Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 6, 2018

Effects of stress on the auditory system: an approach to study a common origin for mood disorders and dementia

  • Catherine Pérez-Valenzuela , Gonzalo Terreros and Alexies Dagnino-Subiabre EMAIL logo

Abstract

The concept of stress is a fundamental piece to understand how organisms can adapt to the demands produced by a continuously changing environment. However, modern lifestyle subjects humans to high levels of negative stress or distress, which increases the prevalence of mental illnesses. Definitely, stress has become the pandemic of the 21st century, a fact that demands a great intellectual effort from scientists to understand the neurobiology of stress. This review proposes an innovative point of view to understand that mood disorders and dementia have a common etiology in a stressful environment. We propose that distress produces sensory deprivation, and this interferes with the connection between the brain and the environment in which the subject lives. The auditory system can serve as an example to understand this idea. In this sense, distress impairs the auditory system and induces hearing loss or presbycusis at an early age; this can increase the cognitive load in stressed people, which can stimulate the development of dementia in them. On the other hand, distress impairs the auditory system and increases the excitability of the amygdala, a limbic structure involved in the emotional processing of sounds. A consequence of these alterations could be the increase in the persistence of auditory fear memory, which could increase the development of mood disorders. Finally, it is important to emphasize that stress is an evolutionary issue that is necessary to understand the mental health of humans in these modern times. This article is a contribution to this discussion and will provide insights into the origin of stress-related neuropsychiatric disorders.

Acknowledgments

This study was supported by FONDECYT 1141276 grant and Anillo de Ciencia y Tecnología No ACT1403 grant to Alexies Dagnino-Subiabre.

References

Baglietto-Vargas, D., Chen, Y., Suh, D., Ager R.R., Rodriguez-Ortiz, C.J., Medeiros, R., Myczek, K., Green, K.N., Baram, T.Z., and LaFerla, F.M. (2015). Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice. J. Neurochem. 134, 915–926.10.1111/jnc.13195Search in Google Scholar PubMed

Barrett Mueller, K., Lu, Q., Mohammad, N.N., Luu, V., McCurley, A., Williams, G.H., Adler, G.K., Karas, R.H., and Jaffe, I.Z. (2014). Estrogen receptor inhibits mineralocorticoid receptor transcriptional regulatory function. Endocrinology 155, 4461–4472.10.1210/en.2014-1270Search in Google Scholar PubMed

Bartanusz, V., Aubry, J.M., Pagliusi, S., Jezova, D., Baffi, J., and Kiss, J.Z. (1995). Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66, 247–252.10.1016/0306-4522(95)00084-VSearch in Google Scholar PubMed

Barth, D.S. and MacDonald, K.D. (1996). Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383, 78–81.10.1038/383078a0Search in Google Scholar PubMed

Bauer, E.P., Paz, R., and Paré, D. (2007). Gamma oscillations coordinate amygdalo-rhinal interactions during learning. J. Neurosci. 27, 9369–9379.10.1523/JNEUROSCI.2153-07.2007Search in Google Scholar PubMed PubMed Central

Bernard, C. (1865). Introduction a Létude de la Medecine Experimentale. J.B. Bailliere et Fils, Paris, pp 85–92.Search in Google Scholar

Bocchio, M., Nabavi, S., and Capogna, M. (2017). Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron 94, 731–743.10.1016/j.neuron.2017.03.022Search in Google Scholar PubMed

Bose, M., Muñoz-llancao, P., Roychowdhury, S., Nichols, J.A., Jakkamsetti, V., Porter, B., Byrapureddy, R., Salgado, H., Kilgard, M.P., Aboitiz, F., Dagnino-Subiabre, A., and Atzori, M. (2010). Effect of the environment on the dendritic morphology of the rat auditory cortex. Synapse 64, 97–110.10.1002/syn.20710Search in Google Scholar PubMed PubMed Central

Buzsáki, G. (2006). Rhythms of the Brain. New York, USA: Oxford University Press.10.1093/acprof:oso/9780195301069.001.0001Search in Google Scholar

Brun, J. and Lamarche, C. (2006). Assessing the Costs of Work Stress. (Quebec, Canada: Université Laval). Available at: http:/www.cgsst.com/stock/eng/doc272-806.pdf.Search in Google Scholar

Cambiaghi, M., Grosso, A., Likhtik, E., Mazziotti, R., Concina, G., Renna, A., Sacco, T., Gordon, J.A., and Sacchetti, B. (2016). Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. J. Neurosci. 36, 1647–1659.10.1523/JNEUROSCI.2351-15.2016Search in Google Scholar PubMed PubMed Central

Canlon, B., Theorell, T., and Hasson, D. (2013). Associations between stress and hearing problems in humans. Hearing Res. 295, 9–15.10.1016/j.heares.2012.08.015Search in Google Scholar PubMed

Cannon, W.B. (1932). The wisdom of the body. New York: W. W. Norton.10.1097/00000441-193212000-00028Search in Google Scholar

Chattarji, S., Tomar, A., Suvrathan, A., Ghosh, S., and Rahman, M.M. (2015). Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat. Neurosci. 18, 1364–1375.10.1038/nn.4115Search in Google Scholar PubMed

Conrad, C.D. (2010). A critical review of chronic stress effects on spatial learning and memory. Prog. Neuro-Psychopharmacology Biol. Psychiatry. 34, 742–755.10.1016/j.pnpbp.2009.11.003Search in Google Scholar PubMed

Cook, S.C. and Wellman, C.L. (2004). Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol. 60, 236–248.10.1002/neu.20025Search in Google Scholar PubMed

Courti, J., Karalis, N., Gonzalez-Campo, C., Wurtz, H., and Herry, C. (2013). Persistence of amygdala gamma oscillations during extinction learning predicts spontaneos fear recovery. Neurobiol. Learn. Mem. 113, 82–89.10.1016/j.nlm.2013.09.015Search in Google Scholar PubMed

Cui, B. and Li, K. (2013). Chronic noise exposure and Alzheimer disease: is there an etiological association? Med. Hypotheses 81, 623–626.10.1016/j.mehy.2013.07.017Search in Google Scholar PubMed

Dagnino-Subiabre, A. (2013). Effects of chronic stress on the auditory system and fear Learning: an evolutionary approach. Rev. Neurosci. 24, 227–237.10.1515/revneuro-2012-0079Search in Google Scholar PubMed

Dagnino-Subiabre, A., Terreros, G., Carmona-Fontaine, C., Zepeda, R., Orellana, J.A., Díaz-Véliz, G., Mora, S., and Aboitiz, F. (2005). Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence. Neuroscience 135, 1067–1074.10.1016/j.neuroscience.2005.07.032Search in Google Scholar PubMed

Dagnino-Subiabre, A., Muñoz-Llancao, P., Terreros, G., Wyneken, U., Díaz-Véliz, G., Porter, B., Kilgard, M.P., Atzori, M., and Aboitiz, F. (2009). Chronic stress induces dendritic atrophy in the rat medial geniculate nucleus: effects on auditory conditioning. Behav. Brain Res. 203, 88–96.10.1016/j.bbr.2009.04.024Search in Google Scholar PubMed

Dagnino-Subiabre, A., Pérez, M.A., Terreros, G., Cheng, M.Y., House, P., and Sapolsky, R. (2012). Corticosterone treatment impairs auditory fear learning and the dendritic morphology of the rat inferior colliculus. Hear Res. 294, 104–113.10.1016/j.heares.2012.09.008Search in Google Scholar PubMed

Davey, C.G., Allen, N.B., Harrison, B.J., and Yücel, M. (2011). Increased amygdala response to positive social feedback in young people with major depressive disorder. Biol. Psychiatry 69, 734–741.10.1016/j.biopsych.2010.12.004Search in Google Scholar PubMed

de Kloet, E. and Szczepek, A. (2017). Stress and Glucocorticoid Action in the Brain and Ear: Implications for Tinnitus. Tinnitus and Stress: An Interdisciplinary Companion for Healthcare Professionals. A. Szczepek and B. Mazurek, eds. (Berlin, Heidelberg, Germany: Springer), pp. 7–35.10.1007/978-3-319-58397-6_2Search in Google Scholar

de Kloet, E., Meijer, O., de Nicola, A., de Rijk, R., and Joëls, M. (2018). Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol. 49, 124–145.10.1016/j.yfrne.2018.02.003Search in Google Scholar PubMed

Fales, C.L., Barch, D.M., Rundle, M.M., Mintun, M.A., Snyder, A.Z., Cohen, J.D., Mathews, J. and Sheline, Y.I. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol. Psychiatry 63, 377–384.10.1016/j.biopsych.2007.06.012Search in Google Scholar PubMed

Fernández-Guasti, A., Fiedler, J.L., Herrera, L., and Handa, R.J. (2012). Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones. Horm. Metab. Res. 44, 607–618.10.1055/s-0032-1312592Search in Google Scholar PubMed

Furuta, H., Mori, N., Sato C., Hoshikawa, H., Sakai, S., Iwakura, S., and Doi, K. (1994). Mineralocorticoid type I receptor in the rat cochlea: mRNA identification by polymerase chain reaction (PCR) and in situ hybridization. Hear Res. 78, 175–180.10.1016/0378-5955(94)90023-XSearch in Google Scholar PubMed

Graham, C.E. and Vetter, D.E. (2011). The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires corticotropin-releasing factor receptor 1 to establish normal hair cell innervation and cochlear sensitivity. J. Neurosci. 31, 1267–1278.10.1523/JNEUROSCI.4545-10.2011Search in Google Scholar PubMed PubMed Central

Graham, C.E., Basappa, J., and Vetter, D.E. (2010). A corticotropin-releasing factor system expressed in the cochlea modulates hearing sensitivity and protects against noise-induced hearing loss. Neurobiol. Dis. 38, 246–258.10.1016/j.nbd.2010.01.014Search in Google Scholar PubMed PubMed Central

Han, M.H. and Nestler, E.J. (2017). Neural substrates of depression and resilience. Neurotherapeutics 14, 677–686.10.1007/s13311-017-0527-xSearch in Google Scholar PubMed PubMed Central

He, J. (2003). Slow oscillation in non-lemniscal auditory thalamus. J. Neurosci. 23, 8281–8290.10.1523/JNEUROSCI.23-23-08281.2003Search in Google Scholar PubMed

Headley, D.B. and Weinberger, N.M. (2011). Gamma-band activation predicts both associative memory and cortical plasticity. J. Neurosci. 31, 12748–12758.10.1523/JNEUROSCI.2528-11.2011Search in Google Scholar PubMed

Imaki, J., Imaki, T., Vale, W., and Sawchenko, P.E. (1991). Distribution of corticotropin-releasing factor mRNA and immunoreactivity in the central auditory system of the rat. Brain Res. 547, 28–36.10.1016/0006-8993(91)90571-CSearch in Google Scholar PubMed

Jacinto, L.R., Reis, J.S., Dias, N.S., Cerqueira, J.J., Correia, J.H., and Sousa, N. (2013). Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front. Behav. Neurosci. 7, 127.10.3389/fnbeh.2013.00127Search in Google Scholar PubMed PubMed Central

Jacinto, L.R., Cerqueira, J.J., and Sousa, N. (2016). Patterns of Theta activity in limbic anxiety circuit preceding exploratory behavior in approach-avoidance conflict. Front. Behav. Neurosci. 10, 171.10.3389/fnbeh.2016.00171Search in Google Scholar PubMed PubMed Central

Jacobson, L. (2014). Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress. Brain Res. 1583, 109–121.10.1016/j.brainres.2014.07.054Search in Google Scholar PubMed PubMed Central

Jafari, Z., Kolb, B.E., and Mohajerani, M.H. (2016). Effect of acute stress on auditory processing: a systematic review of human studies. Rev. Neurosci. 28, 1–13.10.1515/revneuro-2016-0043Search in Google Scholar PubMed

Jafari, Z., Mehla, J., Kolb, B.E., and Mohajerani, M.H. (2017a). Prenatal noise stress impairs HPA axis and cognitive performance in mice. Sci. Rep. 7, 10560.10.1038/s41598-017-09799-6Search in Google Scholar PubMed PubMed Central

Jafari, Z., Mehla, J., Afrashteh. N., Kolb, B.E., and Mohajerani, M.H. (2017b). Corticosterone response to gestational stress and postpartum memory function in mice. PLoS One 12, e0180306.10.1371/journal.pone.0180306Search in Google Scholar PubMed PubMed Central

Jafari, Z., Faraji, J., Mirza Agha, B., Metz, G.A.S., Kolb, B.E., and Mohajerani, M.H. (2017c). The adverse effects of auditory stress on mouse uterus receptivity and behaviour. Sci. Rep. 7, 4720.10.1038/s41598-017-04943-8Search in Google Scholar PubMed PubMed Central

Kessler, R.C., Demler, O., Frank, R.G., Olfson, M., Pincus, H.A., Walters, E.E., Wang, P., Wells, K.B., and Zaslavsky, A.M. (2005). Prevalence and treatment of mental disorders, 1990 to 2003. N Engl J Med. 352, 2515–2523.10.1056/NEJMsa043266Search in Google Scholar PubMed PubMed Central

Korte, S.M., Koolhaas, J.M., Wingfield, J.C., and McEwen, B.S. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 29, 3–38.10.1016/j.neubiorev.2004.08.009Search in Google Scholar PubMed

LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cell Mol. Neurobiol. 23, 727–738.10.1023/A:1025048802629Search in Google Scholar PubMed

Liston, C., Miller, M.M., Goldwater, D.S., Radley, J.J., Rocher, A.B., Hof, P.R., Morrison, J.R., and McEwen, B.S. (2006). Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874.10.1523/JNEUROSCI.1184-06.2006Search in Google Scholar PubMed

Liu, T.Y., Chen, Y.S., Su, T.P., Hsieh, J.C., and Chen, L.F. (2014). Abnormal early gamma responses to emotional faces differentiate unipolar from bipolar disorder patients. Biomed. Res. Int. 2014, 906104.10.1155/2014/906104Search in Google Scholar PubMed

Marcello, E., Gardoni, F., and Di Luca, M. (2015). Alzheimer’s disease and modern lifestyle: what is the role of stress? J. Neurochem. 134, 795–798.10.1111/jnc.13210Search in Google Scholar

Maren, S., Yap, S.A., and Goosens, A.K. (2001). The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J. Neurosci. 21, RC135.10.1523/JNEUROSCI.21-06-j0001.2001Search in Google Scholar PubMed

Mazurek, B., Haupt, H., Olze, H., Szczepek, A.J., and Eggermont, J.J. (2012a). Stress and tinnitus-from bedside to bench and back. Front. Syst. Neurosci. 6, 47.10.3389/fnsys.2012.00047Search in Google Scholar

Mazurek, B., Haupt, H., Klapp, B.F., Szczepek, A.J., and Olze, H. (2012b). Exposure of Wistar rats to 24-h psycho-social stress alters gene expression in the inferior colliculus. Neurosci. Lett. 527, 40–45.10.1016/j.neulet.2012.08.019Search in Google Scholar

Mazurek, B., Stöver, T., Haupt, H., Klapp, B., Adli, M., Gross, J., and Szczepek, A. (2010). The significance of stress: its role in the auditory system and the pathogenesis of tinnitus. HNO 58, 162–172.10.1007/s00106-009-2001-5Search in Google Scholar PubMed

McDonald, A.J. (1998). Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55, 257–332.10.1016/S0301-0082(98)00003-3Search in Google Scholar PubMed

McEwen, B.S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44.10.1111/j.1749-6632.1998.tb09546.xSearch in Google Scholar PubMed

McEwen, B.S. (2006). Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin. Neurosci. 8, 367–381.10.1016/S0079-6123(08)62128-7Search in Google Scholar PubMed

McEwen, B.S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904.10.1152/physrev.00041.2006Search in Google Scholar PubMed

Mitra, R. and Sapolsky, R.M. (2008). Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. USA 105, 5573–5578.10.1073/pnas.0705615105Search in Google Scholar PubMed PubMed Central

Mitra, R. and Sapolsky, R.M. (2009). Effects of enrichment predominate over those of distress on fear-related behavior in male rats. Stress. 12, 305–312.10.1080/10253890802379955Search in Google Scholar PubMed

Muñoz-Mayorga, D., Guerra-Araiza, C., Torner, L., and Morales, T. (2018). Tau phosphorylation in female neurodegeneration: role of estrogens, progesterone, and prolactin. Front. Endocrinol. (Lausanne) 9, 133.10.3389/fendo.2018.00133Search in Google Scholar PubMed PubMed Central

Notarianni, E. (2013). Hypercortisolemia and glucocorticoid receptor-signaling insufficiency in Alzheimer’s disease initiation and development. Curr. Alzheimer Res. 10, 714–731.10.2174/15672050113109990137Search in Google Scholar PubMed

Pérez, M.A., Terreros, G., and Dagnino-Subiabre, A. (2013). Long-term ω-3 fatty acid supplementation induces anti-stress effects and improves learning in rats. Behav. Brain Funct. 9, 25.10.1186/1744-9081-9-25Search in Google Scholar PubMed PubMed Central

Pérez-Valenzuela, C., Gárate-Pérez, M.F., Sotomayor-Zárate, R., Delano, P.H., and Dagnino-Subiabre, A. (2016). Reboxetine improves auditory attention and increases norepinephrine levels in the auditory cortex of chronically stressed rats. Front. Neural Circuits 10, 108.10.3389/fncir.2016.00108Search in Google Scholar PubMed PubMed Central

Piirainen, S., Youssef, A., Song, C., Kalueff, A.V., Landreth, G.E., Malm, T., and Tian, L. (2017). Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer’s disease: the emerging role for microglia? Neurosci. Biobehav. Rev. 77, 148–164.10.1016/j.neubiorev.2017.01.046Search in Google Scholar PubMed

Rarey, K.E. and Luttge, W.G. (1989). Presence of type I and type II/IB receptors for adrenocorticosteroid hormones in the inner ear. Hear Res. 41, 217–221.10.1016/0378-5955(89)90013-0Search in Google Scholar PubMed

Saman, Y., Bamiou, D.E., Gleeson, M., and Dutia, M.B. (2012). Interactions between stress and vestibular compensation – a review. Front Neurol. 3, 116.10.3389/fneur.2012.00116Search in Google Scholar PubMed

Seidenbecher, T., Laxmi, T.R., Stork, O., and Pape, H.C. (2003). Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301, 846–850.10.1126/science.1085818Search in Google Scholar PubMed

Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature 138, 32.10.1038/138032a0Search in Google Scholar

Selye, H. (1954). Interactions between systemic and local stress. Br. Med. J. 1, 1167–1170.10.1136/bmj.1.4872.1167Search in Google Scholar PubMed

Selye, H. (1956). The stress of life. New York, USA: McGraw-Hill Book Company, Inc.Search in Google Scholar

Seymour, J.C. and Tappin, J.W. (1953). Some aspects of the sympathetic nervous system in relation to the inner ear. Acta Otolaryngol. 43, 618–635.10.3109/00016485309119891Search in Google Scholar PubMed

Sindi, S., Hagman, G., Hakansson, K., Kulmala, J., Nilsen, C., Kareholt, I., Soininen, H., Solomon, A., and Kivipelto, M. (2016). Midlife work-related stress increases dementia risk in later life: the CAIDE 30-year study. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 72, 1044–1053.10.1093/geronb/gbw043Search in Google Scholar

Sotiropoulos, I. and Sousa, N. (2016). Tau as the converging protein between distress and Alzheimer’s disease synaptic pathology. Neurodegener. Dis. 16, 22–25.10.1159/000440844Search in Google Scholar

Sotiropoulos, I., Catania, C., Pinto, L.G., Silva, R., Pollerberg, G.E., Takashima, A., Sousa, N., and Almeida, O.F. (2011). Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J. Neurosci. 31, 7840–7847.10.1523/JNEUROSCI.0730-11.2011Search in Google Scholar PubMed

Ströhle, A. and Holsboer, F. (2003). Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 3, 207–214.Search in Google Scholar

Tafet, G. and Bernardini, R. (2003). Psychoneuroendocrinological links between chronic stress and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 27, 893–903.10.1016/S0278-5846(03)00162-3Search in Google Scholar PubMed

Tahera, Y., Meltser, I., Johansson, P., Hansson, A.C., and Canlon, B. (2006). Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma. Endocrinology 147, 4430–4437.10.1210/en.2006-0260Search in Google Scholar PubMed

ten Cate, W.J., Curtis, L.M., and Rarey, K.E. (1992). Immunochemical detection of glucocorticoid receptors within rat cochlear and vestibular tissues. Hear Res. 60, 199–204.10.1016/0378-5955(92)90021-ESearch in Google Scholar PubMed

ter Heegde, F., De Rijk, R.H., and Vinkers, C-H. (2015). The brain mineralocorticoid receptor and stress resilience. Psychoneuroendocrinology 52, 92–110.10.1016/j.psyneuen.2014.10.022Search in Google Scholar PubMed

Uhlhaas, P.J. and Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168.10.1016/j.neuron.2006.09.020Search in Google Scholar PubMed

Vyas, A., Mitra, R., Shankaranarayana Rao, B.S., and Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 22, 6810–6818.10.1523/JNEUROSCI.22-15-06810.2002Search in Google Scholar PubMed

Vyas, A., Bernal, S., and Chattarji, S. (2003). Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res. 965, 290–294.10.1016/S0006-8993(02)04162-8Search in Google Scholar PubMed

Wang, Y. and Liberman, M.C. (2002). Restraint stress and protection from acoustic injury in mice. Hear Res. 165, 96–102.10.1016/S0378-5955(02)00289-7Search in Google Scholar PubMed

Wang, H.X., Wahlberg, M., Karp, A., Winblad, B., and Fratiglioni, L. (2012). Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimer’s Dement. 8, 114–120.10.1016/j.jalz.2011.03.001Search in Google Scholar

Watanabe, Y., Gould, E., and McEwen, B.S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588, 341–345.10.1016/0006-8993(92)91597-8Search in Google Scholar PubMed

Whalen, P.J., Shin, L.M., Somerville, L.H., McLean, A.A., and Kim, H. (2002). Functional neuroimaging studies of the amygdala in depression. Semin. Clin. Neuropsychiatry 7, 234–242.10.1053/scnp.2002.35219Search in Google Scholar PubMed

World Health Oraganization. (2016). Depression fact sheet. Available: http://www.who.int/en/news-room/fact-sheets/detail/depression.Search in Google Scholar

Windels, F., Yan, S., Stratton, P.G., Sullivan, R., Crane, J.W., and Sah, P. (2016). Auditory tones and foot-shock recapitulate spontaneous sub-threshold activity in basolateral amygdala principal neurons and interneurons. PLoS One 11, e0155192.10.1371/journal.pone.0155192Search in Google Scholar PubMed

Yao, X. and Rarey, K.E. (1996). Localization of the mineralocorticoid receptor in rat cochlear tissue. Acta Otolaryngol. 116, 493–496.10.3109/00016489609137879Search in Google Scholar PubMed

Young, K.D., Siegle, G.J., Bodurka, J., and Drevets, W.C. (2016). Amygdala activity during autobiographical memory recall in depressed and vulnerable individuals: association with symptom severity and autobiographical overgenerality. Am. J. Psychiatry 173, 78–89.10.1176/appi.ajp.2015.15010119Search in Google Scholar PubMed

Young, K.D., Misaki, M., Harmer, C.J., Victor, T., Zotev, V., Phillips, R., Siegle, G.J., Drevets, W.C., and Bodurka, J. (2017). Real-time functional magnetic resonance imaging amygdala neurofeedback changes positive information processing in major depressive disorder. Biol. Psychiatry 82, 578–586.10.1016/j.biopsych.2017.03.013Search in Google Scholar PubMed

Zuo, J., Curtis, L.M., Yao, X., ten Cate, W.J., Bagger-Sjöbäck, D., Hultcrantz, M., and Rarey, K.E. (1995). Glucocorticoid receptor expression in the postnatal rat cochlea. Hear Res. 87, 220–227.10.1016/0378-5955(95)00092-ISearch in Google Scholar PubMed

Received: 2018-03-01
Accepted: 2018-05-12
Published Online: 2018-09-06
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2023 from https://www.degruyter.com/document/doi/10.1515/revneuro-2018-0018/html
Scroll to top button