.npp.1301558Search in Google Scholar

Mathur, B.N. and Lovinger, D.M. (2012). Endocannabinoid-dopamine interactions in striatal synaptic plasticity. Front. Pharmacol. 3, 66.10.3389/fphar.2012.00066Search in Google Scholar

Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C., and Bonner, T.I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564.10.1038/346561a0Search in Google Scholar

Mcgeer, P.L., Itagaki, S., Boyes, B.E., and Mcgeer, E.G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291.10.1212/WNL.38.8.1285Search in Google Scholar

Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N.E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., Compton, D.R., et al. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90.10.1016/0006-2952(95)00109-DSearch in Google Scholar

Mena-Segovia, J., Bolam, J.P., and Magill, P.J. (2004). Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci. 27, 585–588.10.1016/j.tins.2004.07.009Search in Google Scholar PubMed

Meschler, J.P., Howlett, A.C., and Madras, B.K. (2001). Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology 156, 79–85.10.1007/s002130100728Search in Google Scholar PubMed

Minger, S.L., Esiri, M.M., Mcdonald, B., Keene, J., Carter, J., Hope, T., and Francis, P.T. (2000). Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 55, 1460–1467.10.1212/WNL.55.10.1460Search in Google Scholar PubMed

Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., Chui, D.H., and Tabira, T. (2000). Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J. Neurosci. 20, 1568–1574.10.1523/JNEUROSCI.20-04-01568.2000Search in Google Scholar

Moehle, M.S. and West, A.B. (2015). M1 and M2 immune activation in Parkinson’s disease: foe and ally? Neuroscience 302, 59–73.10.1016/j.neuroscience.2014.11.018Search in Google Scholar PubMed PubMed Central

Moehle, M.S., Webber, P.J., Tse, T., Sukar, N., Standaert, D.G., Desilva, T.M., Cowell, R.M., and West, A.B. (2012). LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 32, 1602–1611.10.1523/JNEUROSCI.5601-11.2012Search in Google Scholar PubMed PubMed Central

Moore, R.Y. and Bloom, F.E. (1978). Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann. Rev. Neurosci. 1, 129–169.10.1146/annurev.ne.01.030178.001021Search in Google Scholar PubMed

Moore, D.J., West, A.B., Dawson, V.L., and Dawson, T.M. (2005). Molecular pathophysiology of Parkinson’s disease. Ann. Rev. Neurosci. 28, 57–87.10.1146/annurev.neuro.28.061604.135718Search in Google Scholar PubMed

More, S.V., Kumar, H., Kim, I.S., Song, S.Y., and Choi, D.K. (2013). Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm. 2013, 952375.10.1155/2013/952375Search in Google Scholar PubMed PubMed Central

Morikawa, H. and Paladini, C.A. (2011). Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 198, 95–111.10.1016/j.neuroscience.2011.08.023Search in Google Scholar PubMed PubMed Central

Mosharov, E.V., Larsen, K.E., Kanter, E., Phillips, K.A., Wilson, K., Schmitz, Y., Krantz, D.E., Kobayashi, K., Edwards, R.,H., and Sulzer, D. (2009). Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218–229.10.1016/j.neuron.2009.01.033Search in Google Scholar PubMed PubMed Central

Mount, M.P., Lira, A., Grimes, D., Smith, P.D., Faucher, S., Slack, R., Anisman, H., Hayley, S., and Park, D.S. (2007). Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J. Neurosci. 27, 3328–3337.10.1523/JNEUROSCI.5321-06.2007Search in Google Scholar PubMed PubMed Central

Munhoz, R.P., Moro, A., Silveira-Moriyama, L., and Teive, H.A. (2015). Non-motor signs in Parkinson’s disease: a review. Arq. Neuropsiquiatr. 73, 454–462.10.1590/0004-282X20150029Search in Google Scholar PubMed

Munoz-Arenas, G., Paz-Bermudez, F., Baez-Cordero, A., Caballero-Floran, R., Gonzalez-Hernandez, B., Floran, B., and Limon, I.D. (2015). Cannabinoid CB1 receptors activation and coactivation with D2 receptors modulate GABAergic neurotransmission in the globus pallidus and increase motor asymmetry. Synapse 69, 103–114.10.1002/syn.21796Search in Google Scholar PubMed

Munro, S., Thomas, K.L., and Abu-Shaar, M. (1993). Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65.10.1038/365061a0Search in Google Scholar PubMed

Nambu, A. (2004). A new dynamic model of the cortico-basal ganglia loop. Prog. Brain Res. 143, 461–466.10.1016/S0079-6123(03)43043-4Search in Google Scholar

Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803.10.1083/jcb.200809125Search in Google Scholar PubMed PubMed Central

Navarro, G., Borroto-Escuela, D.O., Fuxe, K., and Franco, R. (2016). Purinergic signaling in Parkinson’s disease. Relevance for treatment. Neuropharmacology 104, 161–168.10.1016/j.neuropharm.2015.07.024Search in Google Scholar PubMed

Newman, E. (2003). Glial cell inhibition of neurons by release of ATP. J. Neurosci. 23, 1659–1666.10.1523/JNEUROSCI.23-05-01659.2003Search in Google Scholar

Ng, K.Y., Chase, T.N., and Kopin, I.J. (1970). Drug-induced release of 3H-norepinephrine and 3H-serotonin from brain slices. Nature 228, 468–469.10.1038/228468a0Search in Google Scholar PubMed

Nicholson, S.L. and Brotchie, J.M. (2002). 5-Hydroxytryptamine (5-HT, serotonin) and Parkinson’s disease – opportunities for novel therapeutics to reduce the problems of levodopa therapy. Eur. J. Neurol. 9(Suppl. 3), 1–6.10.1046/j.1468-1331.9.s3.1.xSearch in Google Scholar PubMed

Nobili, F., Campus, C., Arnaldi, D., De Carli, F., Cabassi, G., Brugnolo, A., Dessi, B., Morbelli, S., Sambuceti, G., Abbruzzese, G., et al. (2010). Cognitive-nigrostriatal relationships in de novo, drug-naive Parkinson’s disease patients: a [I-123]FP-CIT SPECT study. Mov. Disord. 25, 35–43.10.1002/mds.22899Search in Google Scholar PubMed

Nomura, D.K., Morrison, B.E., Blankman, J.L., Long, J.Z., Kinsey, S.G., Marcondes, M.C., Ward, A.M., Hahn, Y.K., Lichtman, A.H., Conti, B., et al. (2011). Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809–813.10.1126/science.1209200Search in Google Scholar PubMed PubMed Central

Nys, M., Kesters, D., and Ulens, C. (2013). Structural insights into Cys-loop receptor function and ligand recognition. Biochem. Pharmacol. 86, 1042–1053.10.1016/j.bcp.2013.07.001Search in Google Scholar PubMed

O’shea, J.J. and Plenge, R. (2012). JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36, 542–550.10.1016/j.immuni.2012.03.014Search in Google Scholar PubMed PubMed Central

O’shea, J.J., Schwartz, D.M., Villarino, A.V., Gadina, M., Mcinnes, I.B., and Laurence, A. (2015). The JAK-STAT pathway: impact on human disease and therapeutic intervention. Ann. Rev. Med. 66, 311–328.10.1146/annurev-med-051113-024537Search in Google Scholar

O’sullivan, S.S., Wu, K., Politis, M., Lawrence, A.D., Evans, A.H., Bose, S.K., Djamshidian, A., Lees, A.J., and Piccini, P. (2011). Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain 134, 969–978.10.1093/brain/awr003Search in Google Scholar

Obeso, J.A., Rodriguez, M.C., and Delong, M.R. (1997). Basal ganglia pathophysiology. A critical review. Adv. Neurol. 74, 3–18.Search in Google Scholar

Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Delong, M.R., and Olanow, C.W. (2000a). Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: problems with the current model. Ann. Neurol. 47(Suppl 1), S22–32; discussion S32–4.Search in Google Scholar

Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Lanciego, J.L., Artieda, J., Gonzalo, N., and Olanow, C.W. (2000b). Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci. 23, S8–S19.10.1016/S1471-1931(00)00028-8Search in Google Scholar

Obeso, J.A., Rodriguez-Oroz, M.C., Javier Blesa, F., and Guridi, J. (2006). The globus pallidus pars externa and Parkinson’s disease. Ready for prime time? Exp. Neurol. 202, 1–7.10.1016/j.expneurol.2006.07.004Search in Google Scholar

Olanow, C.W. and Mcnaught, K.S. (2006a). Ubiquitin-proteasome system and Parkinson’s disease. Mov. Disord. 21, 1806–1823.10.1002/mds.21013Search in Google Scholar

Olanow, C.W., Obeso, J.A., and Stocchi, F. (2006b). Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol. 5, 677–687.10.1016/S1474-4422(06)70521-XSearch in Google Scholar

Olney, J.W. (1990). Excitotoxicity: an overview. Can. Dis. Wkly. Rep. 16(Suppl 1E), 47–57; discussion 57–8.Search in Google Scholar

Ossowska, K., Konieczny, J., Wolfarth, S., Wieronska, J., and Pilc, A. (2001). Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 41, 413–420.10.1016/S0028-3908(01)00083-1Search in Google Scholar

Pahapill, P.A. and Lozano, A.M. (2000). The pedunculopontine nucleus and Parkinson’s disease. Brain 123, 1767–1783.10.1093/brain/123.9.1767Search in Google Scholar PubMed

Paille, V., Picconi, B., Bagetta, V., Ghiglieri, V., Sgobio, C., Di Filippo, M., Viscomi, M.T., Giampa, C., Fusco, F.R., Gardoni, F., et al. (2010). Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. J. Neurosci. 30, 14182–14193.10.1523/JNEUROSCI.2149-10.2010Search in Google Scholar PubMed PubMed Central

Paisan-Ruiz, C., Jain, S., Evans, E.W., Gilks, W.P., Simon, J., Van Der Brug, M., Lopez De Munain, A., Aparicio, S., Gil, A.M., Khan, N., et al. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600.10.1016/j.neuron.2004.10.023Search in Google Scholar PubMed

Paladini, C.A. and Roeper, J. (2014). Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 282, 109–121.10.1016/j.neuroscience.2014.07.032Search in Google Scholar

Palazuelos, J., Davoust, N., Julien, B., Hatterer, E., Aguado, T., Mechoulam, R., Benito, C., Romero, J., Silva, A., Guzmán, M., et al. (2008). The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis. J. Biol. Chem. 283, 13320–13329.10.1074/jbc.M707960200Search in Google Scholar

Palazuelos, J., Aguado, T., Pazos, M.R., Julien, B., Carrasco, C., Resel, E., Sagredo, O., Benito, C., Romero, J., Azcoitia, I., et al. (2009). Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132, 3152–3164.10.1093/brain/awp239Search in Google Scholar

Palma, E., Conti, L., Roseti, C., and Limatola, C. (2012). Novel approaches to study the involvement of alpha7-nAChR in human diseases. Curr. Drug Targets 13, 579–586.10.2174/138945012800398838Search in Google Scholar

Pappas, B.A., Bayley, P.J., Bui, B.K., Hansen, L.A., and Thal, L.J. (2000). Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. Neurobiol. Aging 21, 11–17.10.1016/S0197-4580(00)00090-7Search in Google Scholar

Parent, A. and Lavoie, B. (1993). The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and parkinsonian monkeys. Adv. Neurol. 60, 25–33.Search in Google Scholar

Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161.10.1038/nature04788Search in Google Scholar PubMed

Pascual, O., Casper, K.B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J.Y., Takano, H., Moss, S.J., McCarthy, K., Haydon, P.G. (2005). Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116.10.1126/science.1116916Search in Google Scholar PubMed

Pasupathy, A. and Miller, E.K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433, 873–876.10.1038/nature03287Search in Google Scholar PubMed

Patel, K.D., Davison, J.S., Pittman, Q.J., and Sharkey, K.A. (2010). Cannabinoid CB (2) receptors in health and disease. Curr. Med. Chem. 17, 1393–1410.10.2174/092986710790980041Search in Google Scholar PubMed

Pavese, N., Evans, A.H., Tai, Y.F., Hotton, G., Brooks, D.J., Lees, A.J., and Piccini, P. (2006). Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67, 1612–1617.10.1212/01.wnl.0000242888.30755.5dSearch in Google Scholar PubMed

Pellicano, C., Benincasa, D., Pisani, V., Buttarelli, F.R., Giovannelli, M., and Pontieri, F.E. (2007). Prodromal non-motor symptoms of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 3, 145–152.10.2147/nedt.2007.3.1.145Search in Google Scholar PubMed PubMed Central

Peng, L., Huang, R., Yu, A.C., Fung, K.Y., Rathbone, M.P., and Hertz, L. (2005). Nucleoside transporter expression and function in cultured mouse astrocytes. Glia 52, 25–35.10.1002/glia.20216Search in Google Scholar PubMed

Perez-Lloret, S., Negre-Pages, L., Damier, P., Delval, A., Derkinderen, P., Destee, A., Meissner, W.G., Schelosky, L., Tison, F., Rascol, O. (2014). Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. J. Am. Med. Assoc. Neurol. 71, 884–890.10.1001/jamaneurol.2014.753Search in Google Scholar PubMed

Petroff, O.A. (2002). GABA and glutamate in the human brain. Neuroscientist 8, 562–573.10.1177/1073858402238515Search in Google Scholar PubMed

Picciotto, M.R., Higley, M.J., and Mineur, Y.S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129.10.1016/j.neuron.2012.08.036Search in Google Scholar PubMed PubMed Central

Picconi, B., Gardoni, F., Centonze, D., Mauceri, D., Cenci, M.A., Bernardi, G., Calabresi, P., and Di Luca, M. (2004). Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J. Neurosci. 24, 5283–5291.10.1523/JNEUROSCI.1224-04.2004Search in Google Scholar PubMed PubMed Central

Pignatelli, M. and Bonci, A. (2015). Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron 86, 1145–1157.10.1016/j.neuron.2015.04.015Search in Google Scholar PubMed

Pinal, C.S. and Tobin, A.J. (1998). Uniqueness and redundancy in GABA production. Perspect. Dev. Neurobiol. 5, 109–118.Search in Google Scholar

Pinna, A., Bonaventura, J., Farré, D., Sánchez, M., Simola, N., Mallol, J., Lluís, C., Costa, G. Baqi, Y., Müller, C.E., et al. (2014). l-DOPA disrupts adenosine A2A-cannabinoid CB 1-dopamine D 2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies. Exp. Neurol. 253, 180–191.10.1016/j.expneurol.2013.12.021Search in Google Scholar PubMed

Politis, M. and Loane, C. (2011). Serotonergic dysfunction in Parkinson’s disease and its relevance to disability. ScientificWorldJ. 11, 1726–1734.10.1100/2011/172893Search in Google Scholar PubMed PubMed Central

Politis, M., Wu, K., Loane, C., Kiferle, L., Molloy, S., Brooks, D.J., and Piccini, P. (2010). Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol. Dis. 40, 216–221.10.1016/j.nbd.2010.05.028Search in Google Scholar PubMed

Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.10.1126/science.276.5321.2045Search in Google Scholar PubMed

Potenza, M.N. (2008). The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3181–3189.10.1098/rstb.2008.0100Search in Google Scholar PubMed PubMed Central

Prescott, W.R., Gold, L.H., and Martin, B.R. (1992). Evidence for separate neuronal mechanisms for the discriminative stimulus and catalepsy induced by delta 9-THC in the rat. Psychopharmacology 107, 117–124.10.1007/BF02244975Search in Google Scholar PubMed

Price, D.A., Martinez, A.A., Seillier, A., Koek, W., Acosta, Y., Fernandez, E., Strong, R., Lutz, B., Marsicano, G., Roberts, J.L., et al. (2009). WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur. J. Neurosci. 29, 2177–2186.10.1111/j.1460-9568.2009.06764.xSearch in Google Scholar PubMed PubMed Central

Qin, H., Buckley, J.A., Li, X., Liu, Y., Fox, T.H., 3rd, Meares, G.P., Yu, H., Yan, Z., Harms, A.S., Li, Y., et al. (2016). Inhibition of the JAK/STAT pathway protects against a-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J. Neurosci. 36, 5144–5159.10.1523/JNEUROSCI.4658-15.2016Search in Google Scholar PubMed PubMed Central

Ramirez-Zamora, A. and Molho, E. (2014). Treatment of motor fluctuations in Parkinson’s disease: recent developments and future directions. Expert Rev. Neurother. 14, 93–103.10.1586/14737175.2014.868306Search in Google Scholar PubMed

Rasheed, N., Ahmad, A., Pandey, C.P., Chaturvedi, R.K., Lohani, M., and Palit, G. (2010). Differential response of central dopaminergic system in acute and chronic unpredictable stress models in rats. Neurochem. Res. 35, 22–32.10.1007/s11064-009-0026-5Search in Google Scholar PubMed

Rashid, A.J., So, C.H., Kong, M.M., Furtak, T., El-Ghundi, M., Cheng, R., O’dowd, B.F., and George, S.R. (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. USA 104, 654–659.10.1073/pnas.0604049104Search in Google Scholar PubMed PubMed Central

Richerson, G.B. and Wu, Y. (2003). Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J. Neurophysiol. 90, 1363–1374.10.1152/jn.00317.2003Search in Google Scholar PubMed

Rodriguez, M.C., Obeso, J.A., and Olanow, C.W. (1998). Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann. Neurol. 44, S175–S188.10.1002/ana.410440726Search in Google Scholar PubMed

Roeper, J. (2013). Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci. 36, 336–342.10.1016/j.tins.2013.03.003Search in Google Scholar

Romero, J., Garcia, L., Cebeira, M., Zadrozny, D., Fernandez-Ruiz, J.J., and Ramos, J.A. (1995). The endogenous cannabinoid receptor ligand, anandamide, inhibits the motor behavior: role of nigrostriatal dopaminergic neurons. Life Sci. 56, 2033–2040.10.1016/0024-3205(95)00186-ASearch in Google Scholar

Romero, J., Lastres-Becker, I., De Miguel, R., Berrendero, F., Ramos, J.A., and Fernandez-Ruiz, J. (2002). The endogenous cannabinoid system and the basal ganglia. biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther. 95, 137–152.10.1016/S0163-7258(02)00253-XSearch in Google Scholar

Ron, D. and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529.10.1038/nrm2199Search in Google Scholar PubMed

Sagredo, O., Garcia-Arencibia, M., De Lago, E., Finetti, S., Decio, A., and Fernandez-Ruiz, J. (2007). Cannabinoids and neuroprotection in basal ganglia disorders. Mol. Neurobiol. 36, 82–91.10.1007/s12035-007-0004-3Search in Google Scholar PubMed

Salamone, J.D. and Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron 76, 470–485.10.1016/j.neuron.2012.10.021Search in Google Scholar PubMed PubMed Central

Samara, C., Syntichaki, P., and Tavernarakis, N. (2008). Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Diff. 15, 105–112.10.1038/sj.cdd.4402231Search in Google Scholar PubMed

Sanchez-Pernaute, R., Ferree, A., Cooper, O., Yu, M., Brownell, A.L., and Isacson, O. (2004). Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J. Neuroinflammation 1, 6.10.1186/1742-2094-1-6Search in Google Scholar PubMed PubMed Central

Sanchez-Gonzalez, M.A., Garcia-Cabezas, M.A., Rico, B., and Cavada, C. (2005). The primate thalamus is a key target for brain dopamine. J. Neurosci. 25, 6076–6083.10.1523/JNEUROSCI.0968-05.2005Search in Google Scholar PubMed PubMed Central

Sanchez-Guajardo, V., Tentillier, N., and Romero-Ramos, M. (2015). The relation between a-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience 302, 47–58.10.1016/j.neuroscience.2015.02.008Search in Google Scholar PubMed

Sato, A., Arimura, Y., Manago, Y., Nishikawa, K., Aoki, K., Wada, E., Suzuki, Y., Osaka, H., Setsuie, R., Sakurai, M., et al. (2006). Parkin potentiates ATP-induced currents due to activation of P2X receptors in PC12 cells. J. Cell Physiol. 209, 172–182.10.1002/jcp.20719Search in Google Scholar PubMed

Schiemann, J., Schlaudraff, F., Klose, V., Bingmer, M., Seino, S., Magill, P.J., Zaghloul, K.A., Schneider, G., Liss, B., Roeper, J. (2012). K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat. Neurosci. 15, 1272–1280.10.1038/nn.3185Search in Google Scholar PubMed PubMed Central

Schlatterer, S.D., Acker, C.M., and Davies, P. (2011). c-Abl in neurodegenerative disease. J. Mol. Neurosci. 45, 445–452.10.1007/s12031-011-9588-1Search in Google Scholar PubMed PubMed Central

Schlosburg, J.E., Blankman, J.L., Long, J.Z., Nomura, D.K., Pan, B., Kinsey, S.G., Nguyen, P.T., Ramesh, D., Booker, L., Burston, J.J., et al. (2010). Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 13, 1113–1119.10.1038/nn.2616Search in Google Scholar PubMed PubMed Central

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and reward. Science 275, 1593–1599.10.1126/science.275.5306.1593Search in Google Scholar PubMed

Scotter, E.L., Abood, M.E., and Glass, M. (2010). The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br. J. Pharmacol. 160, 480–498.10.1111/j.1476-5381.2010.00735.xSearch in Google Scholar PubMed PubMed Central

Seger, C.A. (2006). The basal ganglia in human learning. Neuroscientist 12, 285–290.10.1177/1073858405285632Search in Google Scholar PubMed

Sgambato-Faure, V. and Cenci, M.A. (2012). Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog. Neurobiol. 96, 69–86.10.1016/j.pneurobio.2011.10.005Search in Google Scholar PubMed

Sherer, T.B. (2011). Biomarkers for Parkinson’s disease. Sci. Transl. Med. 3, 79ps14-79ps14.10.1126/scitranslmed.3002488Search in Google Scholar PubMed

Shi, W.X. (2009). Electrophysiological characteristics of dopamine neurons: a 35-year update. J. Neural. Transm. Suppl. 73, 103–119.10.1007/978-3-211-92660-4_8Search in Google Scholar PubMed

Shin, J.H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.I., Pletinkova, O., Troconso, J.C., Dawson, V.L., and Dawson, T.M. (2011). PARIS (ZNF746) repression of PGC-1a contributes to neurodegeneration in Parkinson’s disease. Cell 144, 689–702.10.1016/j.cell.2011.02.010Search in Google Scholar

Sierra, S., Luquin, N., Rico, A.J., Gomez-Bautista, V., Roda, E., Dopeso-Reyes, I.G., Vazquez, A., Martinez-Pinilla, E., Labandeira-García, J.L., Franco, R., et al. (2015). Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct. Funct. 220, 2721–2738.10.1007/s00429-014-0823-8Search in Google Scholar

Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841.10.1126/science.1090278Search in Google Scholar

Skorvanek, M., Gdovinova, Z., Rosenberger, J., Saeedian, R.G., Nagyova, I., Groothoff, J.W., and Van Dijk, J.P. (2015). The associations between fatigue, apathy, and depression in Parkinson’s disease. Acta Neurol. Scand. 131, 80–87.10.1111/ane.12282Search in Google Scholar

Smith, L.K., Jadavji, N.M., Colwell, K.L., Katrina Perehudoff, S., and Metz, G.A. (2008). Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur. J. Neurosci. 27, 2133–2146.10.1111/j.1460-9568.2008.06177.xSearch in Google Scholar

Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60.10.1038/nrn1007Search in Google Scholar

Spillantini, M.G., Schmidt, M.L., Lee, V.M., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature 388, 839–840.10.1038/42166Search in Google Scholar

Spooren, W.P.J.M., Gasparini, F., Salt, T.E., and Kuhn, R. (2001). Novel allosteric antagonists shed light on mglu5 receptors and CNS disorders. Trends Pharmacol. Sci. 22, 331–337.10.1016/S0165-6147(00)01694-1Search in Google Scholar

Starr, M.S. (1995). Antiparkinsonian actions of glutamate antagonists – alone and with L-DOPA: a review of evidence and suggestions for possible mechanisms. J. Neural Transm. Park. Dis. Dement. Sect. 10, 141–185.10.1007/BF02251229Search in Google Scholar PubMed

Stauffer, W.R., Lak, A., Yang, A., Borel, M., Paulsen, O., Boyden, E.S., and Schultz, W. (2016). Dopamine neuron-specific optogenetic stimulation in Rhesus macaques. Cell 166, 1564–1571.e6.10.1016/j.cell.2016.08.024Search in Google Scholar PubMed PubMed Central

Stefanis, L. (2012). a-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399.10.1101/cshperspect.a009399Search in Google Scholar

Stefanova, E.D., Kostic, V.S., Ziropadja, L., Markovic, M., and Ocic, G.G. (2000). Visuomotor skill learning on serial reaction time task in patients with early Parkinson’s disease. Mov. Disord. 15, 1095–1103.10.1002/1531-8257(200011)15:6<1095::AID-MDS1006>3.0.CO;2-RSearch in Google Scholar

Stella, N. (2010). Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58, 1017–1030.10.1002/glia.20983Search in Google Scholar

Stuart, J.R., Kawai, H., Tsai, K.K., Chuang, E.Y., and Yuan, Z.M. (2005). c-Abl regulates early growth response protein (EGR1) in response to oxidative stress. Oncogene 24, 8085–8092.10.1038/sj.onc.1208953Search in Google Scholar

Suarez, J., Llorente, R., Romero-Zerbo, S.Y., Mateos, B., Bermudez-Silva, F.J., De Fonseca, F.R., and Viveros, M.P. (2009). Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB1 and CB2 cannabinoid receptors of neonatal rats. Hippocampus 19, 623–632.10.1002/hipo.20537Search in Google Scholar

Sugama, S. and Kakinuma, Y. (2016). Loss of dopaminergic neurons occurs in the ventral tegmental area and hypothalamus of rats following chronic stress: possible pathogenetic loci for depression involved in Parkinson’s disease. Neurosci. Res. 111, 48–55.10.1016/j.neures.2016.04.008Search in Google Scholar

Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., and Waku, K. (1995). 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97.10.1006/bbrc.1995.2437Search in Google Scholar

Sun, X., Wu, F., Datta, R., Kharbanda, S., and Kufe, D. (2000). Interaction between protein kinase C delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress. J. Biol. Chem. 275, 7470–7473.10.1074/jbc.275.11.7470Search in Google Scholar

Surmeier, D.J. and Schumacker, P.T. (2013). Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J. Biol. Chem. 288, 10736–10741.10.1074/jbc.R112.410530Search in Google Scholar

Surmeier, D.J., Ding, J., Day, M., Wang, Z., and Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235.10.1016/j.tins.2007.03.008Search in Google Scholar

Surmeier, D.J., Guzman, J.N., Sanchez-Padilla, J., and Schumacker, P.T. (2011). The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 198, 221–231.10.1016/j.neuroscience.2011.08.045Search in Google Scholar

Tanaka, H., Kannari, K., Maeda, T., Tomiyama, M., Suda, T., and Matsunaga, M. (1999). Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10, 631–634.10.1097/00001756-199902250-00034Search in Google Scholar

Tatton, N.A., Maclean-Fraser, A., Tatton, W.G., Perl, D.P., and Warren, C.O. (1998). A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann. Neurol. 44, S142–S148.10.1002/ana.410440721Search in Google Scholar

Thobois, S., Lhommee, E., Klinger, H., Ardouin, C., Schmitt, E., Bichon, A., Kistner, A., Castrioto, A., Xie, J., Fraix, V., et al. (2013). Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 136, 1568–1577.10.1093/brain/awt067Search in Google Scholar

Threlfell, S. and Cragg, S.J. (2011). Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front. Syst. Neurosci. 5, 11.10.3389/fnsys.2011.00011Search in Google Scholar

Threlfell, S., Lalic, T., Platt, N.J., Jennings, K.A., Deisseroth, K., and Cragg, S.J. (2012). Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75, 58–64.10.1016/j.neuron.2012.04.038Search in Google Scholar

Tohgi, H., Abe, T., Takahashi, S., Takahashi, J., and Hamato, H. (1993). Concentrations of serotonin and its related substances in the cerebrospinal fluid of parkinsonian patients and their relations to the severity of symptoms. Neurosci. Lett. 150, 71–74.10.1016/0304-3940(93)90111-WSearch in Google Scholar

Tokunaga, N., Choudhury, M.E., Nishikawa, N., Nagai, M., Tujii, T., Iwaki, H., Kaneta, M., and Nomoto, M. (2012). Pramipexole upregulates dopamine receptor D (2) and D (3) expression in rat striatum. J. Pharmacol. Sci. 120, 133–137.10.1254/jphs.12096SCSearch in Google Scholar PubMed

Tremblay, M.A., Acker, C.M., and Davies, P. (2010). Tau phosphorylated at tyrosine 394 is found in Alzheimer’s disease tangles and can be a product of the Abl-related kinase, Arg. J. Alzheimers Dis. 19, 721–733.10.3233/JAD-2010-1271Search in Google Scholar PubMed PubMed Central

Tsai, H.C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., De Lecea, L., and Deisseroth, K. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084.10.1126/science.1168878Search in Google Scholar PubMed PubMed Central

Turner, R.S. and Anderson, M.E. (2005). Context-dependent modulation of movement-related discharge in the primate globus pallidus. J. Neurosci. 25, 2965–2576.10.1523/JNEUROSCI.4036-04.2005Search in Google Scholar PubMed PubMed Central

Turu, G. and Hunyady, L. (2010). Signal transduction of the CB1 cannabinoid receptor. J. Mol. Endocrinol. 44, 75–85.10.1677/JME-08-0190Search in Google Scholar PubMed

Twitchell, W., Brown, S., and Mackie, K. (1997). Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J. Neurophysiol. 78, 43–50.10.1152/jn.1997.78.1.43Search in Google Scholar PubMed

Ullrich, O., Merker, K., Timm, J., and Tauber, S. (2007). Immune control by endocannabinoids – new mechanisms of neuroprotection? J. Neuroimmunol. 184, 127–135.10.1016/j.jneuroim.2006.11.018Search in Google Scholar PubMed

Van Der Perren, A., Macchi, F., Toelen, J., Carlon, M.S., Maris, M., De Loor, H., Kuypers, D. R., Gijsbers, R., Van den Haute, C., Debyser, Z., et al. (2015). FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an alpha-synuclein-based rat model for Parkinson’s disease. Neurobiol. Aging 36, 1559–1568.10.1016/j.neurobiolaging.2015.01.014Search in Google Scholar PubMed

Van Der Stelt, M. and Di Marzo, V. (2003). The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur. J. Pharmacol. 480, 133–150.10.1016/j.ejphar.2003.08.101Search in Google Scholar PubMed

Van Der Stelt, M., Fox, S.H., Hill, M., Crossman, A.R., Petrosino, S., Di Marzo, V., and Brotchie, J.M. (2005). A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. FASEB J. 19, 1140–1142.10.1096/fj.04-3010fjeSearch in Google Scholar PubMed

Van Laere, K., Casteels, C., Lunskens, S., Goffin, K., Grachev, I.D., Bormans, G., and Vandenberghe, W. (2012). Regional changes in type 1 cannabinoid receptor availability in Parkinson’s disease in vivo. Neurobiol. Aging 33, 620.e1–8.10.1016/j.neurobiolaging.2011.02.009Search in Google Scholar PubMed

Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of a-synuclein aggregates. Neuropathology 27, 494–506.10.1111/j.1440-1789.2007.00803.xSearch in Google Scholar PubMed

Walker, M.C. and Semyanov, A. (2007). Inhibitory Regulation of Excitatory Neurotransmission (Berlin, Heidelberg: Springer), pp. 29–48.Search in Google Scholar

Walker, F.R., Nilsson, M., and Jones, K. (2013). Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr. Drug Targets 14, 1262–1276.10.2174/13894501113149990208Search in Google Scholar PubMed PubMed Central

Wallace, T.L. and Porter, R.H. (2011). Targeting the nicotinic a7 acetylcholine receptor to enhance cognition in disease. Biochem. Pharmacol. 82, 891–903.10.1016/j.bcp.2011.06.034Search in Google Scholar

Wang, Y., Chang, C.F., Morales, M., Chiang, Y.H., Harvey, B.K., Su, T.P., Tsao, L.I., Chen, S., and Thiemermann, C. (2003). Diadenosine tetraphosphate protects against injuries induced by ischemia and 6-hydroxydopamine in rat brain. J. Neurosci. 23, 7958–7965.10.1523/JNEUROSCI.23-21-07958.2003Search in Google Scholar

Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., and Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213, 1–47.10.1016/S0074-7696(02)13011-7Search in Google Scholar

Weaver, C.T., Hatton, R.D., Mangan, P.R., and Harrington, L.E. (2007). IL-17 family cytokines and the expanding diversity of effector T cell lineages. Ann. Rev. Immunol. 25, 821–852.10.1146/annurev.immunol.25.022106.141557Search in Google Scholar

Wichmann, T. and Delong, M.R. (1993). Pathophysiology of parkinsonian motor abnormalities. Adv. Neurol. 60, 53–61.Search in Google Scholar

Wichmann, T. and Delong, M.R. (1996). Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6, 751–758.10.1016/S0959-4388(96)80024-9Search in Google Scholar

Williams, D.R., Hadeed, A., Al-Din, A.S., Wreikat, A.L., and Lees, A.J. (2005). Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov. Disord. 20, 1264–1271.10.1002/mds.20511Search in Google Scholar PubMed

Wilson, R.I. and Nicoll, R.A. (2002). Endocannabinoid signaling in the brain. Science 296, 678–682.10.1126/science.1063545Search in Google Scholar PubMed

Wilson, C.J., Chang, H.T., and Kitai, S.T. (1990). Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J. Neurosci. 10, 508–519.10.1523/JNEUROSCI.10-02-00508.1990Search in Google Scholar

Winkler, C., Bentlage, C., Nikkhah, G., Samii, M., and Bjorklund, A. (1999). Intranigral transplants of GABA-rich striatal tissue induce behavioral recovery in the rat Parkinson model and promote the effects obtained by intrastriatal dopaminergic transplants. Exp. Neurol. 155, 165–186.10.1006/exnr.1998.6916Search in Google Scholar PubMed

Wu, T. and Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128, 2250–2259.10.1093/brain/awh569Search in Google Scholar PubMed

Yamakage, M. and Namiki, A. (2002). Calcium channels – basic aspects of their structure, function and gene encoding; anesthetic action on the channels – a review. Can. J. Anaesth. 49, 151–164.10.1007/BF03020488Search in Google Scholar

Yarnall, A., Rochester, L., and Burn, D.J. (2011). The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov. Disord. 26, 2496–2503.10.1002/mds.23932Search in Google Scholar

Yin, H.H. and Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476.10.1038/nrn1919Search in Google Scholar

Yoshida, K. (2007). Regulation for nuclear targeting of the Abl tyrosine kinase in response to DNA damage. Adv. Exp. Med. Biol. 604, 155–165.10.1007/978-0-387-69116-9_15Search in Google Scholar

Young, S.N., Smith, S.E., Pihl, R.O., and Ervin, F.R. (1985). Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 87, 173–177.10.1007/BF00431803Search in Google Scholar

Yuan, Z.M., Shioya, H., Ishiko, T., Sun, X., Gu, J., Huang, Y.Y., Lu, H., Kharbanda, S., Weichselbaum, R., and Kufe, D. (1999). p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399, 814–817.10.1038/21704Search in Google Scholar

Yue, Z., Horton, A., Bravin, M., Dejager, P.L., Selimi, F., and Heintz, N. (2002). A novel protein complex linking the D2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 35, 921–933.10.1016/S0896-6273(02)00861-9Search in Google Scholar

Yung, K.K., Bolam, J.P., Smith, A.D., Hersch, S.M., Ciliax, B.J., and Levey, A.I. (1995). Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709–730.10.1016/0306-4522(94)00536-ESearch in Google Scholar

Zaghloul, K.A., Blanco, J.A., Weidemann, C.T., Mcgill, K., Jaggi, J.L., Baltuch, G.H., and Kahana, M. J. (2009). Human substantia nigra neurons encode unexpected financial rewards. Science 323, 1496–1499.10.1126/science.1167342Search in Google Scholar PubMed PubMed Central

Zare-Shahabadi, A., Masliah, E., Johnson, G.V., and Rezaei, N. (2015). Autophagy in Alzheimer’s disease. Rev. Neurosci. 26, 385–395.10.1515/revneuro-2014-0076Search in Google Scholar PubMed PubMed Central

Zare-Shahabadi, A., Ataei, A., and Rezaei, N. (2016). Proteins brighten the brain. Life Sci. 167, 1–5.10.1016/j.lfs.2016.10.024Search in Google Scholar

Zhang, Z., Chen, G., Zhou, W., Song, A., Xu, T., Luo, Q., Wang, W., Gu, X.S., and Duan, S. (2007). Regulated ATP release from astrocytes through lysosome exocytosis. Nat. Cell Biol. 9, 945–953.10.1038/ncb1620Search in Google Scholar

Zhou, F.M., Wilson, C.J., and Dani, J.A. (2002). Cholinergic interneuron characteristics and nicotinic properties in the striatum. J. Neurobiol. 53, 590–605.10.1002/neu.10150Search in Google Scholar

Zhu, J. and Wang, J.Y. (2004). Death by Abl: a matter of location. Curr. Top. Dev. Biol. 59, 165–192.10.1016/S0070-2153(04)59007-5Search in Google Scholar

Zimmermann, H. (2000). Extracellular metabolism of ATP and other nucleotides. Naunyn. Schmiedebergs Arch. Pharmacol. 362, 299–309.10.1007/s002100000309Search in Google Scholar PubMed

Received: 2016-10-15
Accepted: 2017-1-10
Published Online: 2017-3-22
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow