Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 5, 2017

Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior

  • Martha Pérez-Domínguez , Luis B. Tovar-y-Romo and Angélica Zepeda EMAIL logo


The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.


M.P.D. is supported by a Consejo Nacional de Ciencia y Tecnología CONACyT scholarship; A.Z. is supported by Dirección General del Personal Académico-Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, DGAPA PAPIIT IN203015; L.B.T. is supported by DGAPA PAPIIT IA201315.


Ables, J.L., DeCarolis, N.A., Johnson, M.A., Rivera, P.D., Gao, Z., Cooper, D.C., Radtke, F., Hsieh, J., and Eisch, A.J. (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J. Neurosci. 30, 10484–10492.10.1523/JNEUROSCI.4721-09.2010Search in Google Scholar PubMed PubMed Central

Adlard, P.A., Perreau, V.M., and Cotman, C.W. (2005). The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol. Aging 26, 511–520.10.1016/j.neurobiolaging.2004.05.006Search in Google Scholar PubMed

Ahn, S. and Joyner, A.L. (2005). In vivo analysis of quiescent adult neural stem cells responding to sonic hedgehog. Nature 437, 894–897.10.1038/nature03994Search in Google Scholar PubMed

Aimone, J.B., Li, Y., Lee, S.W., Clemenson, G.D., Deng, W., and Gage, F.H. (2014). Regulation and function of adult neurogenesis: from genes to cognition. Physiol. Rev. 94, 991–1026.10.1152/physrev.00004.2014Search in Google Scholar PubMed PubMed Central

Altman, J. and Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335.10.1002/cne.901240303Search in Google Scholar PubMed

Andersen, J., Urbán, N., Achimastou, A., Ito, A., Simic, M., Ullom, K., Martynoga, B., Lebel, M., Göritz, C., Frisén, J., et al. (2014). A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron 83, 1085–1097.10.1016/j.neuron.2014.08.004Search in Google Scholar PubMed PubMed Central

Ashton, R.S., Conway, A., Pangarkar, C., Bergen, J., Lim, K.-I., Shah, P., Bissell, M., and Schaffer, D.V. (2012). Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat. Neurosci. 15, 1399–1406.10.1038/nn.3212Search in Google Scholar PubMed PubMed Central

Bachstetter, A.D., Morganti, J.M., Jernberg, J., Schlunk, A., Mitchell, S.H., Brewster, K.W., Hudson, C.E., Cole, M.J., Harrison, J.K., Bickford, P.C., et al. (2011). Fractalkine and CX(3)CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol. Aging 32, 2030–2044.10.1016/j.neurobiolaging.2009.11.022Search in Google Scholar PubMed PubMed Central

Barkho, B.Z., Song, H., Aimone, J.B., Smrt, R.D., Kuwabara, T., Nakashima, K., Gage, F.H., and Zhao, X. (2006). Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev. 15, 407–421.10.1089/scd.2006.15.407Search in Google Scholar PubMed PubMed Central

Baron, R., Nemirovsky, A., Harpaz, I., Cohen, H., Owens, T., and Monsonego, A. (2008). IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J. 22, 2843–2852.10.1096/fj.08-105866Search in Google Scholar PubMed

Beckervordersandforth, R., Zhang, C., and Lie, D.C. (2016). Transcription-factor-dependent control of adult hippocampal neurogenesis. Cold Spring Harb. Perspect. Biol. 7, a018879.10.1101/cshperspect.a018879Search in Google Scholar PubMed PubMed Central

Belarbi, K. and Rosi, S. (2013). Modulation of adult-born neurons in the inflamed hippocampus. Front. Cell. Neurosci. 7, 145.10.3389/fncel.2013.00145Search in Google Scholar PubMed PubMed Central

Belarbi, K., Arellano, C., Ferguson, R., Jopson, T., and Rosi, S. (2012). Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain. Behav. Immun. 26, 18–23.10.1016/j.bbi.2011.07.225Search in Google Scholar PubMed PubMed Central

Berg, D.A., Belnoue, L., Song, H., and Simon, A. (2013). Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 140, 2548–2561.10.1242/dev.088005Search in Google Scholar PubMed PubMed Central

Bergami, M., Rimondini, R., Santi, S., Blum, R., Götz, M., and Canossa, M. (2008). Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc. Natl. Acad. Sci. USA 105, 15570–15575.10.1073/pnas.0803702105Search in Google Scholar PubMed PubMed Central

Bonaguidi, M., McGuire, T., Hu, M., Kan, L., Samanta, J., and Kessler, J. (2005). LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 132, 5503–5514.10.1242/dev.02166Search in Google Scholar PubMed

Bonaguidi, M.A., Peng, C.-Y., McGuire, T., Falciglia, G., Gobeske, K.T., Czeisler, C., and Kessler, J.A. (2008). Noggin expands neural stem cells in the adult hippocampus. J. Neurosci. 28, 9194–9204.10.1523/JNEUROSCI.3314-07.2008Search in Google Scholar PubMed PubMed Central

Bonaguidi, M.A., Wheeler, M.A., Shapiro, J.S., Stadel, R.P., Sun, G.J., Ming, G., and Song, H. (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142–1155.10.1016/j.cell.2011.05.024Search in Google Scholar PubMed PubMed Central

Bonaguidi, M.A., Stadel, R.P., Berg, D.A., Sun, J., Ming, G., and Song, H. (2016). Diversity of neural precursors in the adult mammalian brain. Cold Spring Harb. Perspect. Biol. 8, a018838.10.1101/cshperspect.a018838Search in Google Scholar PubMed PubMed Central

Bond, A.M., Ming, G., and Song, H. (2015). Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17, 385–395.10.1016/j.stem.2015.09.003Search in Google Scholar PubMed PubMed Central

Borsini, A., Zunszain, P.A., Thuret, S., and Pariante, C.M. (2015). The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 38, 145–157.10.1016/j.tins.2014.12.006Search in Google Scholar PubMed

Bracko, O., Singer, T., Aigner, S., Knobloch, M., Winner, B., Ray, J., Clemenson, G.D., Suh, H., Couillard-Despres, S., Aigner, L., et al. (2012). Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J. Neurosci. 32, 3376–3387.10.1523/JNEUROSCI.4248-11.2012Search in Google Scholar PubMed

Brandt, M.D., Jessberger, S., Steiner, B., Kronenberg, G., Reuter, K., Bick-Sander, A., Von Der Behrens, W., and Kempermann, G. (2003). Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell. Neurosci. 24, 603–613.10.1016/S1044-7431(03)00207-0Search in Google Scholar PubMed

Brandt, M.D., Maass, A., Kempermann, G., and Storch, A. (2010). Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur. J. Neurosci. 32, 1256–1264.10.1111/j.1460-9568.2010.07410.xSearch in Google Scholar PubMed

Brandt, M., Hübner, M., and Storch, A. (2012). Brief report: adult hippocampal precursor cells shorten S-phase and total cell cycle length during neuronal differentiation. Stem Cells 30, 2843–2847.10.1002/stem.1244Search in Google Scholar PubMed

Breunig, J.J., Silbereis, J., Vaccarino, F.M., Sestan, N., and Rakic, P. (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 20558–20563.10.1073/pnas.0710156104Search in Google Scholar PubMed PubMed Central

Breunig, J.J., Sarkisian, M.R., Arellano, J.I., Morozov, Y.M., Ayoub, A.E., Sojitra, S., Wang, B., Flavell, R.A., Rakic, P., and Town, T. (2008). Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl. Acad. Sci. USA 105, 13127–13132.10.1073/pnas.0804558105Search in Google Scholar PubMed PubMed Central

Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A.E., Pluchino, S., Martino, G., and Schwartz, M. (2006). Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160.10.1016/j.mcn.2005.10.006Search in Google Scholar PubMed

Cacci, E., Claasen, J.-H., and Kokaia, Z. (2005). Microglia-derived tumor necrosis factor-α exaggerates death of newborn hippocampal progenitor cells in vitro. J. Neurosci. Res. 80, 789–797.10.1002/jnr.20531Search in Google Scholar PubMed

Cameron, H.A. and Mckay, R.D.G. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435, 406–417.10.1002/cne.1040Search in Google Scholar PubMed

Campbell, I.L., Erta, M., Lim, S.L., Frausto, R., May, U., Rose-John, S., Scheller, J., and Hidalgo, J. (2014). Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J. Neurosci. 34, 2503–2513.10.1523/JNEUROSCI.2830-13.2014Search in Google Scholar PubMed PubMed Central

Cao, L., Jiao, X., Zuzga, D.S., Liu, Y., Fong, D.M., Young, D., and During, M.J. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 36, 827–835.10.1038/ng1395Search in Google Scholar PubMed

Carpentier, P.A. and Palmer, T.D. (2009). Immune influence on adult neural stem cell regulation and function. Neuron 64, 79–92.10.1016/j.neuron.2009.08.038Search in Google Scholar PubMed PubMed Central

Carro, E., Nuñez, A., Busiguina, S., and Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933.10.1523/JNEUROSCI.20-08-02926.2000Search in Google Scholar PubMed

Chen, Z. and Palmer, T.D. (2013). Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain. Behav. Immun. 30, 45–53.10.1016/j.bbi.2013.01.083Search in Google Scholar PubMed PubMed Central

Choi, S.-H., Langenbach, R., and Bosetti, F. (2008). Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J. 22, 1491–1501.10.1096/fj.07-9411comSearch in Google Scholar PubMed PubMed Central

Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G., and Weiss, S. (2003). Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J. Neurosci. 23, 1730–1741.10.1523/JNEUROSCI.23-05-01730.2003Search in Google Scholar PubMed

Clark, P.J., Brzezinska, W.J., Puchalski, E.K., Krone, D.A., and Rhodes, J.S. (2009). Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus 19, 937–950.10.1002/hipo.20543Search in Google Scholar PubMed PubMed Central

Clarke, M., Razmjou, S., Prowse, N., Dwyer, Z., Litteljohn, D., Pentz, R., Anisman, H., and Hayley, S. (2017). Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes. Neuropharmacoloy 112, 210–220.10.1016/j.neuropharm.2016.04.021Search in Google Scholar PubMed

Cotman, C.W., Berchtold, N.C., and Christie, L.A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472.10.1016/j.tins.2007.06.011Search in Google Scholar PubMed

Cunningham, C.L., Martinez-Cerdeno, V., and Noctor, S.C. (2013). Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233.10.1523/JNEUROSCI.3441-12.2013Search in Google Scholar PubMed PubMed Central

Dranovsky, A., Picchini, A.M., Moadel, T., Sisti, A.C., Yamada, A., Kimura, S., Leonardo, E.D., and Hen, R. (2011). Experience dictates stem cell fate in the adult hippocampus. Neuron 70, 908–923.10.1016/j.neuron.2011.05.022Search in Google Scholar PubMed PubMed Central

Ehm, O., Goritz, C., Covic, M., Schaffner, I., Schwarz, T.J., Karaca, E., Kempkes, B., Kremmer, E., Pfrieger, F.W., Espinosa, L., et al. (2010). RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J. Neurosci. 30, 13794–13807.10.1523/JNEUROSCI.1567-10.2010Search in Google Scholar PubMed PubMed Central

Ekdahl, C.T., Claasen, J.-H., Bonde, S., Kokaia, Z., and Lindvall, O. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA 100, 13632–13637.10.1073/pnas.2234031100Search in Google Scholar PubMed PubMed Central

Encinas, J.M., Vaahtokari, A., and Enikolopov, G. (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc. Natl. Acad. Sci. USA 103, 8233–8238.10.1073/pnas.0601992103Search in Google Scholar PubMed PubMed Central

Encinas, J.M., Michurina, T.V., Peunova, N., Park, J.H., Tordo, J., Peterson, D.A., Fishell, G., Koulakov, A., and Enikolopov, G. (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8, 566–579.10.1016/j.stem.2011.03.010Search in Google Scholar PubMed PubMed Central

Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., and Palmer, T.D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812.10.1111/j.1460-9568.2003.03041.xSearch in Google Scholar PubMed

Fan, L.-W. and Pang, Y. (2017). Dysregulation of neurogenesis by neuroinflammation: key differences in neurodevelopmental and neurological disorders. Neural Regen. Res. 12, 366–371.10.4103/1673-5374.202926Search in Google Scholar PubMed PubMed Central

Farioli-Vecchioli, S., Mattera, A., Micheli, L., Ceccarelli, M., Leonardi, L., Saraulli, D., Costanzi, M., Cestari, V., Rouault, J.P., and Tirone, F. (2014). Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells. Stem Cells 32, 1968–1982.10.1002/stem.1679Search in Google Scholar PubMed

Favaro, R., Valotta, M., Ferri, A.L.M., Latorre, E., Mariani, J., Giachino, C., Lancini, C., Tosetti, V., Ottolenghi, S., Taylor, V., et al. (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat. Neurosci. 12, 1248–1256.10.1038/nn.2397Search in Google Scholar PubMed

Filippov, V., Kronenberg, G., Pivneva, T., Reuter, K., Steiner, B., Wang, L.P., Yamaguchi, M., Kettenmann, H., and Kempermann, G. (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol. Cell. Neurosci. 23, 373–382.10.1016/S1044-7431(03)00060-5Search in Google Scholar PubMed

Fischer, T.J., Walker, T.L., Overall, R.W., Brandt, M.D., and Kempermann, G. (2014). Acute effects of wheel running on adult hippocampal precursor cells in mice are not caused by changes in cell cycle length or S phase length. Front. Neurosci. 8, 314.10.3389/fnins.2014.00314Search in Google Scholar PubMed PubMed Central

Fukuda, S., Kato, F., Tozuka, Y., Yamaguchi, M., Miyamoto, Y., and Hisatsune, T. (2003). Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J. Neurosci. 23, 9357–9366.10.1523/JNEUROSCI.23-28-09357.2003Search in Google Scholar PubMed

Gao, Z., Ure, K., Ables, J.L., Lagace, D.C., Nave, K.-A., Goebbels, S., Eisch, A.J., and Hsieh, J. (2009). Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci. 12, 1090–1092.10.1038/nn.2385Search in Google Scholar PubMed PubMed Central

Garcia, A.D.R., Doan, N.B., Imura, T., Bush, T.G., and Sofroniew, M.V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241.10.1038/nn1340Search in Google Scholar PubMed

Ge, S., Pradhan, D.A., Ming, G.L., and Song, H. (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci. 30, 1–8.10.1016/j.tins.2006.11.001Search in Google Scholar PubMed

Gebara, E., Bonaguidi, M.A., Beckervordersandforth, R., Sultan, S., Udry, F., Gijs, P.-J., Lie, D.C., Ming, G.-L., Song, H., and Toni, N. (2016). Heterogeneity of radial glia-like cells in the adult hippocampus. Stem Cells 34, 997–1010.10.1002/stem.2266Search in Google Scholar PubMed PubMed Central

Gobeske, K.T., Das, S., Bonaguidi, M.A., Weiss, C., Radulovic, J., Disterhoft, J.F., and Kessler, J.A. (2009). BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice. PLoS One 4, e7506.10.1371/journal.pone.0007506Search in Google Scholar PubMed PubMed Central

Goldman, S.A. and Chen, Z. (2011). Perivascular instruction of cell genesis and fate in the adult brain. Nat. Neurosci. 14, 1382–1389.10.1038/nn.2963Search in Google Scholar PubMed PubMed Central

Gonçalves, J.T., Schafer, S.T., and Gage, F.H. (2016). Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167, 897–914.10.1016/j.cell.2016.10.021Search in Google Scholar PubMed

Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., and Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13, 717–728.10.1038/ in Google Scholar PubMed

Green, H.F. and Nolan, Y.M. (2012). Unlocking mechanisms in interleukin-1β-induced changes in hippocampal neurogenesis--a role for GSK-3β and TLX. Transl. Psychiatry 2, e194.10.1038/tp.2012.117Search in Google Scholar PubMed PubMed Central

Griffin, E.W., Bechara, R.G., Birch, A.M., and Kelly, A.M. (2009). Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19, 973–980.10.1002/hipo.20631Search in Google Scholar PubMed

Guadagno, J., Swan, P., Shaikh, R., and Cregan, S.P. (2015). Microglia-derived IL-1β triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. 6, e1779.10.1038/cddis.2015.151Search in Google Scholar PubMed PubMed Central

Hashimoto, S.-I., Morohoshi, K., Suzuki, T., and Matsushima, K. (2003). Lipopolysaccharide-inducible gene expression profile in human monocytes. Scand. J. Infect. Dis. 35, 619–627.10.1080/00365540310015926Search in Google Scholar PubMed

Hevner, R.F., Hodge, R.D., Daza, R.A.M., and Englund, C. (2006). Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci. Res. 55, 223–233.10.1016/j.neures.2006.03.004Search in Google Scholar PubMed

Hodge, R.D., Kowalczyk, T.D., Wolf, S.A., Encinas, J.M., Rippey, C., Enikolopov, G., Kempermann, G., and Hevner, R.F. (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J. Neurosci. 28, 3707–3717.10.1523/JNEUROSCI.4280-07.2008Search in Google Scholar PubMed PubMed Central

Hodge, R.D., Kahoud, R.J., and Hevner, R.F. (2012a). Transcriptional control of glutamatergic differentiation during adult neurogenesis. Cell. Mol. Life Sci. 69, 2125–2134.10.1007/s00018-011-0916-ySearch in Google Scholar PubMed PubMed Central

Hodge, R.D., Nelson, B.R., Kahoud, R.J., Yang, R., Mussar, K.E., Reiner, S.L., and Hevner, R.F. (2012b). Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J. Neurosci. 32, 6275–6287.10.1523/JNEUROSCI.0532-12.2012Search in Google Scholar PubMed PubMed Central

Hofer, S., Grandgirard, D., Burri, D., Fröhlich, T.K., and Leib, S.L. (2011). Bacterial meningitis impairs hippocampal neurogenesis. J. Neuropathol. Exp. Neurol. 70, 890–899.10.1097/NEN.0b013e3182303f31Search in Google Scholar PubMed

Iosif, R.E., Ekdahl, C.T., Ahlenius, H., Pronk, C.J.H., Bonde, S., Kokaia, Z., Jacobsen, S.-E.W., and Lindvall, O. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. 26, 9703–9712.10.1523/JNEUROSCI.2723-06.2006Search in Google Scholar PubMed

Jang, M.H., Bonaguidi, M.A., Kitabatake, Y., Sun, J., Song, J., Kang, E., Jun, H., Zhong, C., Su, Y., Guo, J.U., et al. (2013). Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell 12, 215–223.10.1016/j.stem.2012.11.021Search in Google Scholar PubMed

Ji, R., Tian, S., Lu, H.J., Lu, Q., Zheng, Y., Wang, X., Ding, J., Li, Q., and Lu, Q. (2013). TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J. Immunol. 191, 6165–6177.10.4049/jimmunol.1302229Search in Google Scholar PubMed

Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950.10.1073/pnas.182296499Search in Google Scholar

Johnson, R.A. and Mitchell, G.S. (2003). Exercise-induced changes in hippocampal brain-derived neurotrophic factor and neurotrophin-3: effects of rat strain. Brain Res. 983, 108–114.10.1016/S0006-8993(03)03039-7Search in Google Scholar PubMed

Kaplan, M.S. and Hinds, J.W. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094.10.1126/science.887941Search in Google Scholar PubMed

Karalay, O., Doberauer, K., Vadodaria, K.C., Knobloch, M., Berti, L., Miquelajauregui, A., Schwark, M., Jagasia, R., Taketo, M.M., Tarabykin, V., et al. (2011). Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA 108, 5807–5812.10.1073/pnas.1013456108Search in Google Scholar PubMed PubMed Central

Katoh-Semba, R., Takeuchi, I.K., Semba, R., and Kato, K. (1997). Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J. Neurochem. 69, 34–42.10.1046/j.1471-4159.1997.69010034.xSearch in Google Scholar PubMed

Keene, C.D., Chang, R., Stephen, C., Nivison, M., Nutt, S.E., Look, A., Breyer, R.M., Horner, P.J., Hevner, R., and Montine, T.J. (2009). Protection of hippocampal neurogenesis from toll-like receptor 4-dependent innate immune activation by ablation of prostaglandin E2 receptor subtype EP1 or EP2. Am. J. Pathol. 174, 2300–2309.10.2353/ajpath.2009.081153Search in Google Scholar PubMed PubMed Central

Kempermann, G., Jessberger, S., Steiner, B., and Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447–452.10.1016/j.tins.2004.05.013Search in Google Scholar PubMed

Kempermann, G., Song, H., and Gage, F. (2015). Neurogenesis in the adult hippocampus. Cold Spring Harb. Perspect. Biol. 7, a018812.10.1101/cshperspect.a018812Search in Google Scholar PubMed PubMed Central

Keohane, A., Ryan, S., Maloney, E., Sullivan, A.M., and Nolan, Y.M. (2010). Tumour necrosis factor-a impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: role of Hes1. Mol. Cell. Neurosci. 43, 127–135.10.1016/j.mcn.2009.10.003Search in Google Scholar PubMed

Kim, E.J., Leung, C.T., Reed, R.R., and Johnson, J.E. (2007). In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J. Neurosci. 27, 12764–12774.10.1523/JNEUROSCI.3178-07.2007Search in Google Scholar PubMed PubMed Central

Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., and Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. 33, 8270–8275.10.1523/JNEUROSCI.5855-12.2013Search in Google Scholar PubMed PubMed Central

Kohman, R.A., DeYoung, E.K., Bhattacharya, T.K., Peterson, L.N., and Rhodes, J.S. (2012). Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice. Brain. Behav. Immun. 26, 803–810.10.1016/j.bbi.2011.10.006Search in Google Scholar PubMed PubMed Central

Koo, J.W. and Duman, R.S. (2008). IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA 105, 751–756.10.1073/pnas.0708092105Search in Google Scholar PubMed PubMed Central

Kronenberg, G., Reuter, K., Steiner, B., Brandt, M.D., Jessberger, S., Yamaguchi, M., and Kempermann, G. (2003). Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol. 467, 455–463.10.1002/cne.10945Search in Google Scholar PubMed

Kuwabara, T., Hsieh, J., Muotri, A., Yeo, G., Warashina, M., Lie, D.C., Moore, L., Nakashima, K., Asashima, M., and Gage, F.H. (2009). Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 12, 1097–1105.10.1038/nn.2360Search in Google Scholar PubMed PubMed Central

Lai, K., Kaspar, B.K., Gage, F.H., and Schaffer, D.V. (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21–27.10.1038/nn983Search in Google Scholar PubMed

Lavado, A. and Oliver, G. (2014). Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus. Dev. Biol. 388, 11–21.10.1016/j.ydbio.2014.02.004Search in Google Scholar PubMed PubMed Central

Lavado, A., Lagutin, O.V., Chow, L.M.L., Baker, S.J., and Oliver, G. (2010). Prox1 Is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol. 8, 43–44.10.1371/journal.pbio.1000460Search in Google Scholar PubMed PubMed Central

Lee, M.C., Rakwal, R., Shibato, J., Inoue, K., Chang, H., and Soya, H. (2014). DNA microarray-based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity. Physiol. Rep. 2, e12206.10.14814/phy2.12206Search in Google Scholar PubMed PubMed Central

Li, Y., Luikart, B.W., Birnbaum, S., Chen, J., Kwon, C.H., Kernie, S.G., Bassel-Duby, R., and Parada, L.F. (2008). TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59, 399–412.10.1016/j.neuron.2008.06.023Search in Google Scholar PubMed PubMed Central

Lie, D., Colamarino, S.A., Song, H., Désiré, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A.R., et al. (2005). The Wnt/b-catenin signaling pathway in the adult neurogenesis. Eur. J. Neurosci. 33, 1370–1375.Search in Google Scholar

Littlefield, A.M., Setti, S.E., Priester, C., and Kohman, R.A. (2015). Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J. Neuroinflamm. 12, 138.10.1186/s12974-015-0362-0Search in Google Scholar PubMed PubMed Central

Lugert, S., Basak, O., Knuckles, P., Haussler, U., Fabel, K., Götz, M., Haas, C., Kempermann, G., Taylor, V., and Giachino, C. (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6, 445–456.10.1016/j.stem.2010.03.017Search in Google Scholar PubMed

Maekawa, M., Takashima, N., Arai, Y., Nomura, T., Inokuchi, K., Yuasi, S., and Osumi, N. (2005). Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10, 1001–1014.10.1111/j.1365-2443.2005.00893.xSearch in Google Scholar PubMed

Matsuda, T., Murao, N., Katano, Y., Juliandi, B., Kohyama, J., Akira, S., Kawai, T., and Nakashima, K. (2015). TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus. Nat. Commun. 6, 6514.10.1038/ncomms7514Search in Google Scholar PubMed PubMed Central

Ming, G.L. and Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702.10.1016/j.neuron.2011.05.001Search in Google Scholar PubMed PubMed Central

Mira, H., Andreu, Z., Suh, H., Lie, D.C., Jessberger, S., Consiglio, A., San Emeterio, J., Hortigüela, R., Marqués-Torrejón, M.A., Nakashima, K., et al. (2010). Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7, 78–89.10.1016/j.stem.2010.04.016Search in Google Scholar PubMed

Monje, M., Toda, H., and Palmer, T. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765.10.1126/science.1088417Search in Google Scholar PubMed

Moss, J., Gebara, E., Bushong, E.A., Sánchez-Pascual, I., O’Laoi, R., El M’Ghari, I., Kocher-Braissant, J., Ellisman, M.H., and Toni, N. (2016). Fine processes of Nestin-GFP–positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature. Proc. Natl. Acad. Sci. 113, E2536–E2545.10.1073/pnas.1514652113Search in Google Scholar

Nacher, J., Varea, E., Blasco-Ibañez, J.M., Castillo-Gomez, E., Crespo, C., Martinez-Guijarro, F.J., and McEwen, B.S. (2005). Expression of the transcription factor Pax6 in the adult rat dentate gyrus. J. Neurosci. Res. 81, 753–761.10.1002/jnr.20596Search in Google Scholar PubMed

Nakamura, Y., Sakakibara, S.I., Miyata, T., Ogawa, M., Shimazaki, T., Weiss, S., Kageyama, R., Okano, H., Shakakibara, S., Miyata, T., et al. (2000). The bHLH gene Hes1 as a repressor of the neuronal commitment of CNS stem cell. J. Neurosci. 20, 283–293.10.1523/JNEUROSCI.20-01-00283.2000Search in Google Scholar PubMed

Nakanishi, M., Niidome, T., Matsuda, S., Akaike, A., Kihara, T., and Sugimoto, H. (2007). Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur. J. Neurosci. 25, 649–658.10.1111/j.1460-9568.2007.05309.xSearch in Google Scholar PubMed

Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318.10.1126/science.1110647Search in Google Scholar PubMed

Overall, R.W., Walker, T.L., Fischer, T.J., Brandt, M.D., and Kempermann, G. (2016). Different mechanisms must be considered to explain the increase in hippocampal neural precursor cell proliferation by physical activity. Front. Neurosci. 10, 362.10.3389/fnins.2016.00362Search in Google Scholar PubMed

Ozen, I., Galichet, C., Watts, C., Parras, C., Guillemot, F., and Raineteau, O. (2007). Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2. Eur. J. Neurosci. 25, 2591–2603.10.1111/j.1460-9568.2007.05541.xSearch in Google Scholar PubMed

Packer, M.A., Stasiv, Y., Benraiss, A., Chmielnicki, E., Grinberg, A., Westphal, H., Goldman, S.A., and Enikolopov, G. (2003). Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. USA 100, 9566–9571.10.1073/pnas.1633579100Search in Google Scholar

Palmer, T.D., Takahashi, J., and Gage, F.H. (1997). The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404.10.1006/mcne.1996.0595Search in Google Scholar PubMed

Palmer, T.D., Willhoite, A.R., and Gage, F.H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494.10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3Search in Google Scholar PubMed

Peng, H., Whitney, N., Wu, Y., Tian, C., Dou, H., Zhou, Y., and Zheng, J. (2008). HIV-1-infected and/or immune-activated macrophage-secreted TNF-a affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia 56, 903–916.10.1002/glia.20665Search in Google Scholar PubMed PubMed Central

Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., Sloan, R., Gage, F.H., Small, S.A., and Brown, T.R. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638–5643.10.1073/pnas.0611721104Search in Google Scholar PubMed PubMed Central

Pugazhenthi, S., Zhang, Y., Bouchard, R., and Mahaffey, G. (2013). Induction of an inflammatory loop by interleukin-1β and tumor necrosis factor-α involves NF-κB and STAT-1 in differentiated human neuroprogenitor cells. PLoS One 8, e69585.10.1371/journal.pone.0069585Search in Google Scholar PubMed PubMed Central

Rao, M.S. and Shetty, A.K. (2004). Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci. 19, 234–246.10.1111/j.0953-816X.2003.03123.xSearch in Google Scholar PubMed

Ravasi, T., Wells, C., Forest, A., Underhill, D.M., Wainwright, B.J., Aderem, A., Grimmond, S., and Hume, D.A. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J. Immunol. 168, 44–50.10.4049/jimmunol.168.1.44Search in Google Scholar PubMed

Renault, V.M., Rafalski, V.A., Morgan, A.A., Salih, D.A.M., Brett, J.O., Webb, A.E., Villeda, S.A., Thekkat, P.U., Guillerey, C., Denko, N.C., et al. (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539.10.1016/j.stem.2009.09.014Search in Google Scholar PubMed PubMed Central

Riquelme, P.A., Drapeau, E., and Doetsch, F. (2008). Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos. Trans. Biol. Sci. 363, 123–137.10.1098/rstb.2006.2016Search in Google Scholar PubMed PubMed Central

Rolando, C., Erni, A., Grison, A., Beattie, R., Engler, A., Gokhale, P.J., Milo, M., Wegleiter, T., Jessberger, S., and Taylor, V. (2016). Multipotency of adult hippocampal NSCs in vivo is restricted by Drosha/NFIB. Cell Stem Cell 19, 653–662.10.1016/j.stem.2016.07.003Search in Google Scholar PubMed

Rolls, A., Shechter, R., London, A., Ziv, Y., Ronen, A., Levy, R., and Schwartz, M. (2007). Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 9, 1081–1088.10.1038/ncb1629Search in Google Scholar PubMed

Rudge, J.S., Alderson, R.F., Pasnikowski, E., McClain, J., Ip, N.Y., and Lindsay, R.M. (1992). Expression of ciliary neurotrophic factor and the neurotrophins – nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3-in cultured rat hippocampal astrocytes. Eur. J. Neurosci. 4, 459–471.10.1111/j.1460-9568.1992.tb00896.xSearch in Google Scholar PubMed

Russo, I., Amornphimoltham, P., Weigert, R., Bosetti, F., Russo, I., Amornphimoltham, P., Weigert, R., Barlati, S., and Bosetti, F. (2011a). Cyclooxygenase-1 is involved in the inhibition of hippocampal neurogenesis after lipopolysaccharide-induced neuroinflammation. Cell Cycle 10, 2568–2573.10.4161/cc.10.15.15946Search in Google Scholar PubMed PubMed Central

Russo, I., Barlati, S., and Bosetti, F. (2011b). Effects of neuroinflammation on the regenerative capacity of brain stem cells. J. Neurochem. 116, 947–956.10.1111/j.1471-4159.2010.07168.xSearch in Google Scholar PubMed PubMed Central

Ryan, S.M. and Nolan, Y.M. (2016). Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neurosci. Biobehav. Rev. 61, 121–131.10.1016/j.neubiorev.2015.12.004Search in Google Scholar PubMed

Sahay, A., Scobie, K.N., Hill, A.S., O’Carroll, C.M., Kheirbek, M.A., Burghardt, N.S., Fenton, A.A., Dranovsky, A., and Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470.10.1038/nature09817Search in Google Scholar PubMed PubMed Central

Saraulli, D., Costanzi, M., Mastrorilli, V., and Farioli-Vecchioli, S. (2017). The long run: neuroprotective effects of physical exercise on adult neurogenesis from youth to old age. Curr. Neuropharmacol. 15, 519–533.10.2174/1570159X14666160412150223Search in Google Scholar PubMed PubMed Central

Schanzer, A., Wachs, F.P., Wilhelm, D., Acker, T., Cooper-Kuhn, C., Beck, H., Winkler, J., Aigner, L., Plate, K.H., and Kuhn, H.G. (2004). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14, 237–248.10.1111/j.1750-3639.2004.tb00060.xSearch in Google Scholar PubMed PubMed Central

Scharfman, H., Goodman, J., Macleod, A., Phani, S., Antonelli, C., and Croll, S. (2005). Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol. 192, 348–356.10.1016/j.expneurol.2004.11.016Search in Google Scholar PubMed

Scheffel, J., Regen, T., Van Rossum, D., Seifert, S., Ribes, S., Nau, R., Parsa, R., Harris, R.A., Boddeke, H.W.G.M., Chuang, H.-N., et al. (2012). Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60, 1930–1943.10.1002/glia.22409Search in Google Scholar PubMed

Seki, T., Namba, T., Mochizuki, H., and Onodera, M. (2007). Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus. J. Comp. Neurol. 502, 275–290.10.1002/cne.21301Search in Google Scholar PubMed

Seri, B., García-Verdugo, J.M., McEwen, B.S., and Alvarez-Buylla, A. (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160.10.1523/JNEUROSCI.21-18-07153.2001Search in Google Scholar PubMed

Seri, B., Garcia-Verdugo, J.M., Collado-Morente, L., McEwen, B.S., and Alvarez-Buylla, A. (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J. Comp. Neurol. 478, 359–378.10.1002/cne.20288Search in Google Scholar PubMed

Sierra, A., Encinas, J.M., Deudero, J.J.P., Chancey, J.H., Enikolopov, G., Overstreet-Wadiche, L.S., Tsirka, S.E., and Maletic-Savatic, M. (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495.10.1016/j.stem.2010.08.014Search in Google Scholar PubMed

Song, H., Stevens, C.F., and Gage, F.H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44.10.1038/417039aSearch in Google Scholar PubMed

Song, J., Zhong, C., Bonaguidi, M.A., Sun, G.J., Hsu, D., Gu, Y., Meletis, K., Huang, Z.J., Ge, S., Enikolopov, G., et al. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150–154.10.1038/nature11306Search in Google Scholar PubMed

Spulber, S., Oprica, M., Bartfai, T., Winblad, B., and Schultzberg, M. (2008). Blunted neurogenesis and gliosis due to transgenic overexpression of human soluble IL-1ra in the mouse. Eur. J. Neurosci. 27, 549–558.10.1111/j.1460-9568.2008.06050.xSearch in Google Scholar PubMed

Steiner, B., Kronenberg, G., Jessberger, S., Brandt, M.D., Reuter, K., and Kempermann, G. (2004). Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 46, 41–52.10.1002/glia.10337Search in Google Scholar PubMed

Steiner, B., Klempin, F., Wang, L., Kott, M., Kettenmann, H., and Kempermann, G. (2006). Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54, 805–814.10.1002/glia.20407Search in Google Scholar PubMed

Steiner, B., Zurborg, S., Hörster, H., Fabel, K., and Kempermann, G. (2008). Differential 24 h responsiveness of Prox1 – expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience 154, 521–529.10.1016/j.neuroscience.2008.04.023Search in Google Scholar PubMed

Stump, G., Durrer, A., Klein, A.L., Lütolf, S., Suter, U., and Taylor, V. (2002). Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech. Dev. 114, 153–159.10.1016/S0925-4773(02)00043-6Search in Google Scholar PubMed

Suh, H., Consiglio, A., Ray, J., Sawai, T., D’Amour, K., and Gage, F.H. (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–28.10.1016/j.stem.2007.09.002Search in Google Scholar PubMed PubMed Central

Toni, N. and Schinder, A.F. (2015). Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb. Perspect. Biol. 8, a018903.10.1101/cshperspect.a018903Search in Google Scholar PubMed PubMed Central

Trejo, J.L., Carro, E., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634.10.1523/JNEUROSCI.21-05-01628.2001Search in Google Scholar PubMed

Valero, J., Mastrella, G., Neiva, I., Sánchez, S., and Malva, J.O. (2014). Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory. Front. Neurosci. 8, 83.10.3389/fnins.2014.00083Search in Google Scholar PubMed PubMed Central

Vallieres, L., Campbell, I.L., Gage, F.H., and Sawchenko, P.E. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492.10.1523/JNEUROSCI.22-02-00486.2002Search in Google Scholar PubMed

van Praag, H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685.10.1523/JNEUROSCI.1731-05.2005Search in Google Scholar PubMed PubMed Central

van Praag, H., Kempermann, G., and Gage, F.H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270.10.1038/6368Search in Google Scholar PubMed

van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., and Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034.10.1038/4151030aSearch in Google Scholar PubMed

Varela-Nallar, L. and Inestrosa, N.C. (2013). Wnt signaling in the regulation of adult hippocampal neurogenesis. Front. Cell. Neurosci. 7, 100.10.3389/fncel.2013.00100Search in Google Scholar PubMed PubMed Central

Vukovic, J., Colditz, M.J., Blackmore, D.G., Ruitenberg, M.J., and Bartlett, P.F. (2012). Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J. Neurosci. 32, 6435–6443.10.1523/JNEUROSCI.5925-11.2012Search in Google Scholar PubMed PubMed Central

Wakselman, S., Bechade, C., Roumier, A., Bernard, D., Triller, A., and Bessis, A. (2008). Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143.10.1523/JNEUROSCI.1006-08.2008Search in Google Scholar PubMed PubMed Central

Webb, A.E., Pollina, E.A., Vierbuchen, T., Urbán, N., Ucar, D., Leeman, D.S., Martynoga, B., Sewak, M., Rando, T.A., Guillemot, F., et al. (2013). FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep. 4, 477–491.10.1016/j.celrep.2013.06.035Search in Google Scholar PubMed PubMed Central

Whitney, N.P., Eidem, T.M., Peng, H., Huang, Y., and Zheng, C. (2010). Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J. Neurochem. 108, 1343–1359.10.1111/j.1471-4159.2009.05886.xSearch in Google Scholar PubMed PubMed Central

Williams, J.L., Holman, D.W., and Klein, R.S. (2014). Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front. Cell. Neurosci. 8, 154.10.3389/fncel.2014.00154Search in Google Scholar PubMed PubMed Central

Woodbury, M.E., Freilich, R.W., Cheng, C.J., Asai, H., Ikezu, S., Boucher, J.D., Slack, F., and Ikezu, T. (2015). miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. J. Neurosci. 35, 9764–9781.10.1523/JNEUROSCI.4790-14.2015Search in Google Scholar PubMed PubMed Central

Wu, C.W., Chen, Y.C., Yu, L., Chen, H.I., Jen, C.J., Huang, A.M., Tsai, H.J., Chang, Y.T., and Kuo, Y.M. (2007). Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J. Neurochem. 103, 2471–2481.10.1111/j.1471-4159.2007.04987.xSearch in Google Scholar PubMed

Wu, M.D., Hein, A.M., Moravan, M.J., Shaftel, S.S., Olschowka, J.A., and O’Banion, M.K. (2012). Adult murine hippocampal neurogenesis is inhibited by sustained IL-1β and not rescued by voluntary running. Brain. Behav. Immun. 26, 292–300.10.1016/j.bbi.2011.09.012Search in Google Scholar PubMed PubMed Central

Wu, M.D., Montgomery, S.L., Rivera-Escalera, F., Olschowka, J., and O’Banion, M.K. (2013). Sustained IL-1β expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin+ neural precursor cells. Brain. Behav. Immun. 32, 9–18.10.1016/j.bbi.2013.03.003Search in Google Scholar PubMed PubMed Central

Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.10.1016/j.cell.2008.01.033Search in Google Scholar PubMed

Zhu, X.J., Hua, Y., Jiang, J., Zhou, Q.G., Luo, C.X., Han, X., Lu, Y.M., and Zhu, D.Y. (2006). Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience 141, 827–836.10.1016/j.neuroscience.2006.04.032Search in Google Scholar PubMed

Zonis, S., Ljubimov, V.A., Mahgerefteh, M., Pechnick, R.N., Wawrowsky, K., and Chesnokova, V. (2013). p21Cip restrains hippocampal neurogenesis and protects neuronal progenitors from apoptosis during acute systemic inflammation. Hippocampus 23, 1383–1394.10.1002/hipo.22192Search in Google Scholar PubMed PubMed Central

Received: 2017-03-27
Accepted: 2017-06-29
Published Online: 2017-09-05
Published in Print: 2017-12-20

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2023 from
Scroll to top button