Accessible Requires Authentication Published by De Gruyter April 19, 2017

Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise

Lina Sun, Qingshan Sun and Jinshun Qi

Abstract

Depression is a prevalent devastating mental disorder that affects the normal life of patients and brings a heavy burden to whole society. Although many efforts have been made to attenuate depressive/anxiety symptoms, the current clinic antidepressants have limited effects. Scientists have long been making attempts to find some new strategies that can be applied as the alternative antidepressant therapy. Exercise, a widely recognized healthy lifestyle, has been suggested as a therapy that can relieve psychiatric stress. However, how exercise improves the brain functions and reaches the antidepressant target needs systematic summarization due to the complexity and heterogeneous feature of depression. Brain plasticity, especially adult neurogenesis in the hippocampus, is an important neurophysiology to facilitate animals for neurogenesis can occur in not only humans. Many studies indicated that an appropriate level of exercise can promote neurogenesis in the adult brains. In this article, we provide information about the antidepressant effects of exercise and its implications in adult neurogenesis. From the neurogenesis perspective, we summarize evidence about the effects of exercise in enhancing neurogenesis in the hippocampus through regulating growth factors, neurotrophins, neurotransmitters and metabolism as well as inflammations. Taken together, a large number of published works indicate the multiple benefits of exercise in the brain functions of animals, particularly brain plasticity like neurogenesis and synaptogenesis. Therefore, a new treatment method for depression therapy can be developed by regulating the exercise activity.

Acknowledgments

This study was supported by China Postdoctoral Science Fund (2014M560198), as well as the National Natural Science Foundation of China (31471080).

  1. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

Alvarez-Buylla, A. and Garcia-Verdugo, J.M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634.11826091 Search in Google Scholar

Banasr, M., Hery, M., Printemps, R., and Daszuta, A. (2004). Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29, 450–460.10.1038/sj.npp.130032014872203 Search in Google Scholar

Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21.11413485 Search in Google Scholar

Brooker, G.J., Kalloniatis, M., Russo, V.C., Murphy, M., Werther, G.A., and Bartlett, P.F. (2000). Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J. Neurosci. Res. 59, 332–341.1067976810.1002/(SICI)1097-4547(20000201)59:3<332::AID-JNR6>3.0.CO;2-2 Search in Google Scholar

Carro, E., Nunez, A., Busiguina, S., and Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933.10751445 Search in Google Scholar

Caviedes, A., Lafourcade, C., Soto, C., and Wyneken, U. (2017). BDNF/NF-κB signaling in the neurobiology of depression. Curr. Pharm. Des. [Epub ahead of print]. Search in Google Scholar

Chua, S.C., Jr, Chung, W.K., Wu-Peng, X.S., Zhang, Y., Liu, S.M., Tartaglia, L., and Leibel, R.L. (1996). Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996.10.1126/science.271.5251.9948584938 Search in Google Scholar

Clelland, C.D., Choi, M., Romberg, C., Clemenson, G.D., Jr, Fragniere, A., Tyers, P., Jessberger, S., Saksida, L.M., Barker, R.A., Gage, F.H., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213.10.1126/science.117321519590004 Search in Google Scholar

Cotman, C.W., Berchtold, N.C., and Christie, L.A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472.10.1016/j.tins.2007.06.011 Search in Google Scholar

Devader, C., Khayachi, A., Veyssiere, J., Moha Ou Maati, H., Roulot, M., Moreno, S., Borsotto, M., Martin, S., Heurteaux, C., and Mazella, J. (2015). In vitro and in vivo regulation of synaptogenesis by the novel antidepressant spadin. Br. J. Pharmacol. 172, 2604–2617.10.1111/bph.1308325598009 Search in Google Scholar

Dey, S., Singh, R.H., and Dey, P.K. (1992). Exercise training: significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav. 52, 1095–1099.10.1016/0031-9384(92)90465-E1283013 Search in Google Scholar

Di Giorgi Gerevini, V.D., Caruso, A., Cappuccio, I., Ricci Vitiani, L., Romeo, S., Della Rocca, C., Gradini, R., Melchiorri, D., and Nicoletti, F. (2004). The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Brain Res. Dev. Brain Res. 150, 17–22.1512603410.1016/j.devbrainres.2004.02.003 Search in Google Scholar

Dietrich, M.O., Mantese, C.E., Porciuncula, L.O., Ghisleni, G., Vinade, L., Souza, D.O., and Portela, L.V. (2005). Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res. 1065, 20–25.10.1016/j.brainres.2005.09.03816298350 Search in Google Scholar

Dietrich, M.O., Andrews, Z.B., and Horvath, T.L. (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J. Neurosci. 28, 10766–10771.1892305110.1523/JNEUROSCI.2744-08.2008 Search in Google Scholar

Duman, C.H., Schlesinger, L., Russell, D.S., and Duman, R.S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res. 1199, 148–158.10.1016/j.brainres.2007.12.04718267317 Search in Google Scholar

Duman, R.S., Aghajanian, G.K., Sanacora, G., and Krystal, J.H. (2016). Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249.2693761810.1038/nm.4050 Search in Google Scholar

Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2009). Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021–1029.1866274810.1016/j.neuroscience.2008.06.052 Search in Google Scholar

Elmquist, J.K., Bjorbaek, C., Ahima, R.S., Flier, J.S., and Saper, C.B. (1998). Distributions of leptin receptor mRNA isoforms in the rat brain. J. Compar. Neurol. 395, 535–547.10.1002/(SICI)1096-9861(19980615)395:4<535::AID-CNE9>3.0.CO;2-2 Search in Google Scholar

Eren, I., Naziroglu, M., and Demirdas, A. (2007). Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem. Res. 32, 1188–1195.10.1007/s11064-007-9289-x17401662 Search in Google Scholar

Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., and Palmer, T.D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812.1465632910.1111/j.1460-9568.2003.03041.x Search in Google Scholar

Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., and Christie, B.R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71–79.10.1016/j.neuroscience.2003.09.02914960340 Search in Google Scholar

Feske, U., Mulsant, B.H., Pilkonis, P.A., Soloff, P., Dolata, D., Sackeim, H.A., and Haskett, R.F. (2004). Clinical outcome of ECT in patients with major depression and comorbid borderline personality disorder. Am. J. Psychiatry 161, 2073–2080.10.1176/appi.ajp.161.11.207315514409 Search in Google Scholar

Garza, J.C., Guo, M., Zhang, W., and Lu, X.Y. (2012). Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol. Psychiatry 17, 790–808.10.1038/mp.2011.161 Search in Google Scholar

Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., and Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13, 717–728.10.1038/sj.mp.400205517700577 Search in Google Scholar

Greenwood, C.E., and Winocur, G. (2005). High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging 26(Suppl 1), 42–45.10.1016/j.neurobiolaging.2005.08.01716257476 Search in Google Scholar

Haslacher, H., Michlmayr, M., Batmyagmar, D., Perkmann, T., Ponocny-Seliger, E., Scheichenberger, V., Pilger, A., Dal-Bianco, P., Lehrner, J., Pezawas, L., et al. (2015). Physical exercise counteracts genetic susceptibility to depression. Neuropsychobiology 71, 168–175.2599870210.1159/000381350 Search in Google Scholar

Huang, T.T., Zou, Y., and Corniola, R. (2012). Oxidative stress and adult neurogenesis – effects of radiation and superoxide dismutase deficiency. Semin. Cell. Dev. Biol. 23, 738–744.10.1016/j.semcdb.2012.04.00322521481 Search in Google Scholar

Iosif, R.E., Ekdahl, C.T., Ahlenius, H., Pronk, C.J., Bonde, S., Kokaia, Z., Jacobsen, S.E., and Lindvall, O. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. 26, 9703–9712.10.1523/JNEUROSCI.2723-06.200616988041 Search in Google Scholar

Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950.10.1073/pnas.182296499 Search in Google Scholar

Kheirbek, M.A. and Hen, R. (2011). Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology 36, 373–374.10.1038/npp.2010.14821116266 Search in Google Scholar

Kim, S.E., Ko, I.G., Kim, B.K., Shin, M.S., Cho, S., Kim, C.J., Kim, S.H., Baek, S.S., Lee, E.K., and Jee, Y.S. (2010). Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp. Gerontol. 45, 357–365.10.1016/j.exger.2010.02.00520156544 Search in Google Scholar

Kim, J.Y., Liu, C.Y., Zhang, F., Duan, X., Wen, Z., Song, J., Feighery, E., Lu, B., Rujescu, D., St Clair, D., et al. (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064.10.1016/j.cell.2011.12.03722385968 Search in Google Scholar

Kitamura, T., Mishina, M., and Sugiyama, H. (2003). Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neurosci. Res. 47, 55–63.1294144710.1016/S0168-0102(03)00171-8 Search in Google Scholar

Kiuchi, T., Lee, H., and Mikami, T. (2012). Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience 207, 208–217.2230628610.1016/j.neuroscience.2012.01.023 Search in Google Scholar

Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., and Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. 33, 8270–8275.2365816710.1523/JNEUROSCI.5855-12.2013 Search in Google Scholar

Kramer, A.F., Erickson, K.I., and Colcombe, S.J. (2006). Exercise, cognition, and the aging brain. J. Appl. Physiol. 101, 1237–1242.10.1152/japplphysiol.00500.200616778001 Search in Google Scholar

Kreisel, T., Frank, M.G., Licht, T., Reshef, R., Ben-Menachem-Zidon, O., Baratta, M.V., Maier, S.F., and Yirmiya, R. (2014). Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry 19, 699–709.10.1038/mp.2013.15524342992 Search in Google Scholar

Landt, M., Lawson, G.M., Helgeson, J.M., Davila-Roman, V.G., Ladenson, J.H., Jaffe, A.S., and Hickner, R.C. (1997). Prolonged exercise decreases serum leptin concentrations. Metabolism 46, 1109–1112.932279010.1016/S0026-0495(97)90200-6 Search in Google Scholar

Le Belle, J.E., Orozco, N.M., Paucar, A.A., Saxe, J.P., Mottahedeh, J., Pyle, A.D., Wu, H., and Kornblum, H.I. (2011). Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71.10.1016/j.stem.2010.11.028 Search in Google Scholar

Liu, R.J., and Aghajanian, G.K. (2008). Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc. Natl. Acad. Sci. USA 105, 359–364.10.1073/pnas.0706679105 Search in Google Scholar

Liu, Y., Ho, R.C., and Mak, A. (2012). Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J. Affect. Disord. 139, 230–239.2187233910.1016/j.jad.2011.08.003 Search in Google Scholar

Magarinos, A.M., and McEwen, B.S. (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98.10.1016/0306-4522(95)00259-L8637636 Search in Google Scholar

Messier, C. (2005). Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol. Aging 26(Suppl 1), 26–30.16236384 Search in Google Scholar

Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W., and Ullrich, A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846.10.1016/0092-8674(93)90573-97681362 Search in Google Scholar

Miller, A.H., Maletic, V., and Raison, C.L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 65, 732–741.1915005310.1016/j.biopsych.2008.11.029 Search in Google Scholar

Mirelle Costa Monteiro, H., Lima Barreto-Silva, N., Elizabete Dos Santos, G., de Santana Santos, A., Sefora Bezerra Sousa, M., and Amancio-Dos-Santos, A. (2015). Physical exercise versus fluoxetine: antagonistic effects on cortical spreading depression in Wistar rats. Eur. J. Pharmacol. 762, 49–54.10.1016/j.ejphar.2015.05.02726004534 Search in Google Scholar

Molteni, R., Ying, Z., and Gomez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur. J. Neurosci. 16, 1107–1116.1238324010.1046/j.1460-9568.2002.02158.x Search in Google Scholar

Moses, A.C., Young, S.C., Morrow, L.A., O’Brien, M., and Clemmons, D.R. (1996). Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes 45, 91–100.852206610.2337/diab.45.1.91 Search in Google Scholar

Nyberg, F. (1997). Aging effects on growth hormone receptor binding in the brain. Exp. Gerontol. 32, 521–528.10.1016/S0531-5565(96)00170-29315453 Search in Google Scholar

Otsuka, T., Nishii, A., Amemiya, S., Kubota, N., Nishijima, T., and Kita, I. (2016). Effects of acute treadmill running at different intensities on activities of serotonin and corticotropin-releasing factor neurons, and anxiety- and depressive-like behaviors in rats. Behav. Brain Res. 298, 44–51.2654281110.1016/j.bbr.2015.10.055 Search in Google Scholar

Park, S., Jang, J.S., Jun, D.W., and Hong, S.M. (2005). Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinology 82, 282–293.16721034 Search in Google Scholar

Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., Sloan, R., Gage, F.H., Brown, T.R., and Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638–5643.10.1073/pnas.0611721104 Search in Google Scholar

Perera, T.D., Dwork, A.J., Keegan, K.A., Thirumangalakudi, L., Lipira, C.M., Joyce, N., Lange, C., Higley, J.D., Rosoklija, G., Hen, R., et al. (2011a). Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS One 6, e17600.10.1371/journal.pone.0017600 Search in Google Scholar

Perera, T.D., Lu, D., Thirumangalakudi, L., Smith, E.L., Yaretskiy, A., Rosenblum, L.A., Kral, J.G., and Coplan, J.D. (2011b). Correlations between hippocampal neurogenesis and metabolic indices in adult nonhuman primates. Neural. Plast. 2011, 1–6. Search in Google Scholar

Perusse, L., Collier, G., Gagnon, J., Leon, A.S., Rao, D.C., Skinner, J.S., Wilmore, J.H., Nadeau, A., Zimmet, P.Z., and Bouchard, C. (1997). Acute and chronic effects of exercise on leptin levels in humans. J. Appl. Physiol. 83, 5–10.9216937 Search in Google Scholar

Radak, Z., Chung, H.Y., and Goto, S. (2008). Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 44, 153–159.10.1016/j.freeradbiomed.2007.01.02918191751 Search in Google Scholar

Ransford, C.P. (1982). A role for amines in the antidepressant effect of exercise: a review. Med. Sci. Sports Exerc. 14, 1–10.628001410.1249/00005768-198201000-00001 Search in Google Scholar

Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S.R., Morhardt, D.R., and Fike, J.R. (2004). Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp. Neurol. 188, 316–330.10.1016/j.expneurol.2004.05.00515246832 Search in Google Scholar

Russo-Neustadt, A., Beard, R.C., and Cotman, C.W. (1999). Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.1051696410.1016/S0893-133X(99)00059-7 Search in Google Scholar

Sahay, A., Scobie, K.N., Hill, A.S., O’Carroll, C.M., Kheirbek, M.A., Burghardt, N.S., Fenton, A.A., Dranovsky, A., and Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470.2146083510.1038/nature09817 Search in Google Scholar

Sakatani, K., Fujii, M., Takemura, N., and Hirayama, T. (2016). Effects of acupuncture on anxiety levels and prefrontal cortex activity measured by near-infrared spectroscopy: a pilot study. Adv. Exp. Med. Biol. 876, 297–302.2678222510.1007/978-1-4939-3023-4_37 Search in Google Scholar

Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809.1290779310.1126/science.1083328 Search in Google Scholar

Sarandol, A., Sarandol, E., Eker, S.S., Erdinc, S., Vatansever, E., and Kirli, S. (2007). Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum. Psychopharmacol. 22, 67–73.10.1002/hup.82917299810 Search in Google Scholar

Slavich, G.M., and Irwin, M.R. (2014). From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol. Bull. 140, 774–815.10.1037/a003530224417575 Search in Google Scholar

Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458–461.10.1038/nature1028721814201 Search in Google Scholar

Song, C. and Wang, H. (2011). Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 35, 760–768.10.1016/j.pnpbp.2010.06.020 Search in Google Scholar

Song, J., Zhong, C., Bonaguidi, M.A., Sun, G.J., Hsu, D., Gu, Y., Meletis, K., Huang, Z.J., Ge, S., Enikolopov, G., et al. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150–154.10.1038/nature1130622842902 Search in Google Scholar

Stahl, S.M. (1998). Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect Disord. 51, 215–235. Search in Google Scholar

Steiner, J., Bielau, H., Brisch, R., Danos, P., Ullrich, O., Mawrin, C., Bernstein, H.G., and Bogerts, B. (2008). Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res. 42, 151–157.1717433610.1016/j.jpsychires.2006.10.013 Search in Google Scholar

Strohle, A. (2009). Physical activity, exercise, depression and anxiety disorders. J. Neural. Transm. (Vienna) 116, 777–784.1872613710.1007/s00702-008-0092-x Search in Google Scholar

Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X.O., Logvinova, A., and Greenberg, D.A. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851.10.1172/JCI20031797712813020 Search in Google Scholar

Taga, T. and Fukuda, S. (2005). Role of IL-6 in the neural stem cell differentiation. Clin. Rev. Allergy Immunol. 28, 249–256.1612990910.1385/CRIAI:28:3:249 Search in Google Scholar

Thundyil, J., Pavlovski, D., Sobey, C.G., and Arumugam, T.V. (2012). Adiponectin receptor signalling in the brain. Br. J. Pharmacol. 165, 313–327.10.1111/j.1476-5381.2011.01560.x21718299 Search in Google Scholar

Trejo, J.L., Carro, E., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634.11222653 Search in Google Scholar

Vallieres, L., Campbell, I.L., Gage, F.H., and Sawchenko, P.E. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492.11784794 Search in Google Scholar

Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590.10.1111/j.1460-9568.2004.03720.x15548201 Search in Google Scholar

Vollert, C., Zagaar, M., Hovatta, I., Taneja, M., Vu, A., Dao, A., Levine, A., Alkadhi, K., and Salim, S. (2011). Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav. Brain Res. 224, 233–240.2162156010.1016/j.bbr.2011.05.010 Search in Google Scholar

Vukovic, J., Colditz, M.J., Blackmore, D.G., Ruitenberg, M.J., and Bartlett, P.F. (2012). Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J. Neurosci. 32, 6435–6443.10.1523/JNEUROSCI.5925-11.201222573666 Search in Google Scholar

Warner-Schmidt, J.L. and Duman, R.S. (2007). VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl. Acad. Sci. USA 104, 4647–4652.10.1073/pnas.0610282104 Search in Google Scholar

Wolf, S.A., Melnik, A., and Kempermann, G. (2011). Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav. Immun. 25, 971–980.10.1016/j.bbi.2010.10.014 Search in Google Scholar

Wu, C.W., Chen, Y.C., Yu, L., Chen, H.I., Jen, C.J., Huang, A.M., Tsai, H.J., Chang, Y.T., and Kuo, Y.M. (2007). Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J. Neurochem. 103, 2471–2481.10.1111/j.1471-4159.2007.04987.x17953674 Search in Google Scholar

Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., et al. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946.1147962710.1038/90984 Search in Google Scholar

Yau, S.Y., Li, A., Hoo, R.L., Ching, Y.P., Christie, B.R., Lee, T.M., Xu, A., and So, K.F. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc. Natl. Acad. Sci. USA 111, 15810–15815.10.1073/pnas.1415219111 Search in Google Scholar

Zhang, F., Basinski, M.B., Beals, J.M., Briggs, S.L., Churgay, L.M., Clawson, D.K., DiMarchi, R.D., Furman, T.C., Hale, J.E., Hsiung, H.M., et al. (1997). Crystal structure of the obese protein leptin-E100. Nature 387, 206–209.10.1038/387206a09144295 Search in Google Scholar

Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.10.1016/j.cell.2008.01.03318295581 Search in Google Scholar

Zunszain, P.A., Anacker, C., Cattaneo, A., Carvalho, L.A., and Pariante, C.M. (2011). Glucocorticoids, cytokines and brain abnormalities in depression. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 35, 722–729.10.1016/j.pnpbp.2010.04.011 Search in Google Scholar

Received: 2016-11-28
Accepted: 2017-3-8
Published Online: 2017-4-19
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston