Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2017

Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise

Lina Sun EMAIL logo , Qingshan Sun and Jinshun Qi

Abstract

Depression is a prevalent devastating mental disorder that affects the normal life of patients and brings a heavy burden to whole society. Although many efforts have been made to attenuate depressive/anxiety symptoms, the current clinic antidepressants have limited effects. Scientists have long been making attempts to find some new strategies that can be applied as the alternative antidepressant therapy. Exercise, a widely recognized healthy lifestyle, has been suggested as a therapy that can relieve psychiatric stress. However, how exercise improves the brain functions and reaches the antidepressant target needs systematic summarization due to the complexity and heterogeneous feature of depression. Brain plasticity, especially adult neurogenesis in the hippocampus, is an important neurophysiology to facilitate animals for neurogenesis can occur in not only humans. Many studies indicated that an appropriate level of exercise can promote neurogenesis in the adult brains. In this article, we provide information about the antidepressant effects of exercise and its implications in adult neurogenesis. From the neurogenesis perspective, we summarize evidence about the effects of exercise in enhancing neurogenesis in the hippocampus through regulating growth factors, neurotrophins, neurotransmitters and metabolism as well as inflammations. Taken together, a large number of published works indicate the multiple benefits of exercise in the brain functions of animals, particularly brain plasticity like neurogenesis and synaptogenesis. Therefore, a new treatment method for depression therapy can be developed by regulating the exercise activity.

Acknowledgments

This study was supported by China Postdoctoral Science Fund (2014M560198), as well as the National Natural Science Foundation of China (31471080).

  1. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

Alvarez-Buylla, A. and Garcia-Verdugo, J.M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634.10.1523/JNEUROSCI.22-03-00629.2002Search in Google Scholar PubMed

Banasr, M., Hery, M., Printemps, R., and Daszuta, A. (2004). Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29, 450–460.10.1038/sj.npp.1300320Search in Google Scholar PubMed

Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21.10.1038/35036035Search in Google Scholar PubMed

Brooker, G.J., Kalloniatis, M., Russo, V.C., Murphy, M., Werther, G.A., and Bartlett, P.F. (2000). Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J. Neurosci. Res. 59, 332–341.10.1002/(SICI)1097-4547(20000201)59:3<332::AID-JNR6>3.0.CO;2-2Search in Google Scholar PubMed

Carro, E., Nunez, A., Busiguina, S., and Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933.10.1523/JNEUROSCI.20-08-02926.2000Search in Google Scholar PubMed

Caviedes, A., Lafourcade, C., Soto, C., and Wyneken, U. (2017). BDNF/NF-κB signaling in the neurobiology of depression. Curr. Pharm. Des. [Epub ahead of print].10.2174/1381612823666170111141915Search in Google Scholar

Chua, S.C., Jr, Chung, W.K., Wu-Peng, X.S., Zhang, Y., Liu, S.M., Tartaglia, L., and Leibel, R.L. (1996). Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996.10.1126/science.271.5251.994Search in Google Scholar PubMed

Clelland, C.D., Choi, M., Romberg, C., Clemenson, G.D., Jr, Fragniere, A., Tyers, P., Jessberger, S., Saksida, L.M., Barker, R.A., Gage, F.H., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213.10.1126/science.1173215Search in Google Scholar PubMed

Cotman, C.W., Berchtold, N.C., and Christie, L.A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472.10.1016/j.tins.2007.06.011Search in Google Scholar

Devader, C., Khayachi, A., Veyssiere, J., Moha Ou Maati, H., Roulot, M., Moreno, S., Borsotto, M., Martin, S., Heurteaux, C., and Mazella, J. (2015). In vitro and in vivo regulation of synaptogenesis by the novel antidepressant spadin. Br. J. Pharmacol. 172, 2604–2617.10.1111/bph.13083Search in Google Scholar PubMed

Dey, S., Singh, R.H., and Dey, P.K. (1992). Exercise training: significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav. 52, 1095–1099.10.1016/0031-9384(92)90465-ESearch in Google Scholar PubMed

Di Giorgi Gerevini, V.D., Caruso, A., Cappuccio, I., Ricci Vitiani, L., Romeo, S., Della Rocca, C., Gradini, R., Melchiorri, D., and Nicoletti, F. (2004). The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Brain Res. Dev. Brain Res. 150, 17–22.10.1016/j.devbrainres.2004.02.003Search in Google Scholar PubMed

Dietrich, M.O., Mantese, C.E., Porciuncula, L.O., Ghisleni, G., Vinade, L., Souza, D.O., and Portela, L.V. (2005). Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res. 1065, 20–25.10.1016/j.brainres.2005.09.038Search in Google Scholar PubMed

Dietrich, M.O., Andrews, Z.B., and Horvath, T.L. (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J. Neurosci. 28, 10766–10771.10.1523/JNEUROSCI.2744-08.2008Search in Google Scholar PubMed

Duman, C.H., Schlesinger, L., Russell, D.S., and Duman, R.S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res. 1199, 148–158.10.1016/j.brainres.2007.12.047Search in Google Scholar PubMed

Duman, R.S., Aghajanian, G.K., Sanacora, G., and Krystal, J.H. (2016). Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249.10.1038/nm.4050Search in Google Scholar PubMed

Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2009). Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021–1029.10.1016/j.neuroscience.2008.06.052Search in Google Scholar PubMed

Elmquist, J.K., Bjorbaek, C., Ahima, R.S., Flier, J.S., and Saper, C.B. (1998). Distributions of leptin receptor mRNA isoforms in the rat brain. J. Compar. Neurol. 395, 535–547.10.1002/(SICI)1096-9861(19980615)395:4<535::AID-CNE9>3.0.CO;2-2Search in Google Scholar

Eren, I., Naziroglu, M., and Demirdas, A. (2007). Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem. Res. 32, 1188–1195.10.1007/s11064-007-9289-xSearch in Google Scholar PubMed

Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., and Palmer, T.D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812.10.1111/j.1460-9568.2003.03041.xSearch in Google Scholar PubMed

Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., and Christie, B.R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71–79.10.1016/j.neuroscience.2003.09.029Search in Google Scholar PubMed

Feske, U., Mulsant, B.H., Pilkonis, P.A., Soloff, P., Dolata, D., Sackeim, H.A., and Haskett, R.F. (2004). Clinical outcome of ECT in patients with major depression and comorbid borderline personality disorder. Am. J. Psychiatry 161, 2073–2080.10.1176/appi.ajp.161.11.2073Search in Google Scholar PubMed

Garza, J.C., Guo, M., Zhang, W., and Lu, X.Y. (2012). Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol. Psychiatry 17, 790–808.10.1038/mp.2011.161Search in Google Scholar PubMed PubMed Central

Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., and Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13, 717–728.10.1038/sj.mp.4002055Search in Google Scholar PubMed

Greenwood, C.E., and Winocur, G. (2005). High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging 26(Suppl 1), 42–45.10.1016/j.neurobiolaging.2005.08.017Search in Google Scholar PubMed

Haslacher, H., Michlmayr, M., Batmyagmar, D., Perkmann, T., Ponocny-Seliger, E., Scheichenberger, V., Pilger, A., Dal-Bianco, P., Lehrner, J., Pezawas, L., et al. (2015). Physical exercise counteracts genetic susceptibility to depression. Neuropsychobiology 71, 168–175.10.1159/000381350Search in Google Scholar PubMed

Huang, T.T., Zou, Y., and Corniola, R. (2012). Oxidative stress and adult neurogenesis – effects of radiation and superoxide dismutase deficiency. Semin. Cell. Dev. Biol. 23, 738–744.10.1016/j.semcdb.2012.04.003Search in Google Scholar PubMed PubMed Central

Iosif, R.E., Ekdahl, C.T., Ahlenius, H., Pronk, C.J., Bonde, S., Kokaia, Z., Jacobsen, S.E., and Lindvall, O. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. 26, 9703–9712.10.1523/JNEUROSCI.2723-06.2006Search in Google Scholar PubMed PubMed Central

Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950.10.1073/pnas.182296499Search in Google Scholar PubMed PubMed Central

Kheirbek, M.A. and Hen, R. (2011). Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology 36, 373–374.10.1038/npp.2010.148Search in Google Scholar PubMed PubMed Central

Kim, S.E., Ko, I.G., Kim, B.K., Shin, M.S., Cho, S., Kim, C.J., Kim, S.H., Baek, S.S., Lee, E.K., and Jee, Y.S. (2010). Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp. Gerontol. 45, 357–365.10.1016/j.exger.2010.02.005Search in Google Scholar PubMed

Kim, J.Y., Liu, C.Y., Zhang, F., Duan, X., Wen, Z., Song, J., Feighery, E., Lu, B., Rujescu, D., St Clair, D., et al. (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064.10.1016/j.cell.2011.12.037Search in Google Scholar PubMed

Kitamura, T., Mishina, M., and Sugiyama, H. (2003). Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neurosci. Res. 47, 55–63.10.1016/S0168-0102(03)00171-8Search in Google Scholar PubMed

Kiuchi, T., Lee, H., and Mikami, T. (2012). Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience 207, 208–217.10.1016/j.neuroscience.2012.01.023Search in Google Scholar PubMed

Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., and Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. 33, 8270–8275.10.1523/JNEUROSCI.5855-12.2013Search in Google Scholar PubMed

Kramer, A.F., Erickson, K.I., and Colcombe, S.J. (2006). Exercise, cognition, and the aging brain. J. Appl. Physiol. 101, 1237–1242.10.1152/japplphysiol.00500.2006Search in Google Scholar PubMed

Kreisel, T., Frank, M.G., Licht, T., Reshef, R., Ben-Menachem-Zidon, O., Baratta, M.V., Maier, S.F., and Yirmiya, R. (2014). Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry 19, 699–709.10.1038/mp.2013.155Search in Google Scholar PubMed

Landt, M., Lawson, G.M., Helgeson, J.M., Davila-Roman, V.G., Ladenson, J.H., Jaffe, A.S., and Hickner, R.C. (1997). Prolonged exercise decreases serum leptin concentrations. Metabolism 46, 1109–1112.10.1016/S0026-0495(97)90200-6Search in Google Scholar PubMed

Le Belle, J.E., Orozco, N.M., Paucar, A.A., Saxe, J.P., Mottahedeh, J., Pyle, A.D., Wu, H., and Kornblum, H.I. (2011). Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71.10.1016/j.stem.2010.11.028Search in Google Scholar PubMed PubMed Central

Liu, R.J., and Aghajanian, G.K. (2008). Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc. Natl. Acad. Sci. USA 105, 359–364.10.1073/pnas.0706679105Search in Google Scholar PubMed PubMed Central

Liu, Y., Ho, R.C., and Mak, A. (2012). Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J. Affect. Disord. 139, 230–239.10.1016/j.jad.2011.08.003Search in Google Scholar PubMed

Magarinos, A.M., and McEwen, B.S. (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98.10.1016/0306-4522(95)00259-LSearch in Google Scholar PubMed

Messier, C. (2005). Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol. Aging 26(Suppl 1), 26–30.10.1016/j.neurobiolaging.2005.09.014Search in Google Scholar PubMed

Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W., and Ullrich, A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846.10.1016/0092-8674(93)90573-9Search in Google Scholar PubMed

Miller, A.H., Maletic, V., and Raison, C.L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 65, 732–741.10.1016/j.biopsych.2008.11.029Search in Google Scholar PubMed

Mirelle Costa Monteiro, H., Lima Barreto-Silva, N., Elizabete Dos Santos, G., de Santana Santos, A., Sefora Bezerra Sousa, M., and Amancio-Dos-Santos, A. (2015). Physical exercise versus fluoxetine: antagonistic effects on cortical spreading depression in Wistar rats. Eur. J. Pharmacol. 762, 49–54.10.1016/j.ejphar.2015.05.027Search in Google Scholar PubMed

Molteni, R., Ying, Z., and Gomez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur. J. Neurosci. 16, 1107–1116.10.1046/j.1460-9568.2002.02158.xSearch in Google Scholar PubMed

Moses, A.C., Young, S.C., Morrow, L.A., O’Brien, M., and Clemmons, D.R. (1996). Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes 45, 91–100.10.2337/diab.45.1.91Search in Google Scholar PubMed

Nyberg, F. (1997). Aging effects on growth hormone receptor binding in the brain. Exp. Gerontol. 32, 521–528.10.1016/S0531-5565(96)00170-2Search in Google Scholar PubMed

Otsuka, T., Nishii, A., Amemiya, S., Kubota, N., Nishijima, T., and Kita, I. (2016). Effects of acute treadmill running at different intensities on activities of serotonin and corticotropin-releasing factor neurons, and anxiety- and depressive-like behaviors in rats. Behav. Brain Res. 298, 44–51.10.1016/j.bbr.2015.10.055Search in Google Scholar PubMed

Park, S., Jang, J.S., Jun, D.W., and Hong, S.M. (2005). Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinology 82, 282–293.10.1159/000093127Search in Google Scholar PubMed

Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., Sloan, R., Gage, F.H., Brown, T.R., and Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638–5643.10.1073/pnas.0611721104Search in Google Scholar

Perera, T.D., Dwork, A.J., Keegan, K.A., Thirumangalakudi, L., Lipira, C.M., Joyce, N., Lange, C., Higley, J.D., Rosoklija, G., Hen, R., et al. (2011a). Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS One 6, e17600.10.1371/journal.pone.0017600Search in Google Scholar

Perera, T.D., Lu, D., Thirumangalakudi, L., Smith, E.L., Yaretskiy, A., Rosenblum, L.A., Kral, J.G., and Coplan, J.D. (2011b). Correlations between hippocampal neurogenesis and metabolic indices in adult nonhuman primates. Neural. Plast. 2011, 1–6.10.1155/2011/875307Search in Google Scholar

Perusse, L., Collier, G., Gagnon, J., Leon, A.S., Rao, D.C., Skinner, J.S., Wilmore, J.H., Nadeau, A., Zimmet, P.Z., and Bouchard, C. (1997). Acute and chronic effects of exercise on leptin levels in humans. J. Appl. Physiol. 83, 5–10.10.1152/jappl.1997.83.1.5Search in Google Scholar PubMed

Radak, Z., Chung, H.Y., and Goto, S. (2008). Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 44, 153–159.10.1016/j.freeradbiomed.2007.01.029Search in Google Scholar PubMed

Ransford, C.P. (1982). A role for amines in the antidepressant effect of exercise: a review. Med. Sci. Sports Exerc. 14, 1–10.10.1249/00005768-198201000-00001Search in Google Scholar PubMed

Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S.R., Morhardt, D.R., and Fike, J.R. (2004). Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp. Neurol. 188, 316–330.10.1016/j.expneurol.2004.05.005Search in Google Scholar PubMed

Russo-Neustadt, A., Beard, R.C., and Cotman, C.W. (1999). Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.10.1016/S0893-133X(99)00059-7Search in Google Scholar PubMed

Sahay, A., Scobie, K.N., Hill, A.S., O’Carroll, C.M., Kheirbek, M.A., Burghardt, N.S., Fenton, A.A., Dranovsky, A., and Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470.10.1038/nature09817Search in Google Scholar PubMed PubMed Central

Sakatani, K., Fujii, M., Takemura, N., and Hirayama, T. (2016). Effects of acupuncture on anxiety levels and prefrontal cortex activity measured by near-infrared spectroscopy: a pilot study. Adv. Exp. Med. Biol. 876, 297–302.10.1007/978-1-4939-3023-4_37Search in Google Scholar PubMed

Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809.10.1126/science.1083328Search in Google Scholar PubMed

Sarandol, A., Sarandol, E., Eker, S.S., Erdinc, S., Vatansever, E., and Kirli, S. (2007). Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum. Psychopharmacol. 22, 67–73.10.1002/hup.829Search in Google Scholar PubMed

Slavich, G.M., and Irwin, M.R. (2014). From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol. Bull. 140, 774–815.10.1037/a0035302Search in Google Scholar PubMed

Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458–461.10.1038/nature10287Search in Google Scholar PubMed

Song, C. and Wang, H. (2011). Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 35, 760–768.10.1016/j.pnpbp.2010.06.020Search in Google Scholar

Song, J., Zhong, C., Bonaguidi, M.A., Sun, G.J., Hsu, D., Gu, Y., Meletis, K., Huang, Z.J., Ge, S., Enikolopov, G., et al. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150–154.10.1038/nature11306Search in Google Scholar PubMed

Stahl, S.M. (1998). Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect Disord. 51, 215–235.10.1016/S0165-0327(98)00221-3Search in Google Scholar

Steiner, J., Bielau, H., Brisch, R., Danos, P., Ullrich, O., Mawrin, C., Bernstein, H.G., and Bogerts, B. (2008). Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res. 42, 151–157.10.1016/j.jpsychires.2006.10.013Search in Google Scholar PubMed

Strohle, A. (2009). Physical activity, exercise, depression and anxiety disorders. J. Neural. Transm. (Vienna) 116, 777–784.10.1007/s00702-008-0092-xSearch in Google Scholar PubMed

Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X.O., Logvinova, A., and Greenberg, D.A. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851.10.1172/JCI200317977Search in Google Scholar PubMed

Taga, T. and Fukuda, S. (2005). Role of IL-6 in the neural stem cell differentiation. Clin. Rev. Allergy Immunol. 28, 249–256.10.1385/CRIAI:28:3:249Search in Google Scholar PubMed

Thundyil, J., Pavlovski, D., Sobey, C.G., and Arumugam, T.V. (2012). Adiponectin receptor signalling in the brain. Br. J. Pharmacol. 165, 313–327.10.1111/j.1476-5381.2011.01560.xSearch in Google Scholar PubMed

Trejo, J.L., Carro, E., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634.10.1523/JNEUROSCI.21-05-01628.2001Search in Google Scholar PubMed

Vallieres, L., Campbell, I.L., Gage, F.H., and Sawchenko, P.E. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492.10.1523/JNEUROSCI.22-02-00486.2002Search in Google Scholar PubMed

Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590.10.1111/j.1460-9568.2004.03720.xSearch in Google Scholar PubMed

Vollert, C., Zagaar, M., Hovatta, I., Taneja, M., Vu, A., Dao, A., Levine, A., Alkadhi, K., and Salim, S. (2011). Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav. Brain Res. 224, 233–240.10.1016/j.bbr.2011.05.010Search in Google Scholar PubMed

Vukovic, J., Colditz, M.J., Blackmore, D.G., Ruitenberg, M.J., and Bartlett, P.F. (2012). Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J. Neurosci. 32, 6435–6443.10.1523/JNEUROSCI.5925-11.2012Search in Google Scholar PubMed

Warner-Schmidt, J.L. and Duman, R.S. (2007). VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl. Acad. Sci. USA 104, 4647–4652.10.1073/pnas.0610282104Search in Google Scholar

Wolf, S.A., Melnik, A., and Kempermann, G. (2011). Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav. Immun. 25, 971–980.10.1016/j.bbi.2010.10.014Search in Google Scholar

Wu, C.W., Chen, Y.C., Yu, L., Chen, H.I., Jen, C.J., Huang, A.M., Tsai, H.J., Chang, Y.T., and Kuo, Y.M. (2007). Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J. Neurochem. 103, 2471–2481.10.1111/j.1471-4159.2007.04987.xSearch in Google Scholar PubMed

Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., et al. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946.10.1038/90984Search in Google Scholar PubMed

Yau, S.Y., Li, A., Hoo, R.L., Ching, Y.P., Christie, B.R., Lee, T.M., Xu, A., and So, K.F. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc. Natl. Acad. Sci. USA 111, 15810–15815.10.1073/pnas.1415219111Search in Google Scholar PubMed PubMed Central

Zhang, F., Basinski, M.B., Beals, J.M., Briggs, S.L., Churgay, L.M., Clawson, D.K., DiMarchi, R.D., Furman, T.C., Hale, J.E., Hsiung, H.M., et al. (1997). Crystal structure of the obese protein leptin-E100. Nature 387, 206–209.10.1038/387206a0Search in Google Scholar PubMed

Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.10.1016/j.cell.2008.01.033Search in Google Scholar PubMed

Zunszain, P.A., Anacker, C., Cattaneo, A., Carvalho, L.A., and Pariante, C.M. (2011). Glucocorticoids, cytokines and brain abnormalities in depression. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 35, 722–729.10.1016/j.pnpbp.2010.04.011Search in Google Scholar PubMed PubMed Central

Received: 2016-11-28
Accepted: 2017-3-8
Published Online: 2017-4-19
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2022 from https://www.degruyter.com/document/doi/10.1515/revneuro-2016-0076/html
Scroll Up Arrow