Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 29, 2017

Status of essential elements in autism spectrum disorder: systematic review and meta-analysis

  • Amene Saghazadeh , Narges Ahangari , Kasra Hendi , Fatemeh Saleh and Nima Rezaei EMAIL logo

Abstract

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder that imposes heavy financial burden on governments and families of affected children. It is considered a multifactorial condition, where trace elements are among environmental factors that may contribute to ASD. Meanwhile, the between-study variance is high. The present systematic review was designed to investigate the difference in trace element measures between patients with ASD and control subjects. Meta-analyses showed that the hair concentrations of chromium (p=0.024), cobalt (p=0.012), iodine (p=0.000), iron (p=0.017), and magnesium (p=0.007) in ASD patients were significantly lower than those of control subjects, while there were higher magnesium levels in the hair of ASD patients compared to that of controls (p=0.010). Patients with ASD had higher blood levels of copper (p=0.000) and lower levels of zinc compared to controls (p=0.021). Further urinary iodine levels in patients with ASD were decreased in comparison with controls (p=0.026). Sensitivity analyses showed that ASD patients in non-Asian but not in Asian countries had lower hair concentrations of chromium compared to controls. Also, such analyses indicated that ASD patients in Asian countries had lower hair zinc concentrations, whereas ASD patients in non-Asian countries had higher hair zinc concentrations in comparison with control subjects. This study found significant differences in the content of trace elements between patients with ASD compared to controls. The findings help highlighting the role of trace elements as environmental factors in the etiology of ASD.

Acknowledgments

This study was supported by a grant from Tehran University of Medical Sciences and Health Services (grant no. 96-01-30-34676).

References

Adamo, A.M. and Oteiza, P.I. (2010). Zinc deficiency and neurodevelopment: the case of neurons. Biofactors 36, 117–124.10.1002/biof.91Search in Google Scholar PubMed

Adams, J.B., Holloway, C.E., George, F., and Quig, D. (2006). Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol Trace Elem Res. 110, 193–209.10.1385/BTER:110:3:193Search in Google Scholar PubMed

Adams, J.B., Romdalvik, J., Ramanujam, V.M., and Legator, M.S. (2007). Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health A. 70, 1046–1051.10.1080/15287390601172080Search in Google Scholar PubMed

Adams, J.B., Baral, M., Geis, E., Mitchell, J., Ingram, J., Hensley, A., Zappia, I., Newmark, S., Gehn, E., Rubin, R.A., et al. (2009). The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol. 2009, 532–640.10.1155/2009/532640Search in Google Scholar PubMed PubMed Central

Adams, J.B., Audhya, T., Mcdonough- Means, S., Rubin, R.A., Quig, D., Geis, E., Gehn, E., Loresto, M., Mitchell, J., and Atwood, S. (2011). Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 11, 1.10.1186/1471-2431-11-111Search in Google Scholar PubMed PubMed Central

Adams, J.B., Audhya, T., Mcdonough-Means, S., Rubin, R.A., Quig, D., Geis, E., Gehn, E., Loresto, M., Mitchell, J., Atwood, S., et al. (2013). Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res. 151, 171–180.10.1007/s12011-012-9551-1Search in Google Scholar PubMed

Al-Ayadhi, L.Y. (2005). Heavy metals and trace elements in hair samples of autistic children in central Saudi Arabia. Neurosciences (Riyadh) 10, 213–218.Search in Google Scholar PubMed

Al-Farsi, Y.M., Waly, M.I., Al-Sharbati, M.M., Al-Shafaee, M.A., Al-Farsi, O.A., Al-Khaduri, M.M., Gupta, I., Ouhtit, A., Al-Adawi, S., Al-Said, M.F., et al. (2013). Levels of heavy metals and essential minerals in hair samples of children with autism in Oman: a case-control study. Biol Trace Elem Res. 151, 181–186.10.1007/s12011-012-9553-zSearch in Google Scholar PubMed

Al-Rashid, R.A. and Spangler, J. (1971). Neonatal copper deficiency. N Engl J Med. 285, 841–843.10.1056/NEJM197110072851506Search in Google Scholar PubMed

Albizzati, A., More, L., Di Candia, D., Saccani, M., and Lenti, C. (2012). Normal concentrations of heavy metals in autistic spectrum disorders. Minerva Pediatr. 64, 27–31.Search in Google Scholar PubMed

Almogren, A., Shakoor, Z., Almomen, A., and Hasanato, R.M.W. (2013). Levels of heavy metal and trace element among children with Autism spectrum disorders. Curr Pediatr Res. 17, 79–83.Search in Google Scholar

Altura, B.M., Altura, B.T., and Carella, A. (1983). Magnesium deficiency-induced spasms of umbilical vessels: relation to preeclampsia, hypertension, growth retardation. Science 221, 376–378.10.1126/science.6867714Search in Google Scholar PubMed

Altura, B.M., Altura, B.T., Gebrewold, A., Ising, H., and Gunther, T. (1984). Magnesium deficiency and hypertension: correlation between magnesium-deficient diets and microcirculatory changes in situ. Science 223, 1315–1317.10.1126/science.6701524Search in Google Scholar PubMed

Anast, C.S., Mohs, J.M., Kaplan, S.L., and Burns, T.W. (1972). Evidence for parathyroid failure in magnesium deficiency. Science 177, 606–608.10.1126/science.177.4049.606Search in Google Scholar PubMed

Andrews, N.C. (1999). Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995.10.1056/NEJM199912233412607Search in Google Scholar PubMed

Bac, P., Maurois, P., Dupont, C., Pages, N., Stables, J.P., Gressens, P., Evrard, P., and Vamecq, J. (1998). Magnesium deficiency-dependent audiogenic seizures (MDDASs) in adult mice: a nutritional model for discriminatory screening of anticonvulsant drugs and original assessment of neuroprotection properties. J. Neurosci. 18, 4363–4373.10.1523/JNEUROSCI.18-11-04363.1998Search in Google Scholar PubMed

Baecker, T., Mangus, K., Pfaender, S., Chhabra, R., Boeckers, T.M., and Grabrucker, A.M. (2014). Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses. BioMetals 27, 715–730.10.1007/s10534-014-9764-1Search in Google Scholar PubMed

Bardgett, M.E., Schultheis, P.J., Mcgill, D.L., Richmond, R.E., and Wagge, J.R. (2005). Magnesium deficiency impairs fear conditioning in mice. Brain Res. 1038, 100–106.10.1016/j.brainres.2005.01.020Search in Google Scholar PubMed

Barnhart, J. (1997). Occurrences, uses, and properties of chromium. Regul Toxicol Pharmacol. 26, S3–S7.10.1006/rtph.1997.1132Search in Google Scholar PubMed

Baxter, A.J., Brugha, T.S., Erskine, H.E., Scheurer, R.W., Vos, T., and Scott, J.G. (2015). The epidemiology and global burden of autism spectrum disorders. Psychol Med. 45, 601–613.10.1017/S003329171400172XSearch in Google Scholar PubMed

Baynes, J.W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405–412.10.2337/diab.40.4.405Search in Google Scholar PubMed

Benarroch, E.E. (2009). Brain iron homeostasis and neurodegenerative disease. Neurology 72, 1436–1440.10.1212/WNL.0b013e3181a26b30Search in Google Scholar PubMed

Bener, A., Khattab, A.O., and Al-Dabbagh, M.M. (2014). Is high prevalence of Vitamin D deficiency evidence for autism disorder?: In a highly endogamous population. J. Pediat. Neurosci. 9, 227.10.4103/1817-1745.147574Search in Google Scholar PubMed PubMed Central

Bilgiç, A., Gürkan, K., Türkoğlu, S., Akça, Ö.F., Kılıç, B.G., and Uslu, R. (2010). Iron deficiency in preschool children with autistic spectrum disorders. Res Autism Spectr Disord. 4, 639–644.10.1016/j.rasd.2009.12.008Search in Google Scholar

Bishop, S.L., Havdahl, K.A., Huerta, M., and Lord, C. (2016). Subdimensions of social‐communication impairment in autism spectrum disorder. J. Child Psychol. Psychiatry 57, 909–916.10.1111/jcpp.12510Search in Google Scholar PubMed

Black, R.E. (2003). Zinc deficiency, infectious disease and mortality in the developing world. J Nutrit. 133, 1485S–1489S.10.1093/jn/133.5.1485SSearch in Google Scholar

Blaurock-Busch, E., Amin, O.R., and Rabah, T. (2011). Heavy metals and trace elements in hair and urine of a sample of arab children with autistic spectrum disorder. Maedica (Buchar). 6, 247–57.Search in Google Scholar PubMed

Blaurock-Busch, E., Amin, O.R., Dessoki, H.H., and Rabah, T. (2012a). Toxic metals and essential elements in hair and severity of symptoms among children with autism. Maedica (Buchar). 7, 38–48.Search in Google Scholar

Blaucok-Busch, E., Amin, O.R., Dessoki, H.H., and Rabah, T. (2012b). Efficacy of DMSA therapy in a sample of Arab children with autistic spectrum disorder. Maedica (Buchar). 7, 214–221.Search in Google Scholar

Blazewicz, A., Makarewicz, A., Korona-Glowniak, I., Dolliver, W., and Kocjan, R. (2016). Iodine in autism spectrum disorders. J. Trace Elem. Med. Biol. 34, 32–37.10.1016/j.jtemb.2015.12.002Search in Google Scholar PubMed

Boska, M.D., Welch, K.M.A., Barker, P.B., Nelson, J.A., and Schultz, L. (2002). Contrasts in cortical magnesium, phospholipid and energy metabolism between migraine syndromes. Neurology 58, 1227–1233.10.1212/WNL.58.8.1227Search in Google Scholar PubMed

Cadenas, E. and Davies, K.J.A. (2000). Mitochondrial free radical generation, oxidative stress, and aging1. Free Radic. Biol. Med. 29, 222–230.10.1016/S0891-5849(00)00317-8Search in Google Scholar PubMed

Calton, J.B. (2010). Prevalence of micronutrient deficiency in popular diet plans. J. Int. Soc. Sports Nutrit. 7, 1.10.1186/1550-2783-7-24Search in Google Scholar

Campbell, M., Petti, T.A., Green, W.H., Cohen, I.L., Genieser, N.B., and David, R. (1980). Some physical parameters of young autistic children. J. Am. Acad. Child Psychiatry 19, 193–212.10.1016/S0002-7138(09)60697-XSearch in Google Scholar PubMed

Chao, H.-T., Chen, H., Samaco, R.C., Xue, M., Chahrour, M., Yoo, J., Neul, J.L., Gong, S., Lu, H.-C., and Heintz, N. (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269.10.1038/nature09582Search in Google Scholar PubMed PubMed Central

Clark, B., Vandermeer, B., Simonetti, A., and Buka, I. (2010). Is lead a concern in Canadian autistic children? Paediatr, Child Health 15, 17–22.10.1093/pch/15.1.17Search in Google Scholar PubMed PubMed Central

Coghlan, S., Horder, J., Inkster, B., Mendez, M.A., Murphy, D.G., and Nutt, D.J. (2012). GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci. Biobehav. Rev. 36, 2044–2055.10.1016/j.neubiorev.2012.07.005Search in Google Scholar PubMed

Cohen, D.J., Johnson, W.T., and Caparulo, B.K. (1976). Pica and elevated blood lead level in autistic and atypical children. Am. J. Dis. Child. 130, 47–48.10.1001/archpedi.1976.02120020049007Search in Google Scholar PubMed

Connolly, K., Pharoah, P.D., and Hetzel, B. (1979). Fetal iodine deficiency and motor performance during childhood. Lancet 314, 1149–1151.10.1016/S0140-6736(79)92382-1Search in Google Scholar

Cowan, J.A. (1998). Metal activation of enzymes in nucleic acid biochemistry. Chem. Rev. 98, 1067–1088.10.1021/cr960436qSearch in Google Scholar PubMed

Coyle, J.T. and Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.10.1126/science.7901908Search in Google Scholar PubMed

Craciun, E.C., Bjorklund, G., Tinkov, A.A., Urbina, M.A., Skalny, A.V., Rad, F., and Dronca, E. (2016). Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder. Metab. Brain Dis. 31, 887–890.10.1007/s11011-016-9823-0Search in Google Scholar PubMed

Da Silva, S.L., Vellas, B., Elemans, S., Luchsinger, J., Kamphuis, P., Yaffe, K., Sijben, J., Groenendijk, M., and Stijnen, T. (2014). Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis. Alzheimer’s Dement. 10, 485–502.10.1016/j.jalz.2013.05.1771Search in Google Scholar

De Palma, G., Catalani, S., Franco, A., Brighenti, M., and Apostoli, P. (2012). Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J. Autism Dev. Disord. 42, 342–353.10.1007/s10803-011-1245-6Search in Google Scholar

Deinard, A.S., List, A., Lindgren, B., Hunt, J.V., and Chang, P.-N. (1986). Cognitive deficits in iron-deficient and iron-deficient anemic children. J. Pediatr. 108, 681–689.10.1016/S0022-3476(86)81041-1Search in Google Scholar PubMed

Delange, F. (2001). Iodine deficiency as a cause of brain damage. Postgrad. Med. J. 77, 217–220.10.1136/pmj.77.906.217Search in Google Scholar PubMed PubMed Central

Desoto, M.C. and Hitlan, R.T. (2007). Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set. J. Child Neurol. 22, 1308–1311.10.1177/0883073807307111Search in Google Scholar PubMed

Dikme, G., Arvas, A., and Gür, E. (2013). The relation between blood lead and mercury levels and chronic neurological diseases in children. Autism (n/%). 15, 25–25.10.4274/tpa.296Search in Google Scholar

Dunlap, W.M., James, G.W., and Hume, D.M. (1974). Anemia and neutropenia caused by copper deficiency. Ann. Intern. Med. 80, 470–476.10.7326/0003-4819-80-4-470Search in Google Scholar PubMed

Elsheshtawy, E., Tobar, S., Sherra, K., Atallah, S., and Elkasaby, R. (2011). Study of some biomarkers in hair of children with autism. Middle East Curr. Psychiatry 18, 6–10.10.1097/01.XME.0000392842.64112.64Search in Google Scholar

Faber, S., Zinn, G.M., Kern, J.C., 2nd, and Kingston, H.M. (2009). The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers 14, 171–180.10.1080/13547500902783747Search in Google Scholar PubMed

Fido, A., Dashti, H., and Al-Saad, S. (2002). Biological correlates of childhood autism: Trace elements. Trace Elem. Electrolytes 19, 205–208.Search in Google Scholar

Fields, M., Ferretti, R.J., Smith Jr, J.C., and Reiser, S. (1983). Effect of copper deficiency on metabolism and mortality in rats fed sucrose or starch diets. J. Nutrit. 113, 1335–1345.10.1093/jn/113.7.1335Search in Google Scholar

Frederickson, C.J., Koh, J.-Y., and Bush, A.I. (2005). The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6, 449–462.10.1038/nrn1671Search in Google Scholar PubMed

Freund, H., Atamian, S., and Fischer, J.E. (1979). Chromium deficiency during total parenteral nutrition. J. Am. Med. Assoc. 241, 496–498.10.1001/jama.1979.03290310036012Search in Google Scholar

Gaetke, L.M. and Chow, C.K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147–163.10.1016/S0300-483X(03)00159-8Search in Google Scholar PubMed

Geier, D.A., Kern, J.K., King, P.G., Sykes, L.K., and Geier, M.R. (2012). Hair toxic metal concentrations and autism spectrum disorder severity in young children. Int. J. Environ. Res. Public Health 9, 4486–4497.10.3390/ijerph9124486Search in Google Scholar PubMed PubMed Central

Ghaziuddin, M., Ghaziuddin, N., and Greden, J. (2002). Depression in persons with autism: implications for research and clinical care. J. Autism. Dev. Disord. 32, 299–306.10.1023/A:1016330802348Search in Google Scholar PubMed

Gong, J., Liu, W., Dong, J., Wang, Y., Xu, H., Wei, W., Zhong, J., Xi, Q., and Chen, J. (2010). Developmental iodine deficiency and hypothyroidism impair neural development in rat hippocampus: involvement of doublecortin and NCAM-180. BMC. Neurosci. 11, 1.10.1186/1471-2202-11-50Search in Google Scholar

Grabrucker, S., Jannetti, L., Eckert, M., Gaub, S., Chhabra, R., Pfaender, S., Mangus, K., Reddy, P.P., Rankovic, V., and Schmeisser, M.J., et al. (2014). Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain 137, 137–152. doi: 10.1093/brain/awt303.10.1093/brain/awt303Search in Google Scholar PubMed

Haldimann, M., Alt, A., Blanc, A., and Blondeau, K. (2005). Iodine content of food groups. J Food Compos. Anal. 18, 461–471.10.1016/j.jfca.2004.06.003Search in Google Scholar

Halsted, J.A., Ronaghy, H.A., Abadi, P., Haghshenass, M., Amirhakemi, G.H., Barakat, R.M., and Reinhold, J.G. (1972). Zinc deficiency in man: The Shiraz experiment. Am. J. Med. 53, 277–284.10.1016/0002-9343(72)90169-6Search in Google Scholar PubMed

Hambidge, M. (2000). Human zinc deficiency. J. Nutrit. 130, 1344S–1349S.10.1093/jn/130.5.1344SSearch in Google Scholar

Hamza, R.T., Hewedi, D.H., and Sallam, M.T. (2013). Iodine deficiency in Egyptian autistic children and their mothers: relation to disease severity. Arch. Med. Res. 44, 555–561.10.1016/j.arcmed.2013.09.012Search in Google Scholar PubMed

Hendricks, K.M. and Walker, W.A. (1988). Zinc deficiency in inflammatory bowel disease. Nutrit. Rev. 46, 401–408.10.1111/j.1753-4887.1988.tb05381.xSearch in Google Scholar

Herguner, S., Kelesoglu, F.M., Tanidir, C., and Copur, M. (2012). Ferritin and iron levels in children with autistic disorder. Eur. J. Pediatr. 171, 143–146.10.1007/s00431-011-1506-6Search in Google Scholar PubMed

Hetzel, B. (1983). Iodine deficiency disorders (IDD) and their eradication. Lancet 322, 1126–1129.10.1016/S0140-6736(83)90636-0Search in Google Scholar

Ho, H.H., Eaves, L.C., and Peabody, D. (1997). Nutrient intake and obesity in children with autism. Focus Autism Other Dev. Disabil. 12, 187–192.10.1177/108835769701200308Search in Google Scholar

Jackson, M.J. and Garrod, P.J. (1978). Plasma zinc, copper, and amino acid levels in the blood of autistic children. J. Autism Child Schizophr. 8, 203–208.10.1007/BF01537869Search in Google Scholar PubMed

James, S.J., Cutler, P., Melnyk, S., Jernigan, S., Janak, L., Gaylor, D.W., and Neubrander, J.A. (2004). Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutrit. 80, 1611–1617.10.1093/ajcn/80.6.1611Search in Google Scholar

Jory, J. and Mcginnis, W.R. (2008). Red-cell trace minerals in children with autism. Am. J. Biochem. Biotechnol. 4, 101–104.10.3844/ajbbsp.2008.101.104Search in Google Scholar

Jung, M., Jang, H.-S., Park, E.-J., Lee, H.-W., and Choi, J.-H. (2008). Study on the mineral and heavy metal contents in the hair of preschool aged autistic children. J. Korean Soc. Food Sci. Nutrit. 37, 1422–1426.10.3746/jkfn.2008.37.11.1422Search in Google Scholar

Karpel, J.T. and Peden, V.H. (1972). Copper deficiency in long-term parenteral nutrition. J. Pediatr. 80, 32–36.10.1016/S0022-3476(72)80449-9Search in Google Scholar PubMed

Kim, K.N., Kwon, H.J., and Hong, Y.C. (2016). Low-level lead exposure and autistic behaviors in school-age children. Neurotoxicology 53, 193–200.10.1016/j.neuro.2016.02.004Search in Google Scholar PubMed

Kondolot, M., Ozmert, E.N., Asci, A., Erkekoglu, P., Oztop, D.B., Gumus, H., Kocer-Gumusel, B., and Yurdakok, K. (2016). Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. Environ. Toxicol. Pharmacol. 43, 149–158.10.1016/j.etap.2016.03.006Search in Google Scholar PubMed

Lakshmi Priya, M.D. and Geetha, A. (2011). Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol. Trace Elem. Res. 142, 148–158.10.1007/s12011-010-8766-2Search in Google Scholar PubMed

Lane, R., Kessler, R., Buckley, A.W., Rodriguez, A., Farmer, C., Thurm, A., Swedo, S., and Felt, B. (2015). Evaluation of periodic limb movements in sleep and iron status in children with autism. Pediatr. Neurol. 53, 343–349.10.1016/j.pediatrneurol.2015.06.014Search in Google Scholar PubMed PubMed Central

Lavelle, T.A., Weinstein, M.C., Newhouse, J.P., Munir, K., Kuhlthau, K.A., and Prosser, L.A. (2014). Economic burden of childhood autism spectrum disorders. Pediatrics 133, e520–e529.10.1542/peds.2013-0763Search in Google Scholar

Li, S.O., Wang, J.L., Bjorklund, G., Zhao, W.N., and Yin, C.H. (2014). Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport 25, 1216–1220.10.1097/WNR.0000000000000251Search in Google Scholar PubMed

Lieu, P.T., Heiskala, M., Peterson, P.A., and Yang, Y. (2001). The roles of iron in health and disease. Mol. Aspects Med. 22, 1–87.10.1016/S0098-2997(00)00006-6Search in Google Scholar PubMed

Liu, X., Liu, J., Xiong, X., Yang, T., Hou, N., Liang, X., Chen, J., Cheng, Q., and Li, T. (2016). Correlation between nutrition and symptoms: nutritional survey of children with autism spectrum disorder in Chongqing, China. Nutrients 8, 294.10.3390/nu8050294Search in Google Scholar PubMed PubMed Central

Lozoff, B., Clark, K.M., Jing, Y., Armony-Sivan, R., Angelilli, M.L., and Jacobson, S.W. (2008). Dose-response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J. Pediatr. 152, 696–702.e3.10.1016/j.jpeds.2007.09.048Search in Google Scholar PubMed PubMed Central

Lubkowska, A. and Sobieraj, W. (2009). Concentrations of magnesium, calcium, iron, selenium, zinc and copper in the hair of autistic children. Trace Elem. Electrolytes 26, 72–77.10.5414/TEP26072Search in Google Scholar

Lukasewycz, O.A. (1981). Copper deficiency suppresses the immune response of mice. Science 213, 559–561.10.1126/science.7244654Search in Google Scholar PubMed

Macedoni-Luksic, M., Gosar, D., Bjorklund, G., Orazem, J., Kodric, J., Lesnik-Musek, P., Zupancic, M., France-Stiglic, A., Sesek-Briski, A., Neubauer, D., et al. (2015). Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol. Trace Elem. Res. 163, 2–10.10.1007/s12011-014-0121-6Search in Google Scholar PubMed

Massaro, T.F., Raiten, D.J., and Zuckerman, C.H. (1983). Trace element concentrations and behavior: clinical utility in the assessment of developmental disabilities. Topics Early Childhood Special Educ. 3, 55–61.10.1177/027112148300300210Search in Google Scholar

Mauskop, A., Altura, B.T., Cracco, R.Q., and Altura, B.M. (1993). Deficiency in serum ionized magnesium but not total magnesium in patients with migraines. Possible role of ICa2+/IMg2+ ratio. Headache 33, 135–138.10.1111/j.1526-4610.1993.hed3303135.xSearch in Google Scholar PubMed

Mccann, J.C. and Ames, B.N. (2007). An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. Am. J. Clin. Nutrit. 85, 931–945.10.1093/ajcn/85.4.931Search in Google Scholar

Ming, X., Stein, T.P., Brimacombe, M., Johnson, W.G., Lambert, G.H., and Wagner, G.C. (2005). Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot. Essent. Fatty Acids 73, 379–384.10.1016/j.plefa.2005.06.002Search in Google Scholar PubMed

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269.10.7326/0003-4819-151-4-200908180-00135Search in Google Scholar PubMed

Moos, T. and Morgan, E.H. (2004). The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann. N Y. Acad. Sci. 1012, 14–26.10.1196/annals.1306.002Search in Google Scholar

Mordike, B.L. and Ebert, T. (2001). Magnesium: properties – applications – potential. Mater. Sci. Eng. A 302, 37–45.10.1016/S0921-5093(00)01351-4Search in Google Scholar

Mousain-Bosc, M., Roche, M., Polge, A., Pradal-Prat, D., Rapin, J., and Bali, J.P. (2006). Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. II. Pervasive developmental disorder-autism. Magnes. Res. 19, 53–62.Search in Google Scholar PubMed

Nadler, J.L., Buchanan, T., Natarajan, R., Antonipillai, I., Bergman, R., and Rude, R. (1993). Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21, 1024–1029.10.1161/01.HYP.21.6.1024Search in Google Scholar PubMed

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465.10.1038/307462a0Search in Google Scholar PubMed

Obrenovich, M.E., Shamberger, R.J., and Lonsdale, D. (2011). Altered heavy metals and transketolase found in autistic spectrum disorder. Biol. Trace Elem Res. 144, 475–486.10.1007/s12011-011-9146-2Search in Google Scholar PubMed

Onakpoya, I., Posadzki, P., and Ernst, E. (2013). Chromium supplementation in overweight and obesity: a systematic review and meta‐analysis of randomized clinical trials. Obesity Rev. 14, 496–507.10.1111/obr.12026Search in Google Scholar PubMed

Pamphlett, R. and Kum Jew, S. (2016). Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury. Biometals. 29, 171–175.10.1007/s10534-015-9898-9Search in Google Scholar PubMed PubMed Central

Papanikolaou, G. and Pantopoulos, K. (2005). Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202, 199–211.10.1016/j.taap.2004.06.021Search in Google Scholar PubMed

Parellada, M., Moreno, C., Mac-Dowell, K., Leza, J.C., Giraldez, M., Bailon, C., Castro, C., Miranda-Azpiazu, P., Fraguas, D., and Arango, C. (2012). Plasma antioxidant capacity is reduced in Asperger syndrome. J. Psychiatr. Res. 46, 394–401.10.1016/j.jpsychires.2011.10.004Search in Google Scholar PubMed

Pittler, M.H., Stevinson, C., and Ernst, E. (2003). Chromium picolinate for reducing body weight: meta-analysis of randomized trials. Int. J. Obesity 27, 522–529.10.1038/sj.ijo.0802262Search in Google Scholar PubMed

Prasad, A.S. (2009). Zinc: role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care 12, 646–652.10.1097/MCO.0b013e3283312956Search in Google Scholar PubMed

Prasad, A.S., Miale Jr, A., Farid, Z., Sandstead, H.H., and Schulert, A.R. (1963). Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J. Lab. Clin. Med. 61, 537–549.Search in Google Scholar PubMed

Prasad, A.S., Fitzgerald, J.T., Hess, J.W., Kaplan, J., Pelen, F., and Dardenne, M. (1992). Zinc deficiency in elderly patients. Nutrition (Burbank, Los Angeles County, Calif.). 9, 218–224.Search in Google Scholar

Rahbar, M.H., Samms-Vaughan, M., Ardjomand-Hessabi, M., Loveland, K.A., Dickerson, A.S., Chen, Z., Bressler, J., Shakespeare-Pellington, S., Grove, M.L., Bloom, K., et al. (2012). The role of drinking water sources, consumption of vegetables and seafood in relation to blood arsenic concentrations of Jamaican children with and without Autism spectrum disorders. Sci. Total Environ. 433, 362–370.10.1016/j.scitotenv.2012.06.085Search in Google Scholar PubMed PubMed Central

Rahbar, M.H., Samms-Vaughan, M., Loveland, K.A., Ardjomand-Hessabi, M., Chen, Z., Bressler, J., Shakespeare-Pellington, S., Grove, M.L., Bloom, K., Pearson, D.A., et al. (2013). Seafood consumption and blood mercury concentrations in Jamaican children with and without autism spectrum disorders. Neurotox. Res. 23, 22–38.10.1007/s12640-012-9321-zSearch in Google Scholar PubMed PubMed Central

Rahbar, M.H., Samms-Vaughan, M., Dickerson, A.S., Loveland, K.A., Ardjomand-Hessabi, M., Bressler, J., Lee, M., Shakespeare-Pellington, S., Grove, M.L., Pearson, D.A., et al. (2014a). Role of fruits, grains, and seafood consumption in blood cadmium concentrations of Jamaican children with and without Autism Spectrum Disorder. Res. Autism Spectr, Disord. 8, 1134–1145.10.1016/j.rasd.2014.06.002Search in Google Scholar PubMed PubMed Central

Rahbar, M.H., Samms-Vaughan, M., Ma, J., Bressler, J., Loveland, K.A., Ardjomand-Hessabi, M., Dickerson, A.S., Grove, M.L., Shakespeare-Pellington, S., Beecher, C., et al. (2014b). Role of metabolic genes in blood arsenic concentrations of Jamaican children with and without autism spectrum disorder. Int. J. Environ. Res. Public Health. 11, 7874–7895.10.3390/ijerph110807874Search in Google Scholar PubMed PubMed Central

Rahbar, M.H., Samms-Vaughan, M., Ma, J., Bressler, J., Dickerson, A.S., Hessabi, M., Loveland, K.A., Grove, M.L., Shakespeare-Pellington, S., Beecher, C., et al. (2015). Synergic effect of GSTP1 and blood manganese concentrations in Autism Spectrum Disorder. Res. Autism Spectr. Disord. 18, 73–82.10.1016/j.rasd.2015.08.001Search in Google Scholar PubMed PubMed Central

Raker, P.J.F. (1984). Zinc deficiency: a common immunodeficiency state. Immunologic Res. 2, 155–163.10.1007/BF02918575Search in Google Scholar

Ray, B., Long, J.M., Sokol, D.K., and Lahiri, D.K. (2011). Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 6, e20405.10.1371/journal.pone.0020405Search in Google Scholar PubMed PubMed Central

Russo, A.J. (2010). Decreased serum Cu/Zn SOD associated with high copper in children with attention deficit hyperactivity disorder (ADHD). J. Cent. Nerv. Syst. Dis. 2, 9–14.10.4137/JCNSD.S4553Search in Google Scholar PubMed PubMed Central

Russo, A.J. (2011). Increased copper in individuals with autism normalizes post zinc therapy more efficiently in individuals with concurrent GI disease. Nutr. Metab. Insights. 4, 49–54.10.4137/NMI.S6827Search in Google Scholar PubMed PubMed Central

Russo, A.J. (2015). Decreased plasma myeloperoxidase associated with probiotic therapy in autistic children. Clin. Med. Insights Pediatr. 9, 13–17.10.4137/CMPed.S17901Search in Google Scholar PubMed PubMed Central

Russo, A.J. and Devito, R. (2011). Analysis of copper and zinc plasma concentration and the efficacy of zinc therapy in individuals with Asperger’s syndrome, Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and autism. Biomark Insights. 6, 127–133.10.4137/BMI.S7286Search in Google Scholar PubMed PubMed Central

Saghazadeh, A. and Rezaei, N. (2017). Brain-derived neurotrophic factor levels in autism: a systematic review and meta-analysis. J. Autism Dev. Disorders 47, 1018–1029.10.1007/s10803-016-3024-xSearch in Google Scholar PubMed

Saghazadeh, A., Gharedaghi, M., Meysamie, A., Bauer, S., and Rezaei, N. (2014). Proinflammatory and anti-inflammatory cytokines in febrile seizures and epilepsy: systematic review and meta-analysis. Rev. Neurosci. 25, 281–305.10.1515/revneuro-2013-0045Search in Google Scholar PubMed

Saghazadeh, A., Mahmoudi, M., Meysamie, A., Gharedaghi, M., Zamponi, G.W., and Rezaei, N. (2015). Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutr. Rev. 73, 760–779.10.1093/nutrit/nuv026Search in Google Scholar PubMed

Saghazadeh, A., Mahmoudi, M., Ashkezari, A.D., Rezaie, N.O., and Rezaei, N. (2017). Systematic review and meta-analysis shows a specific micronutrient profile in people with down syndrome: lower blood calcium, selenium and zinc, higher red blood cell copper and zinc, and higher salivary calcium and sodium. PloS One. 12, e0175437.10.1371/journal.pone.0175437Search in Google Scholar PubMed PubMed Central

Sartori, S.B., Whittle, N., Hetzenauer, A., and Singewald, N. (2012). Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment. Neuropharmacology 62, 304–312.10.1016/j.neuropharm.2011.07.027Search in Google Scholar PubMed PubMed Central

Schroeder, H.A. (1966). Chromium deficiency in rats: a syndrome simulating diabetes mellitus with retarded growth. J. Nutr. 88, 439–445.10.1093/jn/88.4.439Search in Google Scholar PubMed

Schroeder, H.A., Nason, A.P., and Tipton, I.H. (1970). Chromium deficiency as a factor in atherosclerosis. J. Chronic Dis. 23, 123–142.10.1016/0021-9681(70)90071-8Search in Google Scholar PubMed

Semprún-Hernández, N., Bohórquez-Visier, A.P., Bravo Henríquez, A., Colmenares Bohórquez, R., Hernández Medina, F., Maury-Sintjago, E., and Montiel Ocando, N. (2012). Copper, zinc, calcium and magnesium profiles in subjects with autistic disorder according to their functioning level. Trace Elem. Electrolytes. 29, 1.10.5414/TEX01188Search in Google Scholar

Shankar, A.H. and Prasad, A.S. (1998). Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 68, 447S–463S.10.1093/ajcn/68.2.447SSearch in Google Scholar PubMed

Shannon, M. and Graef, J.W. (1996). Lead intoxication in children with pervasive developmental disorders. J. Toxicol. Clin. Toxicol. 34, 177–181.10.3109/15563659609013767Search in Google Scholar PubMed

Shearer, T.R., Larson, K., Neuschwander, J., and Gedney, B. (1982). Minerals in the hair and nutrient intake of autistic children. J. Autism Dev. Disord. 12, 25–34.10.1007/BF01531671Search in Google Scholar PubMed

Sidrak, S., Yoong, T., and Woolfenden, S. (2014). Iron deficiency in children with global developmental delay and autism spectrum disorder. J. Paediatr. Child Health. 50, 356–361.10.1111/jpc.12483Search in Google Scholar PubMed

Singewald, N., Sinner, C., Hetzenauer, A., Sartori, S.B., and Murck, H. (2004). Magnesium-deficient diet alters depression- and anxiety-related behavior in mice – influence of desipramine and Hypericum perforatum extract. Neuropharmacology 47, 1189–1197.10.1016/j.neuropharm.2004.08.010Search in Google Scholar PubMed

Skalny, A.V., Simashkova, N.V., Klyushnik, T.P., Grabeklis, A.R., Bjorklund, G., Skalnaya, M.G., Nikonorov, A.A., and Tinkov, A.A. (2016a). Hair toxic and essential trace elements in children with autism spectrum disorder. Metab. Brain Dis. 32, 195–202.10.1007/s11011-016-9899-6Search in Google Scholar PubMed

Skalny, A.V., Simashkova, N.V., Klyushnik, T.P., Grabeklis, A.R., Radysh, I.V., Skalnaya, M.G., Nikonorov, A.A., and Tinkov, A.A. (2016b). Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2016.09.009. [Epub ahead of print].10.1016/j.jtemb.2016.09.009Search in Google Scholar PubMed

Skalny, A.V., Simashkova, N.V., Klyushnik, T.P., Grabeklis, A.R., Radysh, I.V., Skalnaya, M.G., and Tinkov, A.A. (2017). Analysis of hair trace elements in children with autism spectrum disorders and communication disorders. Biol. Trace Elem. Res. 177, 215–223.10.1007/s12011-016-0878-xSearch in Google Scholar PubMed

Soden, S.E., Lowry, J.A., Garrison, C.B., and Wasserman, G.S. (2007). 24-hour provoked urine excretion test for heavy metals in children with autism and typically developing controls, a pilot study. Clin. Toxicol. (Phila). 45, 476–481.10.1080/15563650701338195Search in Google Scholar PubMed

Sohler, A., Kruesi, M., and Pfeiffer, C.C. (1977). Blood lead levels in psychiatric outpatients reduced by zinc and vitamin C. J. Orthomolecular Psychiatry.Search in Google Scholar

Song, W.-Y., Hong, J.-H., Park, E.-J., Lee, H.-W., and Choi, J.-H. (2010). Effect of antioxidative vitamin supplementation on mineral contents in the hair and autistic related behaviors in autistic children. J. Korean Soc. Food Sci. Nutr. 39, 237–243.10.3746/jkfn.2010.39.2.237Search in Google Scholar

Strambi, M., Longini, M., Hayek, J., Berni, S., Macucci, F., Scalacci, E., and Vezzosi, P. (2006). Magnesium profile in autism. Biol. Trace Elem. Res. 109, 97–104.10.1385/BTER:109:2:097Search in Google Scholar PubMed

Swardfager, W., Herrmann, N., Mazereeuw, G., Goldberger, K., Harimoto, T., and Lanctôt, K.L. (2013). Zinc in depression: a meta-analysis. Biol. Psychiatry 74, 872–878.10.1016/j.biopsych.2013.05.008Search in Google Scholar PubMed

Terasaki, M. and Rubin, H. (1985). Evidence that intracellular magnesium is present in cells at a regulatory concentration for protein synthesis. Proc. Natl Acad. Sci. 82, 7324–7326.10.1073/pnas.82.21.7324Search in Google Scholar PubMed PubMed Central

Theil, E.C. (2003). Ferritin: at the crossroads of iron and oxygen metabolism. J. Nutr. 133, 1549S–1553S.10.1093/jn/133.5.1549SSearch in Google Scholar PubMed

Torsdottir, G., Hreidarsson, S., Kristinsson, J., Snaedal, J., and Johannesson, T. (2005). Ceruloplasmin, superoxide dismutase and copper in autistic patients. Basic Clin. Pharmacol. Toxicol. 96, 146–148.10.1111/j.1742-7843.2005.pto960210.xSearch in Google Scholar PubMed

Turlapaty, P.D. and Altura, B.M. (1980). Magnesium deficiency produces spasms of coronary arteries: relationship to etiology of sudden death ischemic heart disease. Science 208, 198–200.10.1126/science.7361117Search in Google Scholar PubMed

Uriu‐Adams, J.Y. and Keen, C.L. (2010). Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res. Part B Dev. Reproductive Toxicol. 89, 313–325.10.1002/bdrb.20264Search in Google Scholar PubMed

Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M.M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40.10.1016/j.cbi.2005.12.009Search in Google Scholar PubMed

Vallee, B.L. and Auld, D.S. (1990). Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659.10.1021/bi00476a001Search in Google Scholar PubMed

Vergani, L., Cristina, L., Paola, R., Luisa, A.M., Shyti, G., Edvige, V., Giuseppe, M., Elena, G., Laura, C., and Adriana, V. (2011). Metals, metallothioneins and oxidative stress in blood of autistic children. Res. Autism Spectrum Disorders 5, 286–293.10.1016/j.rasd.2010.04.010Search in Google Scholar

Wecker, L., Miller, S.B., Cochran, S.R., Dugger, D.L., and Johnson, W.D. (1985). Trace element concentrations in hair from autistic children. J. Ment. Defic. Res. 29 (Pt 1), 15–22.10.1111/j.1365-2788.1985.tb00303.xSearch in Google Scholar PubMed

Wells, G.A., Shea, B., O’connell, D., Peterson, J., Welch, V., Losos, M., and Tugwell, P. (2000). The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm.Search in Google Scholar

White, S.W., Oswald, D., Ollendick, T., and Scahill, L. (2009). Anxiety in children and adolescents with autism spectrum disorders. Clin. Psychol. Rev. 29, 216–229.10.1016/j.cpr.2009.01.003Search in Google Scholar PubMed

Williams, D.M. (1983). Copper deficiency in humans. Sem. Hematol. 20, 118–128.Search in Google Scholar

World Health, O. (2013). Urinary iodine concentrations for determining iodine status in populations.Search in Google Scholar PubMed

Yager, J.Y. and Hartfield, D.S. (2002). Neurologic manifestations of iron deficiency in childhood. Pediatr. Neurol. 27, 85–92.10.1016/S0887-8994(02)00417-4Search in Google Scholar PubMed

Yasuda, H. and Tsutsui, T. (2013). Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int. J. Environ. Res. Public Health 10, 6027–6043.10.3390/ijerph10116027Search in Google Scholar PubMed PubMed Central

Yasuda, H., Yoshida, K., Yasuda, Y., and Tsutsui, T. (2011). Infantile zinc deficiency: association with autism spectrum disorders. Sci. Rep. 1, 129.10.1038/srep00129Search in Google Scholar PubMed PubMed Central

Yasuda, H., Yasuda, Y., and Tsutsui, T. (2013). Estimation of autistic children by metallomics analysis. Sci. Rep. 3, 1199.10.1038/srep01199Search in Google Scholar PubMed PubMed Central

Yorbik, Ö., Akay, C., Sayal, A., Cansever, A., Söhmen, T., and O Çavdar, A. (2004). Zinc status in autistic children. J. Trace Elem. Exp. Med. 17, 101–107.10.1002/jtra.20002Search in Google Scholar

Yorbik, O., Kurt, I., Hasimi, A., and Ozturk, O. (2010). Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls. Biol. Trace Elem. Res. 135, 10–15.10.1007/s12011-009-8494-7Search in Google Scholar PubMed

Youssef, J., Singh, K., Huntington, N., Becker, R., and Kothare, S.V. (2013). Relationship of serum ferritin levels to sleep fragmentation and periodic limb movements of sleep on polysomnography in autism spectrum disorders. Pediatr. Neurol. 49, 274–278.10.1016/j.pediatrneurol.2013.06.012Search in Google Scholar PubMed

Received: 2017-2-19
Accepted: 2017-4-16
Published Online: 2017-6-29
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0015/html
Scroll to top button