Abstract
Understanding hippocampal (HC) function, as it is presently known, includes exploring the HC role in episodic memory storage. As pointed out by Teyler and DiScenna in the 1980s, the apparatus needed for recalling a stored episode, and awakening all its components in a coordinated manner, by necessity includes a triggering device able to reach each of the mental entities that must be awakened. In the context of neuronal networks, the triggering device in question takes the form of a large cell assembly, a separate one made for every new episode stored. The present paper deals with the creation and the properties of these cell assemblies (‘pointer groups’). To perform the function of episodic memory retrieval, each of these must possess the information capacity (entropy) enabling it to single out an episode and the network connections enabling it to reach all components of it; further, to deal with the unpredictability of the memory items it has to address, it must have its member neurons well distributed through the length of the network (the HC). The requirements imply that the creation of a pointer group must include a randomizing step analogous to ‘stirring’. It is argued that many of the known peculiarities of granule cells in the dentate gyrus arise as solutions to the practical problems presented by the creation of the pointer groups and the details of ‘stirring’, and so do a series of other features of the HC network, some of them only discovered in the last few years.
Acknowledgments
The author would like to thank Prof. Norma Graham for providing him with the research environment that made this work possible.
References
Acsády, L., Kamondi, A., Sik, A., Freund, T., and Buzsáki, G. (1998). GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403.10.1523/JNEUROSCI.18-09-03386.1998Search in Google Scholar
Amaral, D.G. and Witter, M.P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591.10.1016/0306-4522(89)90424-7Search in Google Scholar
Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1998). Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129–2142.10.1046/j.1460-9568.1998.00221.xSearch in Google Scholar
Berlyne, D.E. (1950). Novelty and curiosity as determinants of exploratory behavior. Br. J. Psychol. 41, 68–80.Search in Google Scholar
Bevins, R.A. and Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study “recognition memory”. Nat. Prot. 1, 1306–1311.10.1038/nprot.2006.205Search in Google Scholar
Bland, B.H., Andersen, P., Ganes, T., and Sveen, O. (1980). Automated analysis of rhythmicity of physiologically identified hippocampal formation neurons. Exp. Brain Res. 38, 205–219.10.1007/BF00236742Search in Google Scholar
Buzsáki, G. (1984). Feed-forward inhibition in the hippocampal formation. Prog. Neurobiol. 22, 131–153.10.1016/0301-0082(84)90023-6Search in Google Scholar
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340.10.1016/S0896-6273(02)00586-XSearch in Google Scholar
Buzsáki, G. (2006). Rhythms of the Brain (Oxford, UK: Oxford University Press).10.1093/acprof:oso/9780195301069.001.0001Search in Google Scholar
Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385.10.1016/j.neuron.2010.09.023Search in Google Scholar
Buzsáki, G., Leung, L.-W.S., and Vanderwolf, C.H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev. 6, 139–171.10.1016/0165-0173(83)90037-1Search in Google Scholar
Cajal, S.R. (1893). Estructura de1 asta de Ammon y fascia dentata (Madrid: Imprenta de Fortanet).Search in Google Scholar
Cajal, S.R. (1995). Histology of the Nervous System (Oxford, UK: Oxford University Press).Search in Google Scholar
Cameron, H.A. and McKay, R.D.G. (2001). Adult neurogenesis produces a large pool of new GCs in the dentate gyrus. J. Comp. Neurol. 435, 406–417.10.1002/cne.1040Search in Google Scholar
Chawla, M.K., Guzowski, J.F., Ramirez-Amaya, V., Lipa, P., Hoffman, K.L., Marriott, L.K., Worley, P.F., McNaughton, B.L., and Barnes, C.A. (2005). Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentate by brief spatial experience. Hippocampus 15, 579–586.10.1002/hipo.20091Search in Google Scholar
Chicurel, M.E. and Harris, K.M. (1992). Three-dimensional analysis of the structure and composition of the CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182.10.1002/cne.903250204Search in Google Scholar
Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O., and Somogyi, P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78.10.1038/378075a0Search in Google Scholar
Cohen, N.J. and Eichenbaum, H. (1991). The theory that wouldn’t die: a critical look at the spatial mapping theory of hippocampal function. Hippocampus 1, 265–268.10.1002/hipo.450010312Search in Google Scholar
Collingridge, G.L., Peineau, S., Howland, J.G., and Wang, Y.T. (2010). Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459–473.10.1038/nrn2867Search in Google Scholar
Correll, R.E. and Scoville, W.B. (1965). Effects of medial temporal lesions on visual discrimination performance. J. Comp. Physiol. Psychol. 60, 175–181.10.1037/h0022290Search in Google Scholar
Donovick, P.J. (1968). Effects of localized septal lesions on hippocampal EEG activity and behavior in rats. J. Comp. Physiol. Psychol. 66, 569–578.10.1037/h0026514Search in Google Scholar
Dudek, S.M. and Bear, M.F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA. 89, 4363–4367.10.1142/9789812795885_0013Search in Google Scholar
Eichenbaum, H. (2001). The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav. Brain Res. 127, 199–207.10.1016/S0166-4328(01)00365-5Search in Google Scholar
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., and Tanila, H. (1999). The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226.10.1016/S0896-6273(00)80773-4Search in Google Scholar
Fellin, T. (2009). Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108, 533–544.10.1111/j.1471-4159.2008.05830.xSearch in Google Scholar
Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., and Carmignoto, G. (2004). Neuroal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743.10.1016/j.neuron.2004.08.011Search in Google Scholar
Freund, T.F. and Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336, 170–173.10.1038/336170a0Search in Google Scholar
Gasparini, S., Migliore, M., and Magee, J.C. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056.10.1523/JNEUROSCI.2520-04.2004Search in Google Scholar
Halassa, M.M. and Haydon, P.G. (2010). Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72, 335–355.10.1146/annurev-physiol-021909-135843Search in Google Scholar
Hamming, R.W. (1950). Error detecting and error correcting codes. Bell Syst. Technol. J. 29, 147–160.10.1002/j.1538-7305.1950.tb00463.xSearch in Google Scholar
Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T.F., and Varga, V. (2009). GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J. Neurosci. 29, 8094–8102.10.1523/JNEUROSCI.5665-08.2009Search in Google Scholar
Harris, E.W. and Cotman, C.W. (1986). Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci. Lett. 70, 132–137.10.1016/0304-3940(86)90451-9Search in Google Scholar
Hebb, D.O. (1949). The Organization of Behavior (New York: Wiley).Search in Google Scholar
Henze, D.A., Wittner, L., and Buzsáki, G. (2002). Single GCs reliably discharge targets in the hippocampal CA3 in vivo. Nat. Neurosci. 5, 790–795.10.1038/nn887Search in Google Scholar PubMed
Jackson, M.B. and Scharfman, H.E. (1996). Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J. Neurophysiol. 76, 601–616.10.1152/jn.1996.76.1.601Search in Google Scholar
Jung, M.W. and McNaughton, B.L. (1993). Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3, 165–182.10.1002/hipo.450030209Search in Google Scholar
Kamondi, A., Acsády, L., and Buzsáki, G. (1998). Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928.10.1523/JNEUROSCI.18-10-03919.1998Search in Google Scholar
Kerr, K.M., Agster, K.L., Furtak, S.C., and Burwell, R.D. (2007). Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus 17, 697–708.10.1002/hipo.20315Search in Google Scholar
Kneisler, T.B. and Dingledine, R. (1995). Synaptic input from CA3 pyramidal cells to dentate basket cells in rat hippocampus. J. Physiol. 487, 125–146.10.1113/jphysiol.1995.sp020866Search in Google Scholar
Langdon, R.B., Johnson, J.W., and Barrionuevo, G. (1995). Posttetanic potentiation and presynaptically induced long-term potentiation at the mossy fiber synapse in rat hippocampus. J. Neurobiol. 26, 370–385.10.1002/neu.480260309Search in Google Scholar
Larimer, P. and Strowbridge, B.W. (2010). Representing information in cell assemblies: persistent activity mediated by semilunar GCs. Nat. Neurosci. 13, 213–222.10.1038/nn.2458Search in Google Scholar
Legéndy, C.R. (1967). On the scheme by which the human brain stores information. Math. Biosci. 1, 555–597.10.1016/0025-5564(67)90003-XSearch in Google Scholar
Legéndy, C.R. (2009). Circuits in the Brain: A Model of Shape Processing in the Primary Visual Cortex (Berlin, Heidelberg, New York: Springer).10.1007/978-0-387-88849-1Search in Google Scholar
Legéndy, C.R. (2016). Synaptic and extrasynaptic traces of long-term memory: the ID molecule theory. Rev. Neurosci. 27, 575–598.10.1515/revneuro-2016-0015Search in Google Scholar PubMed
Lendvai, B., Stern, E.A., Chen, B., and Svoboda, K. (2000). Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881.10.1038/35009107Search in Google Scholar
Leutgeb, J.K., Leutgeb, S., Moser, M.-B., and Moser, E.I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966.10.1126/science.1135801Search in Google Scholar
Losonczy, A. and Magee, J.C. (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307.10.1016/j.neuron.2006.03.016Search in Google Scholar
Lysetskiy, M., Földy, C., and Soltesz, I. (2005). Long- and short-term plasticity at mossy fiber synapses of mossy cells in the rat dentate gyrus. Hippocampus 15, 691–696.10.1002/hipo.20096Search in Google Scholar
Martinez, C.O., Do, V.H., Martinez, J.L., Jr., and Derrick, B.E. (2002). Associative long-term potentiation (LTP) among extrinsic afferents of the hippocampal CA3 region in vivo. Brain Res. 940, 86–94.10.1016/S0006-8993(02)02598-2Search in Google Scholar
Mézard, M. and Montanari, A. (2009). Information, Physics, and Computation (Oxford, UK: Oxford University Press).10.1093/acprof:oso/9780198570837.001.0001Search in Google Scholar
Milner, P.M. (1989). A cell assembly theory of hippocampal amnesia. Neuropsychologia 27, 23–30.10.1016/0028-3932(89)90087-0Search in Google Scholar
Milner, B., Corkin, S., and Teuber, H.-L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H. M. Neuropsychologia 6, 215–234.10.1016/0028-3932(68)90021-3Search in Google Scholar
Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273, 297–298.10.1038/273297a0Search in Google Scholar
Nadel, L. and Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 17, 217–227.10.1016/S0959-4388(97)80010-4Search in Google Scholar
Nakazawa, K., Quirk, M.C., Chitwood, R.A., Watanabe, M., Yecke, M.F., Sun, L.D., Kato, A., Carr, C.A., Johnston, D., Wilson, M.A., et al. (2002). Requirement for hippocampal NMDA receptors in associative memory recall. Science 297, 211–218.10.1126/science.1071795Search in Google Scholar
O’Keefe, J. (1999). Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9, 352–364.10.1002/(SICI)1098-1063(1999)9:4<352::AID-HIPO3>3.0.CO;2-1Search in Google Scholar
O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence form unit activity in the freely-moving rat. Brain Res. 34, 171–175.10.1016/0006-8993(71)90358-1Search in Google Scholar
O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map (Oxford, UK: Oxford University Press).Search in Google Scholar
Palm, G. (1981). Towards a theory of cell assemblies. Biol. Cybern. 39, 181–194.10.1007/BF00342771Search in Google Scholar
Palm, G. (1982). Neural Assemblies. (Berlin, Heidelberg, New York: Springer-Verlag).10.1007/978-3-642-81792-2Search in Google Scholar
Paulsen, O. and Moser, E. (1998). A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci. 21, 273–278.10.1016/S0166-2236(97)01205-8Search in Google Scholar
Pavlides, C., Greenstein, Y.J., Grudman, M., and Winson, J. (1988). Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of Θ-rhythm. Brain Res. 439, 383–387.10.1016/0006-8993(88)91499-0Search in Google Scholar
Petsche, H., Stumpf, C., and Gogolak, G. (1962). The significance of the rabbit’s septum as a relay station between midbrain and the hippocampus: I. The control of hippocampus arousal activity by septum cells. Electroencephalogr. Clin. Neurophys. 14, 202–211.10.1016/0013-4694(62)90030-5Search in Google Scholar
Rapoport, A. (1952). “Ignition” phenomena in random nets. Bull. Math. Biophys. 14, 35–44.10.1007/BF02477821Search in Google Scholar
Ribak, C.E., Seress, L., and Amaral, D.G. (1985). The development, ultrastructure and synaptic connections of the mossy cells in the dentate gyrus. J. Neurocytol. 14, 835–857.10.1007/BF01170832Search in Google Scholar
Rose, G., Diamond, D., and Lynch, G.S. (1983). Dentate GCs in the rat hippocampal formation have the behavioral characteristics of theta neurons. Brain Res. 266, 29–37.10.1016/0006-8993(83)91306-9Search in Google Scholar
Scharfman, H.E. (1994a). Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J. Neurophysiol. 72, 2167–2180.10.1152/jn.1994.72.5.2167Search in Google Scholar
Scharfman, H.E. (1994b). EPSPs of dentate gyrus GCs during epileptiform bursts of dentate hilar “mossy” cells and area CA3 pyramidal cells in disinhibited rat hippocampal slices. J. Neurosci. 14, 6041–6057.10.1523/JNEUROSCI.14-10-06041.1994Search in Google Scholar
Scharfman, H.E. (2007). The CA3 “backprojection” to the dentate gyrus. Prog. Brain Res. 163, 627–637.10.1016/S0079-6123(07)63034-9Search in Google Scholar
Scharfman, H.I. and Bernstein, H.L. (2015). Potential implications of a monosynaptic pathway from mossy cells to adult-born granule cells in the dentate gyrus. Front. Syst. Neurosci. 9, 112.10.3389/fnsys.2015.00112Search in Google Scholar
Scott, A.C. (1977). Neurodynamics: a critical survey. J. Math. Psychol. 15, 1–45. The article, as cited by Hebb (1976), was available in preprint form 2 years earlier, under the heading of “Neurodynamics (A Critical Survey). MRC Technical Summary Report No. 1548 (Mathematics Research Center, University of Wisconsin-Madison, WI, USA), October 1975”.10.1016/0022-2496(77)90039-6Search in Google Scholar
Scoville, W.B. and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21.10.1136/jnnp.20.1.11Search in Google Scholar
Shannon, C.E. (1957). Certain results in coding theory for noisy channels. Inf. Control 1, 6–25.10.1016/S0019-9958(57)90039-6Search in Google Scholar
Squire, L.R. (2009). The legacy of patient H. M. for Neuroscience. Neuron 61, 1–7.Search in Google Scholar
Squire, L.R. and Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science 253, 1380–1386.10.1126/science.1896849Search in Google Scholar PubMed
Stettler, D.D., Yamahachi, H., Li, W., Denk, W., and Gilbert, C.D. (2006). Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49, 877–887.10.1016/j.neuron.2006.02.018Search in Google Scholar PubMed
Sutula, T., Cascino, G., Cavazos, J., Parada, I., and Ramirez, L. (1989). Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann. Neurol. 26, 321–330.10.1002/ana.410260303Search in Google Scholar
Suzuki, W.A. and Amaral, D.G. (1994). Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J. Neurosci. 14, 1856–1877.10.1523/JNEUROSCI.14-03-01856.1994Search in Google Scholar
Svoboda, K., Denk, W., Kleinfeld, D., and Tank, D.W. (1997). In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165.10.1038/385161a0Search in Google Scholar
Tauck, D.L. and Nadler, J.V. (1985). Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 5. 1016–1022.10.1523/JNEUROSCI.05-04-01016.1985Search in Google Scholar
Teyler, T.J. and DiScenna, P. (1986). The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154.10.1037/0735-7044.100.2.147Search in Google Scholar
Tóth, K., Borhegyi, Z., and Freund, T.F. (1993). Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of Broca complex. J. Neurosci. 13, 3712–3724.10.1523/JNEUROSCI.13-09-03712.1993Search in Google Scholar
Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794.10.1038/nature01273Search in Google Scholar
Tulving, E. (1972). Episodic and Semantic Memory. Organization of Memory. E. Tulving and W. Donaldson, eds. (New York/ Academic Press).Search in Google Scholar
Tulving, E. and Markowitsch, H.J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus 8, 198–204.10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-GSearch in Google Scholar
Vargha-Khadem, F., Gadian, D.G., Watkins, K.E., Connelly, A., Van Paesschen, W., and Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380.10.1126/science.277.5324.376Search in Google Scholar
Vertes, R.P. and Kocsis, B. (1997). Brainstem-diencephalon-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81, 893–926.Search in Google Scholar
Victor, M. and Agamanolis, D. (1990). Amnesia due to lesions confined to the hippocampus: a clinical-pathologic study. J. Cogn. Neurosci. 2, 246–257.10.1162/jocn.1990.2.3.246Search in Google Scholar
Wickelgren, W.A. (1999). Webs, cell assemblies, and chunking in neural nets: introduction. Can. J. Exp. Psychol. 53, 118–131.10.1037/h0087304Search in Google Scholar PubMed
Williams, P.A., Larimer, P., Gao, Y., and Strowbridge, B.W. (2007). Semilunar GCs: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J. Neurosci. 27, 13756–13761.10.1523/JNEUROSCI.4053-07.2007Search in Google Scholar PubMed PubMed Central
Wittner, L., Henze, D.A., Záborszky, L., and Buzsáki, G. (2007). Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Struct. Funct. 212, 75–83.10.1007/s00429-007-0148-ySearch in Google Scholar PubMed PubMed Central
Zola-Morgan, S., Squire, L.R., and Amaral, D.G. (1986). Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to the CA1 field of the hippocampus. J. Neurosci. 6, 2950–2967.10.1523/JNEUROSCI.06-10-02950.1986Search in Google Scholar
Zola-Morgan, S., Squire, L.R., and Amaral, D.G. (1989). Lesions of the amygdala that spare adjacent cortical regions do not impair memory or exacerbate the impairment following lesions of the hippocampal formation. J. Neurosci. 9, 1922–1936.10.1523/JNEUROSCI.09-06-01922.1989Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston