Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 8, 2018

Multiple sclerosis pathogenesis: missing pieces of an old puzzle

  • Reza Rahmanzadeh , Wolfgang Brück , Alireza Minagar and Mohammad Ali Sahraian EMAIL logo


Traditionally, multiple sclerosis (MS) was considered to be a CD4 T cell-mediated CNS autoimmunity, compatible with experimental autoimmune encephalitis model, which can be characterized by focal lesions in the white matter. However, studies of recent decades revealed several missing pieces of MS puzzle and showed that MS pathogenesis is more complex than the traditional view and may include the following: a primary degenerative process (e.g. oligodendroglial pathology), generalized abnormality of normal-appearing brain tissue, pronounced gray matter pathology, involvement of innate immunity, and CD8 T cells and B cells. Here, we review these findings and discuss their implications in MS pathogenesis.


Aboul-Enein, F., Rauschka, H., Kornek, B., Stadelmann, C., Stefferl, A., Bruck, W., Lucchinetti, C., Schmidbauer, M., Jellinger, K., and Lassmann, H. (2003). Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J. Neuropathol. Exp. Neurol. 62, 25–33.10.1093/jnen/62.1.25Search in Google Scholar PubMed

Adams, R.D. and Kubik, C.S. (1952). The morbid anatomy of the demyelinative disease. Am. J. Med. 12, 510–546.10.1016/0002-9343(52)90234-9Search in Google Scholar PubMed

Alberdi, E., Sanchez-Gomez, M.V., Torre, I., Domercq, M., Perez-Samartin, A., Perez-Cerda, F., and Matute, C. (2006). Activation of kainate receptors sensitizes oligodendrocytes to complement attack. J. Neurosci. 26, 3220–3228.10.1523/JNEUROSCI.3780-05.2006Search in Google Scholar PubMed

Amato, M.P., Bartolozzi, M.L., Zipoli, V., Portaccio, E., Mortilla, M., Guidi, L., Siracusa, G., Sorbi, S., Federico, A., and De Stefano, N. (2004). Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment. Neurology 63, 89–93.10.1212/01.WNL.0000129544.79539.D5Search in Google Scholar PubMed

Andreau, K., Lemaire, C., Souvannavong, V., and Adam, A. (1998). Induction of apoptosis by dexamethasone in the B cell lineage. Immunopharmacology 40, 67–76.10.1016/S0162-3109(98)00034-4Search in Google Scholar

Antel, J., Bania, M., Noronha, A., and Neely, S. (1986). Defective suppressor cell function mediated by T8+ cell lines from patients with progressive multiple sclerosis. J. Immunol. 137, 3436–3439.10.4049/jimmunol.137.11.3436Search in Google Scholar PubMed

Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R., Friese, M., Schroder, R., Deckert, M., Schmidt, S., et al. (2000). Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404.10.1084/jem.192.3.393Search in Google Scholar PubMed PubMed Central

Bagnato, F., Butman, J.A., Gupta, S., Calabrese, M., Pezawas, L., Ohayon, J.M., Tovar-Moll, F., Riva, M., Cao, M.M., Talagala, S.L., et al. (2006). In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis. Am. J. Neuroradiol. 27, 2161–2167.Search in Google Scholar

Barclay, W. and Shinohara, M.L. (2017). Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathol. 27, 213–219.10.1111/bpa.12477Search in Google Scholar PubMed PubMed Central

Barkhof, F. (2002). The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 15, 239–245.10.1097/00019052-200206000-00003Search in Google Scholar PubMed

Barnett, M.H. and Prineas, J.W. (2004). Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468.10.1002/ana.20016Search in Google Scholar PubMed

Baxter, A.G. (2007). The origin and application of experimental autoimmune encephalomyelitis. Nat. Rev. Immunol. 7, 904–912.10.1038/nri2190Search in Google Scholar PubMed

Ben-Nun, A., Wekerle, H., and Cohen, I.R. (1981). The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 11, 195–199.10.1002/eji.1830110307Search in Google Scholar PubMed

Birken, D.L. and Oldendorf, W.H. (1989). N-Acetyl-l-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci. Biobehav. Rev. 13, 23–31.10.1016/S0149-7634(89)80048-XSearch in Google Scholar PubMed

Bitsch, A., Wegener, C., da Costa, C., Bunkowski, S., Reimers, C.D., Prange, H.W., and Bruck, W. (1999). Lesion development in Marburg’s type of acute multiple sclerosis: from inflammation to demyelination. Mult. Scler. 5, 138–146.10.1177/135245859900500302Search in Google Scholar PubMed

Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T., and Bruck, W. (2000). Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123, 1174–1183.10.1093/brain/123.6.1174Search in Google Scholar PubMed

Bjartmar, C., Kinkel, R.P., Kidd, G., Rudick, R.A., and Trapp, B.D. (2001). Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57, 1248–1252.10.1212/WNL.57.7.1248Search in Google Scholar

Bo, L., Dawson, T.M., Wesselingh, S., Mork, S., Choi, S., Kong, P.A., Hanley, D., and Trapp, B.D. (1994). Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 36, 778–786.10.1002/ana.410360515Search in Google Scholar PubMed

Bo, L., Vedeler, C.A., Nyland, H., Trapp, B.D., and Mork, S.J. (2003a). Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler. 9, 323–331.10.1191/1352458503ms917oaSearch in Google Scholar

Bo, L., Vedeler, C.A., Nyland, H.I., Trapp, B.D., and Mork, S.J. (2003b). Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732.10.1093/jnen/62.7.723Search in Google Scholar

Bonetti, B. and Raine, C.S. (1997). Multiple sclerosis: oligodendrocytes display cell death-related molecules in situ but do not undergo apoptosis. Ann. Neurol. 42, 74–84.10.1002/ana.410420113Search in Google Scholar PubMed

Booss, J., Esiri, M.M., Tourtellotte, W.W., and Mason, D.Y. (1983). Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci. 62, 219–232.10.1016/0022-510X(83)90201-0Search in Google Scholar PubMed

Boyd, A., Zhang, H., and Williams, A. (2013). Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol. 125, 841–859.10.1007/s00401-013-1112-ySearch in Google Scholar PubMed

Brady, S.T., Witt, A.S., Kirkpatrick, L.L., de Waegh, S.M., Readhead, C., Tu, P.H., and Lee, V.M. (1999). Formation of compact myelin is required for maturation of the axonal cytoskeleton. J. Neurosci. 19, 7278–7288.10.1523/JNEUROSCI.19-17-07278.1999Search in Google Scholar PubMed

Breij, E.C., Brink, B.P., Veerhuis, R., van den Berg, C., Vloet, R., Yan, R., Dijkstra, C.D., van der Valk, P., and Bo, L. (2008). Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann. Neurol. 63, 16–25.10.1002/ana.21311Search in Google Scholar PubMed

Brickshawana, A., Hinson, S.R., Romero, M.F., Lucchinetti, C.F., Guo, Y., Buttmann, M., McKeon, A., Pittock, S.J., Chang, M.H., Chen, A.P., et al. (2014). Investigation of the KIR4.1 potassium channel as a putative antigen in patients with multiple sclerosis: a comparative study. Lancet Neurol. 13, 795–806.10.1016/S1474-4422(14)70141-3Search in Google Scholar PubMed

Bruck, W. (2005). Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J. Neurol. 252, v10–15.10.1007/s00415-005-5003-6Search in Google Scholar PubMed

Bruck, W., Schmied, M., Suchanek, G., Bruck, Y., Breitschopf, H., Poser, S., Piddlesden, S., and Lassmann, H. (1994). Oligodendrocytes in the early course of multiple sclerosis. Ann. Neurol. 35, 65–73.10.1002/ana.410350111Search in Google Scholar PubMed

Burfoot, R.K., Jensen, C.J., Field, J., Stankovich, J., Varney, M.D., Johnson, L.J., Butzkueven, H., Booth, D., Bahlo, M., Tait, B.D., et al. (2008). SNP mapping and candidate gene sequencing in the class I region of the HLA complex: searching for multiple sclerosis susceptibility genes in Tasmanians. Tissue Antigens 71, 42–50.10.1111/j.1399-0039.2007.00962.xSearch in Google Scholar PubMed

Calabrese, M. and Gallo, P. (2009). Magnetic resonance evidence of cortical onset of multiple sclerosis. Mult. Scler. 15, 933–941.10.1177/1352458509106510Search in Google Scholar PubMed

Calabrese, M., Agosta, F., Rinaldi, F., Mattisi, I., Grossi, P., Favaretto, A., Atzori, M., Bernardi, V., Barachino, L., Rinaldi, L., et al. (2009). Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150.10.1001/archneurol.2009.174Search in Google Scholar PubMed

Calabrese, M., Magliozzi, R., Ciccarelli, O., Geurts, J.J., Reynolds, R., and Martin, R. (2015). Exploring the origins of grey damage in multiple sclerosis. Nat. Rev. Neurosci. 16, 147–158.10.1038/nrn3900Search in Google Scholar PubMed

Cameron, E.M., Spencer, S., Lazarini, J., Harp, C.T., Ward, E.S., Burgoon, M., Owens, G.P., Racke, M.K., Bennett, J.L., Frohman, E.M., et al. (2009). Potential of a unique antibody gene signature to predict conversion to clinically definite multiple sclerosis. J. Neuroimmunol. 213, 123–130.10.1016/j.jneuroim.2009.05.014Search in Google Scholar PubMed

Cercignani, M., Bozzali, M., Iannucci, G., Comi, G., and Filippi, M. (2002). Intra-voxel and inter-voxel coherence in patients with multiple sclerosis assessed using diffusion tensor MRI. J. Neurol. 249, 875–883.10.1007/s00415-002-0752-ySearch in Google Scholar PubMed

Coles, A.J., Wing, M.G., Molyneux, P., Paolillo, A., Davie, C.M., Hale, G., Miller, D., Waldmann, H., and Compston, A. (1999). Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann. Neurol. 46, 296–304.10.1002/1531-8249(199909)46:3<296::AID-ANA4>3.0.CO;2-#Search in Google Scholar PubMed

Colombo, M., Dono, M., Gazzola, P., Roncella, S., Valetto, A., Chiorazzi, N., Mancardi, G.L., and Ferrarini, M. (2000). Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol. 164, 2782–2789.10.4049/jimmunol.164.5.2782Search in Google Scholar PubMed

Corcione, A., Casazza, S., Ferretti, E., Giunti, D., Zappia, E., Pistorio, A., Gambini, C., Mancardi, G.L., Uccelli, A., and Pistoia, V. (2004). Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 101, 11064–11069.10.1073/pnas.0402455101Search in Google Scholar

Cui, Q.L., Khan, D., Rone, M., T.S. Rao., V., Johnson, R.M., Lin, Y.H., Bilodeau, P.A., Hall, J.A., Rodriguez, M., Kennedy, T.E., et al. (2017). Sublethal oligodendrocyte injury: a reversible condition in multiple sclerosis? Ann. Neurol. 81, 811–824.10.1002/ana.24944Search in Google Scholar

Dalton, C.M., Chard, D.T., Davies, G.R., Miszkiel, K.A., Altmann, D.R., Fernando, K., Plant, G.T., Thompson, A.J., and Miller, D.H. (2004). Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 127, 1101–1107.10.1093/brain/awh126Search in Google Scholar PubMed

De Stefano, N., Narayanan, S., Francis, G.S., Arnaoutelis, R., Tartaglia, M.C., Antel, J.P., Matthews, P.M., and Arnold, D.L. (2001). Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch. Neurol. 58, 65–70.10.1001/archneur.58.1.65Search in Google Scholar PubMed

De Stefano, N., Matthews, P.M., Filippi, M., Agosta, F., De Luca, M., Bartolozzi, M.L., Guidi, L., Ghezzi, A., Montanari, E., Cifelli, A., et al. (2003). Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60, 1157–1162.10.1212/01.WNL.0000055926.69643.03Search in Google Scholar PubMed

Dendrou, C.A., Fugger, L., and Friese, M.A. (2015). Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558.10.1038/nri3871Search in Google Scholar PubMed

Derfuss, T., Parikh, K., Velhin, S., Braun, M., Mathey, E., Krumbholz, M., Kumpfel, T., Moldenhauer, A., Rader, C., Sonderegger, P., et al. (2009). Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl. Acad. Sci. USA 106, 8302–8307.10.1073/pnas.0901496106Search in Google Scholar PubMed PubMed Central

Domercq, M., Sanchez-Gomez, M.V., Sherwin, C., Etxebarria, E., Fern, R., and Matute, C. (2007). System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J. Immunol. 178, 6549–6556.10.4049/jimmunol.178.10.6549Search in Google Scholar PubMed

Dowling, P., Shang, G., Raval, S., Menonna, J., Cook, S., and Husar, W. (1996). Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J. Exp Med. 184, 1513–1518.10.1084/jem.184.4.1513Search in Google Scholar PubMed PubMed Central

Felts, P.A., Woolston, A.M., Fernando, H.B., Asquith, S., Gregson, N.A., Mizzi, O.J., and Smith, K.J. (2005). Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. Brain 128, 1649–1666.10.1093/brain/awh516Search in Google Scholar PubMed PubMed Central

Ferguson, B., Matyszak, M.K., Esiri, M.M., and Perry, V.H. (1997). Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399.10.1093/brain/120.3.393Search in Google Scholar PubMed

Filippi, M. (2015). MRI measures of neurodegeneration in multiple sclerosis: implications for disability, disease monitoring, and treatment. J. Neurol. 262, 1–6.10.1007/s00415-014-7340-9Search in Google Scholar PubMed

Filippi, M., Campi, A., Dousset, V., Baratti, C., Martinelli, V., Canal, N., Scotti, G., and Comi, G. (1995). A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 45, 478–482.10.1212/WNL.45.3.478Search in Google Scholar PubMed

Filippi, M., Rocca, M.A., Martino, G., Horsfield, M.A., and Comi, G. (1998). Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol. 43, 809–814.10.1002/ana.410430616Search in Google Scholar PubMed

Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D., and Anderton, S.M. (2002). B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950.10.1038/ni833Search in Google Scholar PubMed

Fogdell-Hahn, A., Ligers, A., Gronning, M., Hillert, J., and Olerup, O. (2000). Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55, 140–148.10.1034/j.1399-0039.2000.550205.xSearch in Google Scholar PubMed

Freund, J., Stern, E.R., and Pisani, T.M. (1947). Isoallergic encephalomyelitis and radiculitis in guinea pigs after one injection of brain and Mycobacteria in water-in-oil emulsion. J. Immunol. 57, 179–194.10.4049/jimmunol.57.2.179Search in Google Scholar PubMed

Friese, M.A. and Fugger, L. (2005). Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128, 1747–1763.10.1093/brain/awh578Search in Google Scholar PubMed

Friese, M.A., Schattling, B., and Fugger, L. (2014). Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10, 225–238.10.1038/nrneurol.2014.37Search in Google Scholar PubMed

Fu, L., Matthews, P.M., De Stefano, N., Worsley, K.J., Narayanan, S., Francis, G.S., Antel, J.P., Wolfson, C., and Arnold, D.L. (1998). Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121, 103–113.10.1093/brain/121.1.103Search in Google Scholar PubMed

Galea, I., Bechmann, I., and Perry, V.H. (2007). What is immune privilege (not)? Trends Immunol. 28, 12–18.10.1016/ in Google Scholar PubMed

Gay, F.W., Drye, T.J., Dick, G.W., and Esiri, M.M. (1997). The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120, 1461–1483.10.1093/brain/120.8.1461Search in Google Scholar PubMed

Geurts, J.J., Pouwels, P.J., Uitdehaag, B.M., Polman, C.H., Barkhof, F., and Castelijns, J.A. (2005). Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236, 254–260.10.1148/radiol.2361040450Search in Google Scholar PubMed

Giannetti, P., Politis, M., Su, P., Turkheimer, F.E., Malik, O., Keihaninejad, S., Wu, K., Waldman, A., Reynolds, R., Nicholas, R., et al. (2015). Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain 138, 110–119.10.1093/brain/awu331Search in Google Scholar PubMed PubMed Central

Goverman, J., Perchellet, A., and Huseby, E.S. (2005). The role of CD8+ T cells in multiple sclerosis and its animal models. Curr Drug Targets Inflamm Allergy 4, 239–245.10.2174/1568010053586264Search in Google Scholar PubMed

Griffin, C.M., Parker, G.J., Barker, G.J., Thompson, A.J., and Miller, D.H. (2000). MTR and T1 provide complementary information in MS NAWM, but not in lesions. Mult. Scler. 6, 327–331.10.1177/135245850000600506Search in Google Scholar PubMed

Griffiths, I., Klugmann, M., Anderson, T., Yool, D., Thomson, C., Schwab, M.H., Schneider, A., Zimmermann, F., McCulloch, M., Nadon, N., et al. (1998). Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613.10.1126/science.280.5369.1610Search in Google Scholar PubMed

Groom, A.J., Smith, T., and Turski, L. (2003). Multiple sclerosis and glutamate. Ann. N. Y. Acad. Sci. 993, 229–275; discussion 287–228.10.1111/j.1749-6632.2003.tb07533.xSearch in Google Scholar PubMed

Haghikia, A., Hohlfeld, R., Gold, R., and Fugger, L. (2013). Therapies for multiple sclerosis: translational achievements and outstanding needs. Trends Mol. Med. 19, 309–319.10.1016/j.molmed.2013.03.004Search in Google Scholar PubMed

Haines, J.D., Inglese, M., and Casaccia, P. (2011). Axonal damage in multiple sclerosis. Mt. Sinai. J. Med. 78, 231–243.10.1002/msj.20246Search in Google Scholar PubMed PubMed Central

Harkiolaki, M., Holmes, S.L., Svendsen, P., Gregersen, J.W., Jensen, L.T., McMahon, R., Friese, M.A., van Boxel, G., Etzensperger, R., Tzartos, J.S., et al. (2009). T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30, 348–357.10.1016/j.immuni.2009.01.009Search in Google Scholar PubMed

Hauser, S.L., Waubant, E., Arnold, D.L., Vollmer, T., Antel, J., Fox, R.J., Bar-Or, A., Panzara, M., Sarkar, N., Agarwal, S., et al. (2008). B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688.10.1056/NEJMoa0706383Search in Google Scholar PubMed

Henderson, A.P., Barnett, M.H., Parratt, J.D., and Prineas, J.W. (2009). Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann. Neurol. 66, 739–753.10.1002/ana.21800Search in Google Scholar PubMed

Hiepe, F., Dorner, T., Hauser, A.E., Hoyer, B.F., Mei, H., and Radbruch, A. (2011). Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 7, 170–178.10.1038/nrrheum.2011.1Search in Google Scholar PubMed

Hoftberger, R., Aboul-Enein, F., Brueck, W., Lucchinetti, C., Rodriguez, M., Schmidbauer, M., Jellinger, K., and Lassmann, H. (2004). Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol. 14, 43–50.10.1111/j.1750-3639.2004.tb00496.xSearch in Google Scholar PubMed PubMed Central

Hohlfeld, R. (1997). Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain 120, 865–916.10.1093/brain/120.5.865Search in Google Scholar PubMed

Hohlfeld, R. and Wekerle, H. (2001). Immunological update on multiple sclerosis. Curr. Opin. Neurol. 14, 299–304.10.1097/00019052-200106000-00006Search in Google Scholar PubMed

Hohlfeld, R., Dornmair, K., Meinl, E., and Wekerle, H. (2016a). The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 15, 198–209.10.1016/S1474-4422(15)00334-8Search in Google Scholar

Hohlfeld, R., Dornmair, K., Meinl, E., and Wekerle, H. (2016b). The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol. 15, 317–331.10.1016/S1474-4422(15)00313-0Search in Google Scholar

Howell, O.W., Reeves, C.A., Nicholas, R., Carassiti, D., Radotra, B., Gentleman, S.M., Serafini, B., Aloisi, F., Roncaroli, F., Magliozzi, R., et al. (2011). Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771.10.1093/brain/awr182Search in Google Scholar PubMed

Hulst, H.E. and Geurts, J.J. (2011). Gray matter imaging in multiple sclerosis: what have we learned? BMC Neurol. 11, 153.10.1186/1471-2377-11-153Search in Google Scholar PubMed PubMed Central

Huseby, E.S., Liggitt, D., Brabb, T., Schnabel, B., Ohlen, C., and Goverman, J. (2001). A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676.10.1084/jem.194.5.669Search in Google Scholar PubMed PubMed Central

Inglese, M. and Bester, M. (2010). Diffusion imaging in multiple sclerosis: research and clinical implications. NMR Biomed. 23, 865–872.10.1002/nbm.1515Search in Google Scholar PubMed PubMed Central

Itoyama, Y., Sternberger, N.H., Webster, H.D., Quarles, R.H., Cohen, S.R., and Richardson, E.P., Jr. (1980). Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann. Neurol. 7, 167–177.10.1002/ana.410070212Search in Google Scholar PubMed

Jacobsen, M., Cepok, S., Quak, E., Happel, M., Gaber, R., Ziegler, A., Schock, S., Oertel, W.H., Sommer, N., and Hemmer, B. (2002). Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125, 538–550.10.1093/brain/awf059Search in Google Scholar PubMed

Jarius, S., Konig, F.B., Metz, I., Ruprecht, K., Paul, F., Bruck, W., and Wildemann, B. (2017). Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis. J. Neuroinflammation 14, 171.10.1186/s12974-017-0929-zSearch in Google Scholar PubMed PubMed Central

Ji, Q., Perchellet, A., and Goverman, J.M. (2010). Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat. Immunol. 11, 628–634.10.1038/ni.1888Search in Google Scholar PubMed PubMed Central

Junker, A., Ivanidze, J., Malotka, J., Eiglmeier, I., Lassmann, H., Wekerle, H., Meinl, E., Hohlfeld, R., and Dornmair, K. (2007). Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130, 2789–2799.10.1093/brain/awm214Search in Google Scholar PubMed

Jurewicz, A., Matysiak, M., Tybor, K., Kilianek, L., Raine, C.S., and Selmaj, K. (2005). Tumour necrosis factor-induced death of adult human oligodendrocytes is mediated by apoptosis inducing factor. Brain 128, 2675–2688.10.1093/brain/awh627Search in Google Scholar PubMed

Juurlink, B.H. (1997). Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci. Biobehav. Rev. 21, 151–166.10.1016/S0149-7634(96)00005-XSearch in Google Scholar PubMed

Kabat, E.A., Wolf, A., and Bezer, A.E. (1947). The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J. Exp. Med. 85, 117–130.10.1084/jem.85.1.117Search in Google Scholar PubMed

Kappos, L., Antel, J., Comi, G., Montalban, X., O’Connor, P., Polman, C.H., Haas, T., Korn, A.A., Karlsson, G., Radue, E.W., et al. (2006). Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med. 355, 1124–1140.10.1056/NEJMoa052643Search in Google Scholar PubMed

Kappos, L., Freedman, M.S., Polman, C.H., Edan, G., Hartung, H.P., Miller, D.H., Montalban, X., Barkhof, F., Radu, E.W., Metzig, C., et al. (2009). Long-term effect of early treatment with interferon β-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 8, 987–997.10.1016/S1474-4422(09)70237-6Search in Google Scholar PubMed

Kappos, L., Li, D., Calabresi, P.A., O’Connor, P., Bar-Or, A., Barkhof, F., Yin, M., Leppert, D., Glanzman, R., Tinbergen, J., et al. (2011). Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787.10.1016/S0140-6736(11)61649-8Search in Google Scholar PubMed

Kappos, L., Hartung, H.P., Freedman, M.S., Boyko, A., Radu, E.W., Mikol, D.D., Lamarine, M., Hyvert, Y., Freudensprung, U., Plitz, T., et al. (2014). Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 13, 353–363.10.1016/S1474-4422(14)70028-6Search in Google Scholar PubMed

Karadottir, R., Cavelier, P., Bergersen, L.H., and Attwell, D. (2005). NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166.10.1038/nature04302Search in Google Scholar PubMed

Keegan, M., Konig, F., McClelland, R., Bruck, W., Morales, Y., Bitsch, A., Panitch, H., Lassmann, H., Weinshenker, B., Rodriguez, M., et al. (2005). Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366, 579–582.10.1016/S0140-6736(05)67102-4Search in Google Scholar PubMed

Kidd, D., Barkhof, F., McConnell, R., Algra, P.R., Allen, I.V., and Revesz, T. (1999). Cortical lesions in multiple sclerosis. Brain 122, 17–26.10.1093/brain/122.1.17Search in Google Scholar PubMed

Kivisakk, P., Mahad, D.J., Callahan, M.K., Trebst, C., Tucky, B., Wei, T., Wu, L., Baekkevold, E.S., Lassmann, H., Staugaitis, S.M., et al. (2003). Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl. Acad. Sci. USA 100, 8389–8394.10.1073/pnas.1433000100Search in Google Scholar

Kivisakk, P., Imitola, J., Rasmussen, S., Elyaman, W., Zhu, B., Ransohoff, R.M., and Khoury, S.J. (2009). Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469.10.1002/ana.21379Search in Google Scholar PubMed

Krogsgaard, M., Wucherpfennig, K.W., Cannella, B., Hansen, B.E., Svejgaard, A., Pyrdol, J., Ditzel, H., Raine, C., Engberg, J., and Fugger, L. (2000). Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85–99 complex. J. Exp. Med. 191, 1395–1412.10.1084/jem.191.8.1395Search in Google Scholar PubMed

Krumbholz, M., Specks, U., Wick, M., Kalled, S.L., Jenne, D., and Meinl, E. (2005). BAFF is elevated in serum of patients with Wegener’s granulomatosis. J. Autoimmun. 25, 298–302.10.1016/j.jaut.2005.08.004Search in Google Scholar PubMed

Krumbholz, M., Theil, D., Cepok, S., Hemmer, B., Kivisakk, P., Ransohoff, R.M., Hofbauer, M., Farina, C., Derfuss, T., Hartle, C., et al. (2006). Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211.10.1093/brain/awh680Search in Google Scholar PubMed

Krumbholz, M., Theil, D., Steinmeyer, F., Cepok, S., Hemmer, B., Hofbauer, M., Farina, C., Derfuss, T., Junker, A., Arzberger, T., et al. (2007). CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J. Neuroimmunol. 190, 72–79.10.1016/j.jneuroim.2007.07.024Search in Google Scholar PubMed

Kuhlmann, T., Lucchinetti, C., Zettl, U.K., Bitsch, A., Lassmann, H., and Bruck, W. (1999). Bcl-2-expressing oligodendrocytes in multiple sclerosis lesions. Glia 28, 34–39.10.1002/(SICI)1098-1136(199910)28:1<34::AID-GLIA4>3.0.CO;2-8Search in Google Scholar PubMed

Kuhlmann, T., Miron, V., Cui, Q., Wegner, C., Antel, J., and Bruck, W. (2008). Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758.10.1093/brain/awn096Search in Google Scholar PubMed

Kuhlmann, T., Ludwin, S., Prat, A., Antel, J., Bruck, W., and Lassmann, H. (2017). An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24.10.1007/s00401-016-1653-ySearch in Google Scholar PubMed

Kutzelnigg, A. and Lassmann, H. (2005). Cortical lesions and brain atrophy in MS. J Neurol Sci. 233, 55–59.10.1016/j.jns.2005.03.027Search in Google Scholar PubMed

Kutzelnigg, A., Lucchinetti, C.F., Stadelmann, C., Bruck, W., Rauschka, H., Bergmann, M., Schmidbauer, M., Parisi, J.E., and Lassmann, H. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712.10.1093/brain/awh641Search in Google Scholar PubMed

Kutzelnigg, A., Faber-Rod, J.C., Bauer, J., Lucchinetti, C.F., Sorensen, P.S., Laursen, H., Stadelmann, C., Bruck, W., Rauschka, H., Schmidbauer, M., et al. (2007). Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 17, 38–44.10.1111/j.1750-3639.2006.00041.xSearch in Google Scholar PubMed

Laplaud, D.A., Ruiz, C., Wiertlewski, S., Brouard, S., Berthelot, L., Guillet, M., Melchior, B., Degauque, N., Edan, G., Brachet, P., et al. (2004). Blood T-cell receptor beta chain transcriptome in multiple sclerosis. Characterization of the T cells with altered CDR3 length distribution. Brain 127, 981–995.10.1093/brain/awh119Search in Google Scholar

Lappe-Siefke, C., Goebbels, S., Gravel, M., Nicksch, E., Lee, J., Braun, P.E., Griffiths, I.R., and Nave, K.A. (2003). Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374.10.1038/ng1095Search in Google Scholar PubMed

Lassmann, H. (2007). Experimental models of multiple sclerosis. Rev. Neurol. (Paris) 163, 651–655.10.1016/S0035-3787(07)90474-9Search in Google Scholar PubMed

Lassmann, H., Bruck, W., and Lucchinetti, C.F. (2007). The immunopathology of multiple sclerosis: an overview. Brain Pathol. 17, 210–218.10.1111/j.1750-3639.2007.00064.xSearch in Google Scholar PubMed

Lennon, V.A., Wingerchuk, D.M., Kryzer, T.J., Pittock, S.J., Lucchinetti, C.F., Fujihara, K., Nakashima, I., and Weinshenker, B.G. (2004). A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112.10.1016/S0140-6736(04)17551-XSearch in Google Scholar PubMed

Lipton, S.A. and Rosenberg, P.A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622.10.1056/NEJM199403033300907Search in Google Scholar PubMed

Liu, J.S., Zhao, M.L., Brosnan, C.F., and Lee, S.C. (2001). Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am. J. Pathol. 158, 2057–2066.10.1016/S0002-9440(10)64677-9Search in Google Scholar PubMed

Loevner, L.A., Grossman, R.I., Cohen, J.A., Lexa, F.J., Kessler, D., and Kolson, D.L. (1995). Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196, 511–515.10.1148/radiology.196.2.7617869Search in Google Scholar PubMed

Loitfelder, M., Filippi, M., Rocca, M., Valsasina, P., Ropele, S., Jehna, M., Fuchs, S., Schmidt, R., Neuper, C., Fazekas, F., et al. (2012). Abnormalities of resting state functional connectivity are related to sustained attention deficits in MS. PLoS One 7, e42862.10.1371/journal.pone.0042862Search in Google Scholar PubMed

Lublin, F.D., Lavasa, M., Viti, C., and Knobler, R.L. (1987). Suppression of acute and relapsing experimental allergic encephalomyelitis with mitoxantrone. Clin. Immunol. Immunopathol. 45, 122–128.10.1016/0090-1229(87)90118-8Search in Google Scholar PubMed

Lublin, F.D., Reingold, S.C., Cohen, J.A., Cutter, G.R., Sorensen, P.S., Thompson, A.J., Wolinsky, J.S., Balcer, L.J., Banwell, B., Barkhof, F., et al. (2014). Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286.10.1212/WNL.0000000000000560Search in Google Scholar PubMed

Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (1999). A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 122, 2279–2295.10.1093/brain/122.12.2279Search in Google Scholar

Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717.10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-QSearch in Google Scholar PubMed

Lucchinetti, C.F., Popescu, B.F., Bunyan, R.F., Moll, N.M., Roemer, S.F., Lassmann, H., Bruck, W., Parisi, J.E., Scheithauer, B.W., Giannini, C., et al. (2011). Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197.10.1056/NEJMoa1100648Search in Google Scholar PubMed

Lucchinetti, C.F., Guo, Y., Popescu, B.F., Fujihara, K., Itoyama, Y., and Misu, T. (2014). The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 24, 83–97.10.1111/bpa.12099Search in Google Scholar PubMed

Lund, F.E. (2008). Cytokine-producing B lymphocytes – key regulators of immunity. Curr. Opin. Immunol. 20, 332–338.10.1016/j.coi.2008.03.003Search in Google Scholar PubMed

Mackay, F. and Schneider, P. (2009). Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502.10.1038/nri2572Search in Google Scholar PubMed

Madsen, L.S., Andersson, E.C., Jansson, L., Krogsgaard, M., Andersen, C.B., Engberg, J., Strominger, J.L., Svejgaard, A., Hjorth, J.P., Holmdahl, R., et al. (1999). A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat. Genet. 23, 343–347.10.1038/15525Search in Google Scholar

Magliozzi, R., Howell, O., Vora, A., Serafini, B., Nicholas, R., Puopolo, M., Reynolds, R., and Aloisi, F. (2007). Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104.10.1093/brain/awm038Search in Google Scholar PubMed

Mahad, D.H., Trapp, B.D., and Lassmann, H. (2015). Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193.10.1016/S1474-4422(14)70256-XSearch in Google Scholar PubMed

Marik, C., Felts, P.A., Bauer, J., Lassmann, H., and Smith, K.J. (2007). Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130, 2800–2815.10.1093/brain/awm236Search in Google Scholar

Mathey, E.K., Derfuss, T., Storch, M.K., Williams, K.R., Hales, K., Woolley, D.R., Al-Hayani, A., Davies, S.N., Rasband, M.N., Olsson, T., et al. (2007). Neurofascin as a novel target for autoantibody-mediated axonal injury. J. Exp. Med. 204, 2363–2372.10.1084/jem.20071053Search in Google Scholar PubMed

Matute, C. and Perez-Cerda, F. (2005). Multiple sclerosis: novel perspectives on newly forming lesions. Trends Neurosci. 28, 173–175.10.1016/j.tins.2005.01.006Search in Google Scholar PubMed

Matute, C., Alberdi, E., Domercq, M., Perez-Cerda, F., Perez-Samartin, A., and Sanchez-Gomez, M.V. (2001). The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci. 24, 224–230.10.1016/S0166-2236(00)01746-XSearch in Google Scholar PubMed

Meinl, E., Krumbholz, M., and Hohlfeld, R. (2006). B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann. Neurol. 59, 880892.10.1002/ana.20890Search in Google Scholar PubMed

Merkler, D., Ernsting, T., Kerschensteiner, M., Bruck, W., and Stadelmann, C. (2006). A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain 129, 1972–1983.10.1093/brain/awl135Search in Google Scholar PubMed

Metz, I., Weigand, S.D., Popescu, B.F., Frischer, J.M., Parisi, J.E., Guo, Y., Lassmann, H., Bruck, W., and Lucchinetti, C.F. (2014). Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann. Neurol. 75, 728–738.10.1002/ana.24163Search in Google Scholar PubMed PubMed Central

Morgan, I.M. (1947). Allergic encephalomyelitis in monkeys in response to injection of normal monkey nervous tissue. J. Exp. Med. 85, 131–140.10.1084/jem.85.1.131Search in Google Scholar PubMed

Munz, C., Lunemann, J.D., Getts, M.T., and Miller, S.D. (2009). Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 9, 246–258.10.1038/nri2527Search in Google Scholar

Napoli, I. and Neumann, H. (2009). Microglial clearance function in health and disease. Neuroscience 158, 1030–1038.10.1016/j.neuroscience.2008.06.046Search in Google Scholar PubMed

Napoli, I. and Neumann, H. (2010). Protective effects of microglia in multiple sclerosis. Exp Neurol. 225, 24–28.10.1016/j.expneurol.2009.04.024Search in Google Scholar PubMed

Narayana, P.A., Doyle, T.J., Lai, D., and Wolinsky, J.S. (1998). Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann. Neurol. 43, 56–71.10.1002/ana.410430112Search in Google Scholar PubMed

Neumann, H., Cavalie, A., Jenne, D.E., and Wekerle, H. (1995). Induction of MHC class I genes in neurons. Science 269, 549–552.10.1126/science.7624779Search in Google Scholar PubMed

Neumann, H., Medana, I.M., Bauer, J., and Lassmann, H. (2002). Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25, 313–319.10.1016/S0166-2236(02)02154-9Search in Google Scholar PubMed

O’Connor, K.C., Appel, H., Bregoli, L., Call, M.E., Catz, I., Chan, J.A., Moore, N.H., Warren, K.G., Wong, S.J., Hafler, D.A., and Wucherpfennig, K.W. (2005). Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J. Immunol. 175, 1974–1982.10.4049/jimmunol.175.3.1974Search in Google Scholar PubMed PubMed Central

Obermeier, B., Mentele, R., Malotka, J., Kellermann, J., Kumpfel, T., Wekerle, H., Lottspeich, F., Hohlfeld, R., and Dornmair, K. (2008). Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat. Med. 14, 688–693.10.1038/nm1714Search in Google Scholar PubMed

Oksenberg, J.R., Panzara, M.A., Begovich, A.B., Mitchell, D., Erlich, H.A., Murray, R.S., Shimonkevitz, R., Sherritt, M., Rothbard, J., Bernard, C.C., et al. (1993). Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362, 68–70.10.1038/362068a0Search in Google Scholar PubMed

Olerup, O. and Hillert, J. (1991). HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 38, 1–15.10.1111/j.1399-0039.1991.tb02029.xSearch in Google Scholar PubMed

Olson, J.K., Croxford, J.L., Calenoff, M.A., Dal Canto, M.C., and Miller, S.D. (2001). A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Invest. 108, 311–318.10.1172/JCI200113032Search in Google Scholar PubMed

Oluich, L.J., Stratton, J.A., Xing, Y.L., Ng, S.W., Cate, H.S., Sah, P., Windels, F., Kilpatrick, T.J., and Merson, T.D. (2012). Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J. Neurosci. 32, 8317–8330.10.1523/JNEUROSCI.1053-12.2012Search in Google Scholar PubMed

Paolillo, A., Coles, A.J., Molyneux, P.D., Gawne-Cain, M., MacManus, D., Barker, G.J., Compston, D.A., and Miller, D.H. (1999). Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 53, 751–757.10.1212/WNL.53.4.751Search in Google Scholar PubMed

Parry, A., Clare, S., Jenkinson, M., Smith, S., Palace, J., and Matthews, P.M. (2002). White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. J. Neurol. 249, 1279–1286.10.1007/s00415-002-0837-7Search in Google Scholar PubMed

Pashenkov, M., Soderstrom, M., and Link, H. (2003). Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. J. Neuroimmunol. 135, 154–160.10.1016/S0165-5728(02)00441-1Search in Google Scholar PubMed

Patani, R., Balaratnam, M., Vora, A., and Reynolds, R. (2007). Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287.10.1111/j.1365-2990.2007.00805.xSearch in Google Scholar PubMed

Patrikios, P., Stadelmann, C., Kutzelnigg, A., Rauschka, H., Schmidbauer, M., Laursen, H., Sorensen, P.S., Bruck, W., Lucchinetti, C., and Lassmann, H. (2006). Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172.10.1093/brain/awl217Search in Google Scholar PubMed

Pender, M.P. and Burrows, S.R. (2014). Epstein-Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin. Transl. Immunol. 3, e27.10.1038/cti.2014.25Search in Google Scholar PubMed PubMed Central

Peterson, J.W., Bo, L., Mork, S., Chang, A., and Trapp, B.D. (2001). Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400.10.1002/ana.1123Search in Google Scholar PubMed

Pitt, D., Werner, P., and Raine, C.S. (2000). Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 6, 67–70.10.1038/71555Search in Google Scholar PubMed

Popescu, B.F. and Lucchinetti, C.F. (2012). Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. 12, 11.10.1186/1471-2377-12-11Search in Google Scholar PubMed PubMed Central

Popescu, B.F., Bunyan, R.F., Parisi, J.E., Ransohoff, R.M., and Lucchinetti, C.F. (2011). A case of multiple sclerosis presenting with inflammatory cortical demyelination. Neurology 76, 1705–1710.10.1212/WNL.0b013e31821a44f1Search in Google Scholar PubMed PubMed Central

Rahmanzadeh, R., Sahraian, M.A., Rahmanzade, R., and Rodriguez, M. (2018). Demyelination with preferential MAG loss: a complex message from MS paraffin blocks. J. Neurol. Sci. 385, 126–130.10.1016/j.jns.2017.12.029Search in Google Scholar PubMed

Ransohoff, R.M., Hafler, D.A., and Lucchinetti, C.F. (2015). Multiple sclerosis – a quiet revolution. Nat. Rev. Neurol. 11, 134–142.10.1038/nrneurol.2015.14Search in Google Scholar PubMed PubMed Central

Redpath, T.W. and Smith, F.W. (1994). Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br. J. Radiol. 67, 1258–1263.10.1259/0007-1285-67-804-1258Search in Google Scholar PubMed

Rivers, T.M. and Schwentker, F.F. (1935). Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J. Exp. Med. 61, 689–702.10.1084/jem.61.5.689Search in Google Scholar PubMed PubMed Central

Rivers, T.M., Sprunt, D.H., and Berry, G.P. (1933). Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J. Exp. Med. 58, 39–53.10.1084/jem.58.1.39Search in Google Scholar PubMed PubMed Central

Rocca, M.A., Iannucci, G., Rovaris, M., Comi, G., and Filippi, M. (2003). Occult tissue damage in patients with primary progressive multiple sclerosis is independent of T2-visible lesions – a diffusion tensor MR study. J. Neurol. 250, 456–460.10.1007/s00415-003-1024-1Search in Google Scholar PubMed

Rocca, M.A., Valsasina, P., Meani, A., Falini, A., Comi, G., and Filippi, M. (2016). Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct. Funct. 221, 115–131.10.1007/s00429-014-0896-4Search in Google Scholar PubMed

Rodriguez, M. and Scheithauer, B. (1994). Ultrastructure of multiple sclerosis. Ultrastruct Pathol. 18, 3–13.10.3109/01913129409016267Search in Google Scholar PubMed

Rovaris, M., Bozzali, M., Santuccio, G., Ghezzi, A., Caputo, D., Montanari, E., Bertolotto, A., Bergamaschi, R., Capra, R., Mancardi, G., et al. (2001). In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 124, 2540–2549.10.1093/brain/124.12.2540Search in Google Scholar PubMed

Rovaris, M., Bozzali, M., Iannucci, G., Ghezzi, A., Caputo, D., Montanari, E., Bertolotto, A., Bergamaschi, R., Capra, R., Mancardi, G.L., et al. (2002). Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study. Arch. Neurol. 59, 1406–1412.10.1001/archneur.59.9.1406Search in Google Scholar PubMed

Samson, R.S., Cardoso, M.J., Muhlert, N., Sethi, V., Wheeler-Kingshott, C.A., Ron, M., Ourselin, S., Miller, D.H., and Chard, D.T. (2014). Investigation of outer cortical magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups. Mult. Scler. 20, 1322–1330.10.1177/1352458514522537Search in Google Scholar PubMed

Sanchez-Gomez, M.V., Alberdi, E., Ibarretxe, G., Torre, I., and Matute, C. (2003). Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J. Neurosci. 23, 9519–9528.10.1523/JNEUROSCI.23-29-09519.2003Search in Google Scholar PubMed

Sanfilipo, M.P., Benedict, R.H., Weinstock-Guttman, B., and Bakshi, R. (2006). Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 66, 685–692.10.1212/01.wnl.0000201238.93586.d9Search in Google Scholar PubMed

Schmierer, K., Scaravilli, F., Altmann, D.R., Barker, G.J., and Miller, D.H. (2004). Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 56, 407–415.10.1002/ana.20202Search in Google Scholar PubMed

Schroder, A.E., Greiner, A., Seyfert, C., and Berek, C. (1996). Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 93, 221–225.10.1073/pnas.93.1.221Search in Google Scholar PubMed PubMed Central

Schultz, V., van der Meer, F., Wrzos, C., Scheidt, U., Bahn, E., Stadelmann, C., Bruck, W., and Junker, A. (2017). Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination. Glia 65, 1350–1360.10.1002/glia.23167Search in Google Scholar PubMed PubMed Central

Schwentker, F.F. and Rivers, T.M. (1934). The Antibody response of rabbits to injections of emulsions and extracts of homologous brain. J. Exp. Med. 60, 559–574.10.1084/jem.60.5.559Search in Google Scholar PubMed PubMed Central

Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E., and Aloisi, F. (2004). Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174.10.1111/j.1750-3639.2004.tb00049.xSearch in Google Scholar PubMed

Serafini, B., Rosicarelli, B., Aloisi, F., and Stigliano, E. (2014). Epstein-Barr virus in the central nervous system and cervical lymph node of a patient with primary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 73, 729–731.10.1097/NEN.0000000000000082Search in Google Scholar PubMed

Shechter, R., London, A., and Schwartz, M. (2013). Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat. Rev. Immunol. 13, 206–218.10.1038/nri3391Search in Google Scholar PubMed

Simon, B., Schmidt, S., Lukas, C., Gieseke, J., Traber, F., Knol, D.L., Willinek, W.A., Geurts, J.J., Schild, H.H., Barkhof, F., et al. (2010). Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur. Radiol. 20, 1675–1683.10.1007/s00330-009-1705-ySearch in Google Scholar PubMed

Skulina, C., Schmidt, S., Dornmair, K., Babbe, H., Roers, A., Rajewsky, K., Wekerle, H., Hohlfeld, R., and Goebels, N. (2004). Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl. Acad. Sci. USA 101, 2428–2433.10.1073/pnas.0308689100Search in Google Scholar

Smith, K.J. and Lassmann, H. (2002). The role of nitric oxide in multiple sclerosis. Lancet Neurol. 1, 232–241.10.1016/S1474-4422(02)00102-3Search in Google Scholar PubMed

Srivastava, R., Aslam, M., Kalluri, S.R., Schirmer, L., Buck, D., Tackenberg, B., Rothhammer, V., Chan, A., Gold, R., Berthele, A., et al. (2012). Potassium channel KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med. 367, 115–123.10.1056/NEJMoa1110740Search in Google Scholar PubMed

Steinman, L. (1996). Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302.10.1016/S0092-8674(00)81107-1Search in Google Scholar PubMed

Steinman, L. and Zamvil, S.S. (2006). How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol. 60, 12–21.10.1002/ana.20913Search in Google Scholar PubMed

Stork, L., Ellenberger, D., Beissbarth, T., Friede, T., Lucchinetti, C.F., Bruck, W., and Metz, I. (2018). Differences in the reponses to apheresis therapy of patients with 3 histopathologically classified immunopathological patterns of multiple sclerosis. J. Am. Med. Assoc. Neurol. 75, 428–435.10.1001/jamaneurol.2017.4842Search in Google Scholar PubMed PubMed Central

Stys, P.K., Zamponi, G.W., van Minnen, J., and Geurts, J.J. (2012). Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 13, 507–514.10.1038/nrn3275Search in Google Scholar PubMed

Tanaka, H., Grooms, S.Y., Bennett, M.V., and Zukin, R.S. (2000). The AMPAR subunit GluR2: still front and center-stage. Brain Res. 886, 190–207.10.1016/S0006-8993(00)02951-6Search in Google Scholar PubMed

Teitelbaum, D., Meshorer, A., Hirshfeld, T., Arnon, R., and Sela, M. (1971). Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur. J. Immunol. 1, 242–248.10.1002/eji.1830010406Search in Google Scholar PubMed

Tennakoon, D.K., Mehta, R.S., Ortega, S.B., Bhoj, V., Racke, M.K., and Karandikar, N.J. (2006). Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J. Immunol. 176, 7119–7129.10.4049/jimmunol.176.11.7119Search in Google Scholar PubMed

Thompson, A.J., Banwell, B.L., Barkhof, F., Carroll, W.M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M.S., et al. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173.10.1016/S1474-4422(17)30470-2Search in Google Scholar PubMed

Thorburne, S.K. and Juurlink, B.H. (1996). Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem. 67, 1014–1022.10.1046/j.1471-4159.1996.67031014.xSearch in Google Scholar PubMed

Tiberio, M., Chard, D.T., Altmann, D.R., Davies, G., Griffin, C.M., Rashid, W., Sastre-Garriga, J., Thompson, A.J., and Miller, D.H. (2005). Gray and white matter volume changes in early RRMS: a 2-year longitudinal study. Neurology 64, 1001–1007.10.1212/01.WNL.0000154526.22878.30Search in Google Scholar PubMed

Tintore, M., Rovira, A., Brieva, L., Grive, E., Jardi, R., Borras, C., and Montalban, X. (2001). Isolated demyelinating syndromes: comparison of CSF oligoclonal bands and different MR imaging criteria to predict conversion to CDMS. Mult. Scler. 7, 359–363.10.1177/135245850100700603Search in Google Scholar PubMed

Traka, M., Podojil, J.R., McCarthy, D.P., Miller, S.D., and Popko, B. (2016). Oligodendrocyte death results in immune-mediated CNS demyelination. Nat. Neurosci. 19, 65–74.10.1038/nn.4193Search in Google Scholar PubMed PubMed Central

Trapp, B.D., Peterson, J., Ransohoff, R.M., Rudick, R., Mork, S., and Bo, L. (1998). Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285.10.1056/NEJM199801293380502Search in Google Scholar PubMed

Trapp, B.D., Bo, L., Mork, S., and Chang, A. (1999). Pathogenesis of tissue injury in MS lesions. J. Neuroimmunol. 98, 49–56.10.1016/S0165-5728(99)00081-8Search in Google Scholar PubMed

Uschkureit, T., Sporkel, O., Stracke, J., Bussow, H., and Stoffel, W. (2000). Early onset of axonal degeneration in double (plp−/− mag−/−) and hypomyelinosis in triple (plp−/− mbp−/−mag−/−) mutant mice. J. Neurosci. 20, 5225–5233.10.1523/JNEUROSCI.20-14-05225.2000Search in Google Scholar

van Horssen, J., Brink, B.P., de Vries, H.E., van der Valk, P., and Bo, L. (2007). The blood-brain barrier in cortical multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 66, 321–328.10.1097/nen.0b013e318040b2deSearch in Google Scholar PubMed

van Oosten, B.W., Barkhof, F., Truyen, L., Boringa, J.B., Bertelsmann, F.W., von Blomberg, B.M., Woody, J.N., Hartung, H.P., and Polman, C.H. (1996). Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534.10.1212/WNL.47.6.1531Search in Google Scholar PubMed

van Oosten, B.W., Lai, M., Hodgkinson, S., Barkhof, F., Miller, D.H., Moseley, I.F., Thompson, A.J., Rudge, P., McDougall, A., McLeod, J.G., et al. (1997). Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49, 351–357.10.1212/WNL.49.2.351Search in Google Scholar PubMed

van Waesberghe, J.H., Castelijns, J.A., Scheltens, P., Truyen, L., Lycklana, A.N.G.J., Hoogenraad, F.G., Polman, C.H., Valk, J., and Barkhof, F. (1997). Comparison of four potential MR parameters for severe tissue destruction in multiple sclerosis lesions. Magn. Reson. Imaging 15, 155–162.10.1016/S0730-725X(96)00340-2Search in Google Scholar PubMed

van Walderveen, M.A., van Schijndel, R.A., Pouwels, P.J., Polman, C.H., and Barkhof, F. (2003). Multislice T1 relaxation time measurements in the brain using IR-EPI: reproducibility, normal values, and histogram analysis in patients with multiple sclerosis. J. Magn. Reson. Imaging 18, 656–664.10.1002/jmri.10417Search in Google Scholar PubMed

Vercellino, M., Plano, F., Votta, B., Mutani, R., Giordana, M.T., and Cavalla, P. (2005). Grey matter pathology in multiple sclerosis. J. Neuropathol. Exp. Neurol. 64, 1101–1107.10.1097/01.jnen.0000190067.20935.42Search in Google Scholar PubMed

Vrenken, H., Geurts, J.J., Knol, D.L., van Dijk, L.N., Dattola, V., Jasperse, B., van Schijndel, R.A., Polman, C.H., Castelijns, J.A., Barkhof, F., et al. (2006a). Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 240, 811–820.10.1148/radiol.2403050569Search in Google Scholar PubMed

Vrenken, H., Pouwels, P.J., Geurts, J.J., Knol, D.L., Polman, C.H., Barkhof, F., and Castelijns, J.A. (2006b). Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: cortical diffusion changes seem related to clinical deterioration. J. Magn. Reson. Imaging 23, 628–636.10.1002/jmri.20564Search in Google Scholar PubMed

Vrenken, H., Rombouts, S.A., Pouwels, P.J., and Barkhof, F. (2006c). Voxel-based analysis of quantitative T1 maps demonstrates that multiple sclerosis acts throughout the normal-appearing white matter. AJNR Am. J. Neuroradiol. 27, 868–874.Search in Google Scholar

Walker, C.A., Huttner, A.J., and O’Connor, K.C. (2011). Cortical injury in multiple sclerosis; the role of the immune system. BMC Neurol. 11, 152.10.1186/1471-2377-11-152Search in Google Scholar PubMed PubMed Central

Wallstrom, E., Khademi, M., Andersson, M., and Olsson, T. (2000). Increased numbers of mononuclear cells from blood and CSF expressing interferon-γ mRNA in multiple sclerosis are from both the CD4+ and the CD8+ subsets. Eur. J. Neurol. 7, 71–76.10.1046/j.1468-1331.2000.00027.xSearch in Google Scholar PubMed

Wuerfel, J., Bellmann-Strobl, J., Brunecker, P., Aktas, O., McFarland, H., Villringer, A., and Zipp, F. (2004). Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 127, 111–119.10.1093/brain/awh007Search in Google Scholar PubMed

Yamasaki, R., Lu, H., Butovsky, O., Ohno, N., Rietsch, A.M., Cialic, R., Wu, P.M., Doykan, C.E., Lin, J., Cotleur, A.C., et al. (2014). Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549.10.1084/jem.20132477Search in Google Scholar PubMed PubMed Central

Yan, W., Nguyen, T., Yuki, N., Ji, Q., Yiannikas, C., Pollard, J.D., and Mathey, E.K. (2014). Antibodies to neurofascin exacerbate adoptive transfer experimental autoimmune neuritis. J. Neuroimmunol. 277, 13–17.10.1016/j.jneuroim.2014.09.012Search in Google Scholar PubMed

Yednock, T.A., Cannon, C., Fritz, L.C., Sanchez-Madrid, F., Steinman, L., and Karin, N. (1992). Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356, 63–66.10.1038/356063a0Search in Google Scholar PubMed

Young, C.L., Adamson, T.C., 3rd, Vaughan, J.H., and Fox, R.I. (1984). Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum. 27, 32–39.10.1002/art.1780270106Search in Google Scholar PubMed

Zamvil, S., Nelson, P., Trotter, J., Mitchell, D., Knobler, R., Fritz, R., and Steinman, L. (1985). T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355–358.10.1038/317355a0Search in Google Scholar PubMed

Zivadinov, R. and Pirko, I. (2012). Advances in understanding gray matter pathology in multiple sclerosis: are we ready to redefine disease pathogenesis? BMC Neurol. 12, 9.10.1186/1471-2377-12-9Search in Google Scholar PubMed PubMed Central

Received: 2018-01-13
Accepted: 2018-03-30
Published Online: 2018-06-08
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.3.2024 from
Scroll to top button