Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 3, 2018

Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics

Mia Maguire and Greg Maguire


Here we offer a review of the evidence for a hypothesis that a combination of ingestible probiotics, prebiotics, postbiotics, and amino acids will help ameliorate dysbiosis and degeneration of the gut, and therefore promote restoration of nervous system function in a number of neurological indications.


Abbott, R.D., Petrovitch, H., White, L.R., Masaki, K.H., Tanner, C.M., Curb, J.D., Grandinetti, A., Blanchette, P.L., Popper, J.S., and Ross, G.W. (2001). Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57, 456–462.10.1212/WNL.57.3.456Search in Google Scholar PubMed

Al-Asmakh, M. and Hedin, L. (2015). Microbiota and the control of blood-tissue barriers. Tissue Barriers 3, e1039691.10.1080/21688370.2015.1039691Search in Google Scholar PubMed

Al-Sadi, R.M. and Ma, T.Y. (2007). IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol. 178, 4641–4649.10.4049/jimmunol.178.7.4641Search in Google Scholar PubMed

Alenghat, T. and Artis, D. (2014). Epigenomic regulation of host-microbiota interactions. Trends Immunol. 35, 518–525.10.1016/ in Google Scholar PubMed

Allen, J.M., Mailing, L.J., Niemiro, G.M., Moore, R., Cook, M.D., White, B.A., Holscher, H.D., and Woods, J.A. (2018). Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757.10.1249/MSS.0000000000001495Search in Google Scholar PubMed

Alvarez, W. (2016). A Most Improbable Journey (New York, NY, USA: W.W. Norton & Company).Search in Google Scholar

Alvarez, C.S., Badia, J., Bosch, M., Giménez, R., and Baldomà, L. (2016). Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front. Microbiol. 7, 1981.10.3389/fmicb.2016.01981Search in Google Scholar PubMed

Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J., and Rudensky, A.Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455.10.1038/nature12726Search in Google Scholar PubMed

Asano, J., Sato, T., Ichinose, S., Kajita, M., Onai, N., Shimizu, S., and Ohteki, T. (2017). Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration. Cell Rep. 20, 1050–1060.10.1016/j.celrep.2017.07.019Search in Google Scholar PubMed

Astafurov, K., Elhawy, E., Ren, L., Dong, C.Q., Igboin, C., Hyman, L., Griffen, A., Mittag, T., and Danias, J. (2014). Oral microbiome link to neurodegeneration in glaucoma. PLoS One 9, e104416.10.1371/journal.pone.0104416Search in Google Scholar PubMed

Bailey, M.T. and Coe, C.L. (1999). Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 35, 146–55.10.1002/(SICI)1098-2302(199909)35:2<146::AID-DEV7>3.0.CO;2-GSearch in Google Scholar PubMed

Bao, W., Li, S., Chavarro, J.E., Tobias, D.K., Zhu, Y., Hu, F.B. and Zhang, C. (2015). Low-carbohydrate-diet scores and long-term risk of type 2 diabetes among women with a history of gestational diabetes: a prospective cohort study. Diabetes Care 39, 43–49.10.2337/dc15-1642Search in Google Scholar PubMed PubMed Central

Barrett, E., Ross, R., O’Toole, P., Fitzgerald, G., and Stanton, C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417.10.1111/j.1365-2672.2012.05344.xSearch in Google Scholar PubMed

Beamish, L.A., Osornio-Vargas, A.R., and Wine, E. (2011). Air pollution: an environmental factor contributing to intestinal disease. J. Crohns Colitis 5, 279–286.10.1016/j.crohns.2011.02.017Search in Google Scholar PubMed

Beckerman, M. (2006). Molecular and Cellular Signaling (Heidelberg, Germany: Springer).Search in Google Scholar

Beilharz, J.E., Kaakoush, N.O., Maniam, J., and Morris, M.J. (2017). Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Mol. Psychiatr. 23, 351–361.10.1038/mp.2017.38Search in Google Scholar PubMed

Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C., and Brigidi, P. (2012). Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34, 247–267.10.1007/s11357-011-9217-5Search in Google Scholar PubMed PubMed Central

Bibi, S., de Sousa Moraes, L.F., Lebow, N., and Zhu, M.J. (2017). Dietary green pea protects against DSS-induced colitis in mice challenged with high-fat diet. Nutrients 9, 509.10.3390/nu9050509Search in Google Scholar PubMed PubMed Central

Binjumah, M., Ajarem, J., and Ahmad, M. (2016). Effects of the perinatal exposure of Gum Arabic on the development, behavior and biochemical parameters of mice offspring. Saudi J. Biol. Sci. in Google Scholar PubMed PubMed Central

Blackburn, E. and Epel, E. (2017). The Telomere Effect: A Revolutionary Approach to Living Younger, Healthier, Longer (New York, NY: Grand Central Publishing).Search in Google Scholar

Block, M.L. and Calderón-Garcidueñas, L. (2009). Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 32, 506–516.10.1016/j.tins.2009.05.009Search in Google Scholar PubMed PubMed Central

Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber, A.D., Wu, F., Perez-Perez, G.I., Chen, Y., et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82.10.1126/scitranslmed.aad7121Search in Google Scholar PubMed PubMed Central

Borre, Y.E., O’Keeffe, G.W., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2014). Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20, 509–518.10.1016/j.molmed.2014.05.002Search in Google Scholar PubMed

Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108, 16050–16055.10.1073/pnas.1102999108Search in Google Scholar PubMed PubMed Central

Brooks, S.W., Dykes, A.C., and Schreursa, B.G. (2017). A high-cholesterol diet increases 27-hydroxycholesterol and modifies estrogen receptor expression and neurodegeneration in rabbit hippocampus. J. Alzheimers Dis. 56, 185–196.10.3233/JAD-160725Search in Google Scholar PubMed PubMed Central

Brown, A.S. (2012). Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev. Neurobiol. 72, 1272–1276.10.1002/dneu.22024Search in Google Scholar PubMed PubMed Central

Brun, P., Castagliuolo, I., Leo, V.D., Buda, A., Pinzani, M., Palù, G., and Martines, D. (2007). Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver. Physiol. 292, G518–G525.10.1152/ajpgi.00024.2006Search in Google Scholar PubMed

Bruzzese, E., Raia, V., Gaudiello, G., Polito, G., Buccigrossi, V., Formicola, V., and Guarino, A. (2004). Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment. Pharmacol. Ther. 20, 813–819.10.1111/j.1365-2036.2004.02174.xSearch in Google Scholar PubMed

Calame, W., Weseler, A.R., Viebke, C., Flynn, C., and Siemensma, A.D. (2008). Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 100, 1269–1275.10.1017/S0007114508981447Search in Google Scholar PubMed

Campbell, T.C. (2014). Untold nutrition. Nutr. Cancer 66, 1077–1082.10.1080/01635581.2014.927687Search in Google Scholar PubMed

Capaldo, C.T. and Nusrat, A. (2009). Cytokine regulation of tight junctions. Biochim. Biophys. Acta 1788, 864–871.10.1016/j.bbamem.2008.08.027Search in Google Scholar PubMed PubMed Central

Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U.P., Paghera, B., Muscio, C., et al. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 49, 60–68.10.1016/j.neurobiolaging.2016.08.019Search in Google Scholar PubMed

Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T. and Ghannoum, M.A. (2001). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183, 5385–5394.10.1128/JB.183.18.5385-5394.2001Search in Google Scholar PubMed PubMed Central

Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E., and Gewirtz, A.T. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96.10.1038/nature14232Search in Google Scholar PubMed PubMed Central

Chen, S.G., Stribinski, V., Rane, M.J., Demuth, D.R., Gozal, E., Roberts, A.M., Jagadapillai, R., Liu, R., Choe, K., Shivakumar, B., et al. (2016). Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci. Rep. 6, 34477.10.1038/srep34477Search in Google Scholar PubMed PubMed Central

Choi, J.J., Eum, S.Y., Rampersaud, E., Daunert, S., Abreu, M.T., and Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect. 121, 725.10.1289/ehp.1306534Search in Google Scholar PubMed PubMed Central

Christ, A., Günther, P., Lauterbach, M.A., Duewell, P., Biswas, D., Pelka, K., Scholz, C.J., Oosting, M., Haendler, K., Baßler, K., et al. (2018). Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162.e14–175.e14.10.1016/j.cell.2017.12.013Search in Google Scholar PubMed PubMed Central

Chu, D.M., Antony, K.M., Ma, J., Prince, A.L., Showalter, L., Moller, M., and Aagaard, K.M. (2016). The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77.10.1186/s13073-016-0330-zSearch in Google Scholar PubMed PubMed Central

Clements, M.P., Byrne, E., Guerrero, L.F.C., Cattin, A.L., Zakka, L., Ashraf, A., Burden, J.J., Khadayate, S., Lloyd, A.C., Marguerat, S., et al. (2017). The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96, 98.e7–114.e7.10.1016/j.neuron.2017.09.008Search in Google Scholar PubMed PubMed Central

Cohen, M., Appleby, B., and Safar, J.G. (2016). Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer’s disease. Prion 10, 9–17.10.1080/19336896.2015.1123371Search in Google Scholar PubMed PubMed Central

Collado, M.C., Rautava, S., Aakko, J., Isolauri, E., and Salminen, S. (2016). Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 6, 23129.10.1038/srep23129Search in Google Scholar PubMed PubMed Central

Conner, T.S., Brookie, K.L., Carr, A.C., Mainvil, L.A., and Vissers, M.C.M. (2017). Let them eat fruit! The effect of fruit and vegetable consumption on psychological well-being in young adults: a randomized controlled trial. PLoS One 12, e0171206.10.1371/journal.pone.0171206Search in Google Scholar PubMed PubMed Central

Conradi, S., Malzahn, U., Paul, F., Quill, S., Harms, L., Bergh, F.T., Ditzenbach, A., Georgi, T., Heuschmann, P., and Rosche, B. (2013). Breastfeeding is associated with lower risk for multiple sclerosis. Mult. Scler. 19, 553–558.10.1177/1352458512459683Search in Google Scholar PubMed

Crüts, B., van Etten, L., Törnqvist, H., Blomberg, A., Sandström, T., Mills, N.L., and Borm, P.J.A. (2008). Exposure to diesel exhaust induces changes in EEG in human volunteers. Part. Fibre Toxicol. 5, 4.10.1186/1743-8977-5-4Search in Google Scholar PubMed PubMed Central

Daley, J. (2016). The Paleo diet may need a rewrite, ancient humans feasted on a wide variety of plants. Smithsonian.Search in Google Scholar

Dalziel, J.E., Young, W., McKenzie, C.M., Haggarty, N.W., and Roy, N.C. (2017). Gastric emptying and gastrointestinal transit compared among native and hydrolyzed whey and casein milk proteins in an aged rat model. Nutrients 9, 1351.10.3390/nu9121351Search in Google Scholar PubMed PubMed Central

David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563.10.1038/nature12820Search in Google Scholar PubMed PubMed Central

de María, N., Becerril, J.M., Garca-Plazaola, J.I., Hernandez, A.H., de Felipe, M.R., and Fernández-Pascual, M. (1996). New insights on glyphosate mode of action in nodular metabolism: role of shikimate accumulation. J. Agric. Food Chem. 54, 2621–2628.10.1021/jf058166cSearch in Google Scholar PubMed

Desbonnet, L., Clarke, G., Traplin, A., O’Sullivan, O., Crispie, F., Moloney, R.D., Cotter, P.D., Dinan, T.G., and Cryan, J.F. (2015). Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 48, 165–173.10.1016/j.bbi.2015.04.004Search in Google Scholar PubMed

De Vuyst, L. and Leroy, F. (2011). Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production. Int. J. Food Microbiol. 149, 73–80.10.1016/j.ijfoodmicro.2011.03.003Search in Google Scholar PubMed

De Vuyst, L., Moens, F., Selak, M., Rivière, A., and Leroy, F. (2014). Summer meeting 2013: growth and physiology of bifidobacteria. J. Appl. Microbiol. 116, 477–491.10.1111/jam.12415Search in Google Scholar PubMed

Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., and Bultman, S.J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526.10.1016/j.cmet.2011.02.018Search in Google Scholar PubMed PubMed Central

Douiev, L., Soiferman, D., Alban, C., and Saada, A. (2016). The effects of ascorbate, N-acetylcysteine, and resveratrol on fibroblasts from patients with mitochondrial disorders. J. Clin. Med. 6, pii: E1.10.3390/jcm6010001Search in Google Scholar PubMed PubMed Central

Drabińska, N., Jarocka-Cyrta, E., Markiewicz, L.H., and Krupa-Kozak, U. (2018). The effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: results of a randomized, placebo-controlled trial. Nutrients 10, 201.10.3390/nu10020201Search in Google Scholar PubMed PubMed Central

Duff, M. and Ettarh, R.R. (2002). Crypt cell production rate in the small intestine of the zinc-supplemented mouse. Cells Tissues Organs 172, 21–28.10.1159/000064383Search in Google Scholar PubMed

Duscha, A., Joerg, S., Berg, J., Holm, J.B., Linker, R.A., Gold, R., and Haghikia, A. (2017). Propionic acid modulates T effector cell balance and function in MS patients. ECTRIMS Online Library 202422.Search in Google Scholar

Eisenstein, M. (2016). Living factories of the future. Nature 531, 401–403.10.1038/531401aSearch in Google Scholar PubMed

Emery, D.C., Shoemark, D.K., Batstone, T.E., Waterfall, C.M., Coghill, J.A., Cerajewska, T.L., Davies, M., West, N.X., and Allen, S.J. (2017). 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front. Aging Neurosci. 9, 195.10.3389/fnagi.2017.00195Search in Google Scholar PubMed

Engelhart, M.J., Geerlings, M.I., Meijer, J., Kiliaan, A., Ruitenberg, A., van Swieten, J.C., Stijnen, T., Hofman, A., Witteman, J.C., and Breteler, M.M. (2004). Inflammatory proteins in plasma and the risk of dementia: the Rotterdam study. Arch. Neurol. 61, 668–672.10.1001/archneur.61.5.668Search in Google Scholar PubMed

Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., et al. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977.10.1038/nn.4030Search in Google Scholar PubMed

Falony, G., Lazidou, K., Verschaeren, A., Weckx, S., Maes, D., and De Vuyst, L. (2009). In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl. Environ. Microbiol. 75, 454–461.10.1128/AEM.01488-08Search in Google Scholar PubMed

Fang, X. (2016). Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int. J. Neurosci. 126, 771–776.10.3109/00207454.2015.1096271Search in Google Scholar PubMed

Faraco, G., Brea, D., Garcia-Bonilla, L., Wang, G., Racchumi, G., Chang, H., Buendia, I., Santisteban, M.M., Segarra, S.G., Koizumi, K., et al. (2018). Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249.10.1038/s41593-017-0059-zSearch in Google Scholar PubMed

Feigin, V.L., Roth, G.A., Naghavi, M., Parmar, P., Krishnamurthi, R., Chugh, S., Mensah, G.A., Norrving, B., Shiue, I., Ng, M., et al. (2016). Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 15, 913–924.10.1016/S1474-4422(16)30073-4Search in Google Scholar PubMed

Fischer, A., Gluth, M., Weege, F., Pape, U.F., Wiedenmann, B., Baumgart, D.C., and Theuring, F. (2014). Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G218–G228.10.1152/ajpgi.00095.2013Search in Google Scholar PubMed

Fond, G., Boukouaci, W., Chevalier, G., Regnault, A., Eberl, G., Hamdani, N., Dickerson, F., Macgregor, A., Boyer, L., Dargel, A., et al. (2015). The ‘psychomicrobiotic’: targeting microbiota in major psychiatric disorders: a systematic review. Pathol. Biol. (Paris) 63, 35–42.10.1016/j.patbio.2014.10.003Search in Google Scholar PubMed

Forsyth, C.B., Shannon, K.M., Kordower, J.H., Voigt, R.M., Shaikh, M., Jaglin, J.A., Estes, J.D., Dodiya, H.B., and Keshavarzian, A. (2011). Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6, e28032.10.1371/journal.pone.0028032Search in Google Scholar PubMed PubMed Central

Foster, N. and Macpherson, G.G. (2010). Murine cecal patch M cells transport infectious prions in vivo. J Infect Dis 202, 1916–1919.10.1086/657415Search in Google Scholar PubMed

Fox, M., Knapp, L.A., Andrews, P.W., and Fincher, C.L. (2013). Epidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol. Med. Public Health 2013, 173–186.10.1093/emph/eot015Search in Google Scholar PubMed PubMed Central

Franklin, T.B., Russig, H., Weiss, I.C., Gräff, J., Linder, N., Michalon, A., Vizi, S., and Mansuy, I.M. (2010). Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415.10.1016/j.biopsych.2010.05.036Search in Google Scholar PubMed

Frese, S.A., MacKenzie, D.A., Peterson, D.A., Schmaltz, R., Fangman, T., Zhou, Y., Zhang, C., Benson, A.K., Cody, L.A., Mulholland, F., et al. (2013). Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet. 9, e1004057.10.1371/journal.pgen.1004057Search in Google Scholar PubMed PubMed Central

Frontzek, K., Lutz, M.I., Aguzzi, A., Kovacs, G.G., and Budka, H. (2016). Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med. Wkly. 146, w14287.10.4414/smw.2016.14287Search in Google Scholar PubMed

Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., et al. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547.10.1038/nature09646Search in Google Scholar PubMed

Fung, T.T., Pan, A., Hou, T., Chiuve, S.E., Tobias, D.K., Mozaffarian, D., Willett, W.C., and Hu, F.B. (2015). Long-term change in diet quality is associated with body weight change in men and women. J. Nutr. 145, 1850–1856.10.3945/jn.114.208785Search in Google Scholar PubMed PubMed Central

Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450.10.1038/nature12721Search in Google Scholar PubMed

Galleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T.S., von Bonin, M., Barbieri, L., Halai, K., Ward, S., et al. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med. 9, eaam7828.10.1126/scitranslmed.aam7828Search in Google Scholar PubMed

Gao, C., Major, A., Rendon, D., Lugo, M., Jackson, V., Shi, Z., Mori-Akiyama, Y., and Versalovic, J. (2015). Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. mBio 6, e01358–15.10.1128/mBio.01358-15Search in Google Scholar PubMed PubMed Central

Gao, B., Bian, X., Mahbub, R., and Lu, K. (2017). Gender-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ. Health Perspect. 125, 198–206.10.1289/EHP202Search in Google Scholar PubMed PubMed Central

Gibson, G.R., Scott, K.P., Rastall, R.A., Tuohy, K.M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E.F., Saulnier, D., Loh, G., et al. (2010). Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. 7, 1–19.10.1616/1476-2137.15880Search in Google Scholar

Gu, Y., Brickman, A.M., Stern, Y., Habeck, C.G., Razlighi, Q.R., Luchsinger, J.A., Manly, J.J., Schupf, N., Mayeux, R., and Scarmeas, N. (2015). Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85, 1744–1751.10.1212/WNL.0000000000002121Search in Google Scholar PubMed PubMed Central

Haase, S., Haghikia, A., Gold, R., and Linker, R.A. (2018). Dietary fatty acids and susceptibility to multiple sclerosis. Mult. Sclerosis J. 24, 12–16.10.1177/1352458517737372Search in Google Scholar PubMed

Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., Hammer, A., Lee, D.H., May, C., Wilck, N., et al. (2015). Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829.10.1016/j.immuni.2015.09.007Search in Google Scholar PubMed

Hallett, P.J., McLean, J.R., Kartunen, A., Langston, J.W., and Isacson, O. (2012). α-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol. Dis. 47, 258–267.10.1016/j.nbd.2012.04.009Search in Google Scholar PubMed PubMed Central

Hamer, H.M., Jonkers, D.M.A.E., Venema, K., Vanhoutvin, S.A.L.W., Troost, F.J., and Brummer, R.J. (2008). Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119.10.1111/j.1365-2036.2007.03562.xSearch in Google Scholar PubMed

Hamilton, M.K., Boudry, G., Lemay, D.G., and Raybould, H.E. (2015). Changes in intestinal barrier function and gut microbiota in high-fat diet fed rats are dynamic and region-dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G40.10.1152/ajpgi.00029.2015Search in Google Scholar PubMed PubMed Central

He, F.J. and MacGregor, G.A. (2009). A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 23, 363–384.10.1038/jhh.2008.144Search in Google Scholar PubMed

Henry, A.G., Brooksa, A.S., and Pipernob, D.R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium).10.1073/pnas.1016868108Search in Google Scholar

Henry, A.G., Brooks, A.S., and Piperno, D.R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. J. Hum. Evol. 69, 44–54.10.1016/j.jhevol.2013.12.014Search in Google Scholar PubMed

Hering, N.A., Richter, J.F., Fromm, A., Wieser, A., Hartmann, S., Günzel, D., Bücker, R., Fromm, M., Schulzke, J.D., and Troeger, H. (2014). TcpC protein from E. coli Nissle improves epithelial barrier function involving PKCζ and ERK1/2 signaling in HT-29/B6 cells. Mucosal Immunol. 7, 369–378.10.1038/mi.2013.55Search in Google Scholar

Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., et al. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514.10.1038/nrgastro.2014.66Search in Google Scholar

Hirsch, E.C., Vyas, S., and Hunot, S. (2009). Neuroinflammation in Parkinson’s disease. Parkinsonism Relat. Disord. 18 (Suppl 1), S210–S212.10.1016/S1353-8020(11)70065-7Search in Google Scholar

Hoban, A.E., Stilling, R.M., Ryan, F.J., Shanahan, F., Dinan, T.G., Claesson, M.J., Clarke, G., and Cryan, J.F. (2016). Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry 6, e774.10.1038/tp.2016.42Search in Google Scholar PubMed

Höhn, P., Gabbert, H., and Wagner, R. (1978). Differentiation and aging of the rat intestinal mucosa. II. Morphological, enzyme histochemical and disc electrophoretic aspects of the aging of the small intestinal mucosa. Mech. Ageing Dev. 7, 217–226.10.1016/0047-6374(78)90068-4Search in Google Scholar PubMed

Hsu, H.T., Mace, E.M., Carisey, A.F., Viswanath, D.I., Christakou, A.E., Wiklund, M., Önfelt, B., and Orange, J.S. (2016). NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing. J. Cell Biol. 215, 875–889.10.1083/jcb.201604136Search in Google Scholar PubMed PubMed Central

Hufnagel, D.A., Tükel, Ç., and Chapman, M.R. (2013). Disease to dirt: the biology of microbial amyloids. PLoS Pathog. 9, e1003740.10.1371/journal.ppat.1003740Search in Google Scholar PubMed PubMed Central

Jakobsdottir, G., Xu, J., Molin, G., Ahrné, S., and Nyman, M. (2013). High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8, e80476.10.1371/journal.pone.0080476Search in Google Scholar PubMed

Jennis, M., Cavanaugh, C.R., Leo, G.C., Mabus, J.R., Lenhard, J., and Hornby, P.J. (2017). Microbiota- derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol. Motil. e13178. doi: 10.1111/nmo.13178. [Epub ahead of print].10.1111/nmo.13178Search in Google Scholar

Karav, S., Le Parc, A., de Moura Bell, J.M.L.N., Frese, S.A., Kirmiz, N., Block, D.E., Barile, D., and Mills, D.A. (2016). Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated bifidobacteria. Appl. Environ. Microbiol. 82, 3622–3630.10.1128/AEM.00547-16Search in Google Scholar PubMed

Keelan, M., Walker, K., Thomson, A.B. (1985). Intestinal morphology, marker enzymes and lipid content of brush border membranes from rabbit jejunum and ileum: effect of aging. Mech Ageing Dev. 31, 49–68.10.1016/0047-6374(85)90026-0Search in Google Scholar PubMed

Kessler, D. (2013). Antibiotics and the meat we eat. NY Times 27.Search in Google Scholar

Khan, S.Y., Awad, E.M., Oszwald, A., Mayr, M., Yin, X., Waltenberger, B., Stuppner, H., Lipovac, M., Uhrin, P., and Breuss, J.M. (2017). Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Sci. Rep. 7, 39501.10.1038/srep39501Search in Google Scholar PubMed PubMed Central

Kim, S.W., Ehrman, J., Ahn, M.R., Kondo, J., Lopez, A.A.M., Oh, Y.S., Kim, H.X., Crawley, S.W., Goldenring, J.R., Tyska, M.J., et al. (2017). Shear stress induces non-canonical autophagic flux in intestinal epithelial monolayers. Mol. Biol. Cell. 28, 3043–3056.10.1091/mbc.e17-01-0021Search in Google Scholar

Kish, L., Hotte, N., Kaplan, G.G., Vincent, R., Tso, R., Gänzle, M., Rioux, K.P., Thiesen, A., Barkema, H.W., Wine, E., et al. (2013). Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One 8, e62220.10.1371/journal.pone.0062220Search in Google Scholar PubMed PubMed Central

Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585.10.1038/nm.3145Search in Google Scholar PubMed PubMed Central

Krabbe, K.S., Reichenberg, A., Yirmiya, R., Smed, A., Pedersen, B.K., and Bruunsgaard, H. (2005). Low-dose endotoxemia and human neuropsychological functions. Brain Behav. Immun. 19, 453–460.10.1016/j.bbi.2005.04.010Search in Google Scholar PubMed

Kraehenbuhl, J.P. and Neutra, M.R. (2000). Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16, 301–332.10.1146/annurev.cellbio.16.1.301Search in Google Scholar PubMed

Kruis, W., Frič, P., Pokrotnieks, J., Lukáš, M., Fixa, B., Kaščák, M., Kamm, M.A., Weismueller, J., Beglinger, C., Stolte, M., et al. (2004). Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623.10.1136/gut.2003.037747Search in Google Scholar PubMed PubMed Central

Kumar, D.K., Choi, S.H., Washicosky, K.J., Eimer, W.A., Tucker, S., Ghofrani, J., Lefkowitz, A., McColl, G., Goldstein, L.E., Tanzi, R.E., et al. (2016). Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 8, 340ra72.10.1126/scitranslmed.aaf1059Search in Google Scholar PubMed PubMed Central

Lawrence, E. (1998). How salmonella survive the stomach. Nature. doi:10.1038/news981015–6.10.1038/news981015–6Search in Google Scholar

Lecerf, J.M. and de Lorgeril, M. (2011). Dietary cholesterol: from physiology to cardiovascular risk. Br. J. Nutr. 106, 6–14.10.1017/S0007114511000237Search in Google Scholar PubMed

Levesque, S., Taetzsch, T., Lull, M.E., Kodavanti, U., Stadler, K., Wagner, A., Johnson, J.A., Duke, L., Kodavanti, P., Surace, M.J., et al. (2011). Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ. Health Perspect. 119, 1149–1155.10.1289/ehp.1002986Search in Google Scholar PubMed PubMed Central

Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J., and Nel, A. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111, 455–460.10.1289/ehp.6000Search in Google Scholar PubMed PubMed Central

Li, Y., Innocentin, S., Withers, D.R., Roberts, N.A., Gallagher, A.R., Grigorieva, E.F., Wilhelm, C., and Veldhoen, M. (2011). Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640.10.1016/j.cell.2011.09.025Search in Google Scholar PubMed

Li, W., Li, V.W., Hutnik, M., and Chiou, A.S. (2012). Tumor angiogenesis as a target for dietary cancer prevention. J. Oncol. 2012, 879623.10.1155/2012/879623Search in Google Scholar PubMed PubMed Central

Lin, R., Jiang, Y., Zhao, X.Y., Guan, Y., Qian, W., Fu, X.C., Ren, H.Y., and Hou, X.H. (2014). Four types of bifidobacteria trigger autophagy response in intestinal epithelial cells. J. Dig. Dis. 15, 597–605.10.1111/1751-2980.12179Search in Google Scholar PubMed

Liu, H.Y., Roos, S., Jonsson, H., Ahl, D., Dicksved, J., Lindberg, J.E., and Lundh, T. (2015). Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol. Rep. 3, e12355.10.14814/phy2.12355Search in Google Scholar PubMed PubMed Central

Lo Cicero, A., Delevoye, C., Gilles-Marsens, F., Loew, D., Dingli, F., Guéré, C., André, N., Vié, K., van Niel, G., and Raposo, G. (2015). Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat. Commun. 6, 7506.10.1038/ncomms8506Search in Google Scholar PubMed PubMed Central

Lundmark, K., Westermark, G.T., Olsén, A., and Westermark, P. (2005). Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc. Natl. Acad. Sci. USA 102, 6098–6102.10.1073/pnas.0501814102Search in Google Scholar PubMed PubMed Central

Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., Agdashian, D., Terabe, M., Berzofsky, J.A., Fako, V., et al. (2018). Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931.10.1126/science.aan5931Search in Google Scholar PubMed PubMed Central

Maes, M., Kubera, M., and Leunis, J.C. (2008). The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from Gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett. 29, 117–124.Search in Google Scholar

Maguire, G. (2016). Exosomes: smart nanospheres for drug delivery naturally produced by stem cells. Fabrication and Self-Assembly of Nanobiomaterials, Edition: 1, Chapter 7. A. Grumezescu, ed. (Amsterdam: Elsevier), pp. 179–209.10.1016/B978-0-323-41533-0.00007-6Search in Google Scholar

Maguire, G. (2017). Amyotrophic lateral sclerosis as a protein level, non-genomic disease: therapy with S2RM exosome released molecules. World J. Stem Cells 9, 187–202.10.4252/wjsc.v9.i11.187Search in Google Scholar PubMed PubMed Central

Man, A.L., Bertelli, E., Rentini, S., Regoli, M., Briars, G., Marini, M., Watson, A.J. and Nicoletti, C. (2015). Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin. Sci. (Lond) 129, 515–527.10.1042/CS20150046Search in Google Scholar PubMed

Marriott, B.P., Olsho, L., Hadden, L., and Connor, P. (2010). Intake of added sugars and selected nutrients in the United States, national Health and Nutrition Examination Survey (NHANES) 2003–2006. Crit. Rev. Food Sci. Nutr. 50, 228–258.10.1080/10408391003626223Search in Google Scholar PubMed

Masaki, T., Qu, J., Cholewa-Waclaw, J., Burr, K., Raaum, R., and Rambukkana, A. (2013). Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 152, 51–67.10.1016/j.cell.2012.12.014Search in Google Scholar PubMed PubMed Central

Mayer, E.A. (2011). Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12. Doi: 10.1038/nrn3071.10.1038/nrn3071Search in Google Scholar PubMed PubMed Central

McDougall, J. (2002). Misinformation on plant proteins (with response). Circulation 106, e148.10.1161/01.CIR.0000042900.87320.D0Search in Google Scholar

McDougall, C. and McDougall, J. (2013). Plant-based diets are not nutritionally deficient (and response). Perm J. 17, 93.10.7812/TPP/13-111Search in Google Scholar PubMed PubMed Central

McNulty, N.P., Yatsunenko, T., Hsiao, A., Faith, J.J., Muegge, B.D., Goodman, A.L., Henrissat, B., Oozeer, R., Cools-Portier, S., Gobert, G., et al. (2011). The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3, 106ra106.10.1126/scitranslmed.3002701Search in Google Scholar PubMed PubMed Central

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454, 428–435.10.1038/nature07201Search in Google Scholar PubMed

Melamed, Y., Kisleva, M.E., Geffenb, E., Lev-Yadunc, S., and Goren-Inbard, N. (2016). The plant component of an Acheulian diet at Gesher Benot Ya‘aqov, Israel. Proc. Natl. Acad. Sci. USA 113, 14674–14679.10.1073/pnas.1607872113Search in Google Scholar PubMed PubMed Central

Mesnage, R., Defarge, N., de Vendômois, J.S., and Séralini, G.-E. (2014). Major pesticides are more toxic to human cells than their declared active principles. Biomed. Res. Int. 2014, 179691.10.1155/2014/179691Search in Google Scholar PubMed PubMed Central

Mimee, M., Nadeau, P., Hayward, A., Carim, S., Flanagan, S., Jerger, L., Collins, J., McDonnell, S., Swartwout, R., Citorik, R.J., et al. (2018). An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918.10.1126/science.aas9315Search in Google Scholar PubMed PubMed Central

Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X., Oyler-Castrillo, P., Musch, M.W., Liao, F., Ward, J.F., Holtzman, D.M., et al. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028.10.1038/srep30028Search in Google Scholar PubMed PubMed Central

Mizushima, N. and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728–741.10.1016/j.cell.2011.10.026Search in Google Scholar PubMed

Möller, W., Häussinger, K., Winkler-Heil, R., Stahlhofen, W., Meyer, T., Hofmann, W., and Heyder, J. (1985). Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects. J. Appl. Physiol. 97, 2200–2206.10.1152/japplphysiol.00970.2003Search in Google Scholar PubMed

Monk, J.M., Lepp, D., Wu, W., Graf, D., McGillis, L.H., Hussain, A., Carey, C., Robinson, L.E., Liu, R., Tsao, R., et al. (2017). Chickpea-supplemented diet alters the gut microbiome and enhances gut barrier integrity in c57bl/6 male mice. J. Funct. Foods. 38, 663–674.10.1016/j.jff.2017.02.002Search in Google Scholar

Monsanto Technology LLC, Missouri. Glyphosate formulations and their use for the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase. 2010. US Patent number 7771736 B2.Search in Google Scholar

Moreira, A.P., Texeira, T.F., Ferreira, A.B., Peluzio Mdo, C., and Alfenas Rde, C. (2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 108, 801–809.10.1017/S0007114512001213Search in Google Scholar PubMed

Morris, G., Berk, M., Carvalho, A., Caso, J.R., Sanz, Y., Walder, K., and Maes, M. (2016). The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol. Neurobiol. [Epub ahead of print].10.1007/s12035-016-0004-2Search in Google Scholar PubMed

Mujcic, R. and Oswald, A.J. (2016). Evolution of well-being and happiness after increases in consumption of fruit and vegetables. AJPH Res. 106, 1504.10.2105/AJPH.2016.303260Search in Google Scholar

Mutlu, E.A., Engen, P.A., Soberanes, S., Urich, D., Forsyth, C.B., Nigdelioglu, R., Chiarella, S.E., Radigan, K.A., Gonzalez, A., Jakate, S., et al. (2011). Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 8, 19.10.1186/1743-8977-8-19Search in Google Scholar PubMed

Noonan, S.C. and Savage, G.P. (1999). Oxalate content of foods and its effect on humans. Asia Pacific J. Clin. Nutr. 8, 64–74.10.1046/j.1440-6047.1999.00038.xSearch in Google Scholar

O’Mahony, S., Clarke, G., Borre, Y., Dinan, T., and Cryan, J. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48.10.1016/j.bbr.2014.07.027Search in Google Scholar PubMed

Ong, I.M., Gonzalez, J.G., McIlwain, S.J., Sawin, E.A., Schoen, A.J., Adluru, N., Alexander, A.L., and John-Paul, J.Y. (2018). Gut microbiome populations are associated with structure-specific changes in white matter architecture. Transl. Psychiatry 8, 6.10.1038/s41398-017-0022-5Search in Google Scholar PubMed

Ornish, D. (2004). Was Dr Atkins right? J. Am. Diet Assoc. 104, 537–542.10.1016/j.jada.2004.02.006Search in Google Scholar

Ornish, D., Lin, J., Chan, J.M., Epel, E., Kemp, C., Weidner, G., Marlin, R., Frenda, S.J., Magbanua, M.J.M., Daubenmier, J., et al. (2013). Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 14, p1112–p1120.10.1016/S1470-2045(13)70366-8Search in Google Scholar PubMed

Ou, J., Carbonero, F., Zoetendal, E.G., DeLany, J.P., Wang, M., Newton, K., Gaskins, H.R., and O’Keefe, S.J. (2013). Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120.10.3945/ajcn.112.056689Search in Google Scholar PubMed PubMed Central

Oz, S., Okay, E., Karadenizli, A., Cekmen, M.B., and Ozdogan, H.K. (2007). N-Acetylcysteine improves intestinal barrier in partially hepatectomized rats. ANZ J. Surg. 77, 173–176.10.1111/j.1445-2197.2006.04001.xSearch in Google Scholar PubMed

Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., Chen, X., and Varki, A. (2008). Diversity in specificity, abundance and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18, 818–830.10.1093/glycob/cwn072Search in Google Scholar PubMed PubMed Central

Pallebage-Gamarallage, M.M., Lam, V., Takechi, R., Galloway, S., and Mamo, J.C.L. (2011). A diet enriched in docosahexanoic acid exacerbates brain parenchymal extravasation of Apo B lipoproteins induced by chronic ingestion of saturated fats. Int. J. Vasc. Med. 2012, 647689.10.1155/2012/647689Search in Google Scholar PubMed PubMed Central

Pavlov, V.A. and Tracey, K.J. (2015). Neural circuitry and immunity. Immunol. Res. 63, 38–57.10.1007/s12026-015-8718-1Search in Google Scholar PubMed PubMed Central

Perez-Muñoz, M.E., Arrieta, M.-C., Ramer-Tait, A.E., and Walter, J. (2017). A critical assessment of the ‘sterile womb’ and ‘in utero colonization’ hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48.10.1186/s40168-017-0268-4Search in Google Scholar PubMed PubMed Central

Perlmutter, D. (2016). Dr. David Perlmutter’s whole life plan. PBS TV.Search in Google Scholar

Phillips, J.G.P. (1910). The treatment of melancholia by the lactic acid bacillus. Br. J. Psychiatry 56, 422-NP.10.1192/bjp.56.234.422Search in Google Scholar

Pluznick, J.L. (2017). Microbial short-chain fatty acids and blood pressure regulation. Curr. Hypertens. Rep. 19, 25.10.1007/s11906-017-0722-5Search in Google Scholar PubMed PubMed Central

Pritchard, C., Mayers, A., and Baldwin, D. (2013). Changing patterns of neurological mortality in the 10 major developed countries 1979–2010. Public Health. 127, 357–368.10.1016/j.puhe.2012.12.018Search in Google Scholar PubMed

Pupillo, E., Bianchi, E., Chiò, A., Casale, F., Zecca, C., Tortelli, R., and Beghi, E. (2017). Amyotrophic lateral sclerosis and food intake. Amyotroph. Lateral Scler. Frontotemporal. Degener. 21, 1–8.10.1080/21678421.2017.1418002Search in Google Scholar PubMed

Rajilić-Stojanović, M. and de Vos, W.M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047.10.1111/1574-6976.12075Search in Google Scholar PubMed PubMed Central

Rannikko, E.H., Weber, S.S., and Kahle, P.J. (2015). Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci 16, 57.10.1186/s12868-015-0192-0Search in Google Scholar PubMed

Rao, A.V., Bested, A.C., Beaulne, T.M., Katzman, M.A., Iorio, C., Berardi, J.M., and Logan, A.C. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 1, 6.10.1186/1757-4749-1-6Search in Google Scholar PubMed

Ridlon, J.M., Kang, D.J., Hylemon, P.B., and Bajaj, J.S. (2014). Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332.10.1097/MOG.0000000000000057Search in Google Scholar PubMed

Rieber, N. and Belohradsky, B.H. (2010). AHR activation by tryptophan – pathogenic hallmark of Th17-mediated inflammation in eosinophilic fasciitis, eosinophilia-myalgia-syndrome and toxic oil syndrome? Immunol. Lett. 128, 154–155.10.1016/j.imlet.2009.11.008Search in Google Scholar

Ritz, B.R., Paul, K.C., and Bronstein, J.M. (2016). Of pesticides and men: a California story of genes and environment in Parkinson’s disease. Curr. Environ. Health Rep. 3, 40–52.10.1007/s40572-016-0083-2Search in Google Scholar

Rivière, A., Moens, F., Selak, M., Maes, D., Weckx, S., and De Vuyst, L. (2014). The ability of bifidobacteria to degrade arabinoxylan oligosaccharide constituents and derived oligosaccharides is strain dependent. Appl. Environ. Microbiol. 80, 204–217.10.1128/AEM.02853-13Search in Google Scholar PubMed

Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771.10.1016/S0092-8674(94)90462-6Search in Google Scholar PubMed

Rodgers, A.B., Morgan, C.P., Leu, N.A., and Bale, T.L. (2015). Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. USA 112, 13699–13704.10.1073/pnas.1508347112Search in Google Scholar PubMed PubMed Central

Rose, S., Bennuri, S.C., Davis, J.E., Wynne, R., Slattery, J.C., Tippett, M., Delhey, L., Melnyk, S., Kahler, S.G., MacFabe, D.F., et al. (2018). Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl. Psychiatry 8, 42.10.1038/s41398-017-0089-zSearch in Google Scholar PubMed PubMed Central

Rubio-Tapia, A., Kyle, R.A., Kaplan, E.L., Johnson, D.R., Page, W., Erdtmann, F., Brantner, T.L., Kim, W.R., Phelps, T.K., Lahr, B.D., et al. (2009). Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 137, 88–93.10.1053/j.gastro.2009.03.059Search in Google Scholar PubMed PubMed Central

Russell, W.R., Gratz, S.W., Duncan, S.H., Holtrop, G., Ince, J., Scobbie, L., Duncan, G., Johnstone, A.M., Lobley, G.E., Wallace, R.J., et al. (2011). High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072.10.3945/ajcn.110.002188Search in Google Scholar PubMed

Sajid, A., Kashif, N., Kifayat, N., and Ahmad, S. (2016). Detection of antibiotic residues in poultry meat. Pak. J. Pharm. Sci. 29, 1691–1694.Search in Google Scholar PubMed

Salim, S.Y., Kaplan, G.G., and Madsen, K.L. (2014). Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microb. 5, 215–219.10.4161/gmic.27251Search in Google Scholar

Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 167, 1469–1480.e12.10.1016/j.cell.2016.11.018Search in Google Scholar

Samraj, A.N., Läubli, H., Varki, N., and Varki, A. (2014). Involvement of a non-human sialic acid in human cancer. Front Oncol. 4, 33.10.3389/fonc.2014.00033Search in Google Scholar PubMed

Samsel, A. and Seneff, S. (2013). Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip. Toxicol. 6, 159–184.10.2478/intox-2013-0026Search in Google Scholar PubMed

Samsel, S. and Seneff, S. (2015). Glyphosate, pathways to modern diseases III: manganese, neurological diseases, and associated pathologies. Surg. Neurol. Int. 6, 45.10.4103/2152-7806.153876Search in Google Scholar PubMed

Sanders, M.E. and Klaenhammer, T.R. (2011). Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84, 319–331.10.3168/jds.S0022-0302(01)74481-5Search in Google Scholar

Sarkar, A., Lehto, S.M., Harty, S., Dinan, T.G., Cryan, J.F., and Burnet, P.W. (2016). Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 39, 763–781.10.1016/j.tins.2016.09.002Search in Google Scholar PubMed PubMed Central

Sasaki, S. (2011). Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 70, 349–359.10.1097/NEN.0b013e3182160690Search in Google Scholar PubMed

Scher, J.U., Ubeda, C., Artacho, A., Attur, M., Isaac, S., Reddy, S.M., Marmon, S., Neimann, A., Brusca, S., Patel, T., et al. (2015). Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139.10.1002/art.38892Search in Google Scholar PubMed PubMed Central

Schnorr, S.L., Candela, M., Rampelli, S., Centanni, M., Consolandi, C., Basaglia, G., Turroni, S., Biagi, E., Peano, C., Severgnini, M., et al. (2014). Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654.10.1038/ncomms4654Search in Google Scholar PubMed PubMed Central

Schroeder, B.O. and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089.10.1038/nm.4185Search in Google Scholar PubMed

Schwartz, M. and Shechter, R. (2010). Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol. 6, 405–410.10.1038/nrneurol.2010.71Search in Google Scholar PubMed

Schwerdtfeger, L.A., Ryan, E.P., and Tobet, S.A. (2016). An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G240–G248.10.1152/ajpgi.00299.2015Search in Google Scholar PubMed PubMed Central

Scott, K.P., Antoine, J.-M., Midtvedt, T., and van Hemert, S. (2015). Manipulating the gut microbiota to maintain health and treat disease. Microb. Ecol. Health Dis. 26, 25877.10.3402/mehd.v26.25877Search in Google Scholar PubMed PubMed Central

Seneff, S., Morley, W.A., Hadden, M.J., and Michener, M.C. (2017). Does glyphosate acting as a glycine analogue contribute to ALS? J. Bioinfo. Proteomics Rev. 3, 1–21.10.15436/2381-0793.16.1173Search in Google Scholar

Shahripour, R.B., Harrigan, M.R., and Alexandrov, A.V. (2014). N-Acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav. 4, 108–122.10.1002/brb3.208Search in Google Scholar PubMed PubMed Central

Sharon, G., Sampson, T.R., Geschwind, D.H., and Mazmanian, S.K. (2016). The central nervous system and the gut microbiome. Cell 167, 915–932.10.1016/j.cell.2016.10.027Search in Google Scholar PubMed PubMed Central

Sherwin, E., Dinan, T.G., and Cryan, J.F. (2017). Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann. N. Y. Acad. Sci. 1420, 5–25.10.1111/nyas.13416Search in Google Scholar PubMed

Singh, V., Roth, S., Llovera, G., Sadler, R., Garzetti, D., Stecher, B., Dichgans, M., and Liesz, A. (2016). Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440.10.1523/JNEUROSCI.1114-16.2016Search in Google Scholar PubMed PubMed Central

Sjöström, A.E., Sandblad, L., Uhlin, B.E., and Wai, S.N. (2015). Membrane vesicle-mediated release of bacterial RNA. Sci. Rep. 5, 15329.10.1038/srep15329Search in Google Scholar PubMed PubMed Central

Skull, A. (2005). Madhouse: A Tragic Tale of Megalomania and Modern Medicine (New Haven, CT: Yale University Press).Search in Google Scholar

Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-y, M., Glickman, J.N., and Garrett, W.S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573.10.1126/science.1241165Search in Google Scholar PubMed PubMed Central

Söderholm, J.D., and Perdue, M.H. (2001). Stress and intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G7–G13.10.1152/ajpgi.2001.280.1.G7Search in Google Scholar PubMed

Stępień-Pyśniak, D., Marek, A., Banach, T., Adaszek, Ł., Pyzik, E., Wilczyński, J., and Winiarczyk, S. (2016). Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Vet. Hung. 64, 148–163.10.1556/004.2016.016Search in Google Scholar PubMed

Stokholm, J., Blaser, M.J., Thorsen, J., Rasmussen, M.A., Waage, J., Vinding, R.K., Schoos, A.M.M., Kunøe, A., Fink, N.R., Chawes, B.L., et al. (2018). Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141.10.1038/s41467-017-02573-2Search in Google Scholar PubMed PubMed Central

Ströhle, A. and Hahn, A. (2011). Diets of modern hunter-gatherers vary substantially in their carbohydrate content depending on ecoenvironments: results from an ethnographic analysis. Nutr. Res. 31, 429–435.10.1016/j.nutres.2011.05.003Search in Google Scholar PubMed

Su, F.C., Goutman, S.A., Chernyak, S., Mukherjee, B., Callaghan, B.C., Batterman, S., and Feldman, E.L. (2016). Association of environmental toxins with amyotrophic lateral sclerosis. JAMA Neurol. 73, 803–811.10.1001/jamaneurol.2016.0594Search in Google Scholar PubMed PubMed Central

Sullivan, C.J., Pendleton, E.D., Sasmor, H.H., Hicks, W.L., Farnum, J.B., Muto, M., Amendt, E.M., Schoborg, J.A., Martin, R.W., Clark, L.G., et al. (2016). A cell-free expression and purification process for rapid production of protein biologics. Biotechnol. J. 11, 238–248.10.1002/biot.201500214Search in Google Scholar PubMed

Sun, J.C., Ugolini, S., and Vivier, E. (2014). Immunological memory within the innate immune system. EMBO J. 33, 1295–1303.10.1002/embj.201387651Search in Google Scholar PubMed PubMed Central

Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L.P., and Lochs, H. (2005). Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389.10.1128/JCM.43.7.3380-3389.2005Search in Google Scholar PubMed PubMed Central

Talaei, M., Wang, Y.L., Yuan, J.M., Pan, A., and Koh, W.P. (2017). Meat, dietary heme iron and risk of type 2 diabetes: the Singapore Chinese Health Study. Am. J. Epidemiol. 186, 824–833.10.1093/aje/kwx156Search in Google Scholar PubMed

Tam, N.K., Uyen, N.Q., Hong, H.A., Duc, L.H., Hoa, T.T., Serra, C.R., Henriques, A.O., and Cutting, S.M. (2006). The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700.10.1128/JB.188.7.2692-2700.2006Search in Google Scholar PubMed

Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., and Macia, L. (2014). The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119.10.1016/B978-0-12-800100-4.00003-9Search in Google Scholar PubMed

Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., and Muchmore, E. (2003). Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA 100, 12045–12050.10.1073/pnas.2131556100Search in Google Scholar

Tao, F., Gonzalez-Flecha, B., and Kobzik, L. (2003). Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic. Biol. Med. 35, 327–340.10.1016/S0891-5849(03)00280-6Search in Google Scholar PubMed

Tayeb-Fligelman, E., Tabachnikov, O., Moshe, A., Goldshmidt-Tran, O., Sawaya, M.R., Coquelle, N., Colletier, J.P., and Landau, M. (2017). The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science 355, 831–833.10.1126/science.aaf4901Search in Google Scholar PubMed PubMed Central

Thiéfin, G. and Beaugerie, L. (2004). Toxic effects of nonsteroidal antiinflammatory drugs on the small bowel, colon, and rectum. Joint Bone Spine. 72, 286–294.10.1016/j.jbspin.2004.10.004Search in Google Scholar PubMed

Thorburn, A.N., Macia, L., and Mackay, C.R. (2014). Diet, metabolites, and ‘Western-lifestyle’ inflammatory diseases. Immunity 40, 833–842,10.1016/j.immuni.2014.05.014Search in Google Scholar PubMed

Tikka, T.M. and Koistinaho, J.E. (2001). Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J. Immunol. 166, 7527–7533.10.4049/jimmunol.166.12.7527Search in Google Scholar PubMed

Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain–Raspaud, S., Trotin, B., Naliboff, B., et al. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401.10.1053/j.gastro.2013.02.043Search in Google Scholar PubMed PubMed Central

Trebichavsky, I., Splichal, I., Rada, V., and Splichalova, A. (2010). Modulation of natural immunity in the gut by Escherichia coli Nissle 1917. Nutr. Rev. 68, 459–464.10.1111/j.1753-4887.2010.00305.xSearch in Google Scholar PubMed

Underwood, M.A. (2014). Intestinal dysbiosis: novel mechanisms by which gut microbes trigger and prevent disease. Prev. Med. 65, 133–137.10.1016/j.ypmed.2014.05.010Search in Google Scholar PubMed

Val-Laillet, D., Guérin, S., Coquery, N., Nogret, I., Formal, M., Romé, V., Le Normand, L., Meurice, P., Randuineau, G., Guilloteau, P., et al. (2018). Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs. FASEB J. 32, 2160–2171.10.1096/fj.201700547RRSearch in Google Scholar PubMed

Vanuytsel, T., van Wanrooy, S., Vanheel, H., Vanormelingen, C., Verschueren, S., Houben, E., Salim Rasoel, S., Tόth, J., Holvoet, L., Farré, R., et al. (2014). Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63, 1293–1299.10.1136/gutjnl-2013-305690Search in Google Scholar PubMed

Vinolo, M.A., Rodrigues, H.G., Hatanaka, E., Sato, F.T., Sampaio, S.C., and Curi, R. (2011). Suppressive effect of short chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 22, 849–855.10.1016/j.jnutbio.2010.07.009Search in Google Scholar PubMed

Voigt, R.M., Forsyth, C.B., Green, S.J., Mutlu, E., Engen, P., Vitaterna, M.H., Turek, F.W., and Keshavarzian, A. (2014). Circadian disorganization alters intestinal microbiota. PLoS One 9, e97500.10.1371/journal.pone.0097500Search in Google Scholar PubMed

Wagner, V.E., Dey, N., Guruge, J., Hsiao, A., Ahern, P.P., Semenkovich, N.P., Blanton, L.V., Cheng, J., Griffin, N., Stappenbeck, T.S., et al. (2016). Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Sci. Transl. Med. 8, 366ra164.10.1126/scitranslmed.aah4669Search in Google Scholar

Walker, L.C., Schelle, J., and Jucker, M. (2016). The prion-like properties of amyloid-β assemblies: implications for Alzheimer’s disease. Cold Spring Harb. Perspect. Med. 6. pii: a024398. doi: 10.1101/cshperspect.a024398.10.1101/cshperspect.a024398Search in Google Scholar

Wang, D., Ho, L., Faith, J., Ono, K., Janle, E.M., Lachcik, P.J., Cooper, B.R., Jannasch, A.H., D’Arcy, B.R., Williams, B.A., et al. (2015). Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol. Nutr. Food Res. 59, 1025–1040.10.1002/mnfr.201400544Search in Google Scholar PubMed

Warren, P.M., Pepperman, M.A., and Montgomery, R.D. (1978). Age changes in small-intestinal mucosa. Lancet 2, 849–850.10.1016/S0140-6736(78)92639-9Search in Google Scholar PubMed

Weaver, I.C. (2007). Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let’s call the whole thing off. Epigenetics 2, 22–28.10.4161/epi.2.1.3881Search in Google Scholar PubMed

Wróblewski, R., Jalnäs, M., Van Decker, G., Björk, J., Wroblewski, J., and Roomans, G.M. (2002). Effects of irradiation on intestinal cells in vivo and in vitro. Histol. Histopathol. 17, 165–177.Search in Google Scholar PubMed

Wu, S., Yi, J., Zhang, Y., Zhou, J., and Sun, J. (2015). Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep. 3, e12356.10.14814/phy2.12356Search in Google Scholar PubMed PubMed Central

Wyss-Coray, T. and Rogers, J. (2011). Inflammation in Alzheimer disease – a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med 2, a006346.10.1101/cshperspect.a006346Search in Google Scholar PubMed PubMed Central

Xu, H., Gelyana, E., Rajsombath, M., Yang, T., Li, S., and Selkoe, D. (2016). Environmental enrichment potently prevents microglia-mediated neuroinflammation by human amyloid β-protein oligomers. J. Neurosci. 36, 9041–9056.10.1523/JNEUROSCI.1023-16.2016Search in Google Scholar PubMed PubMed Central

Yin, L., Gupta, R., Vaught, L., Grosche, A., Okunieff, P., and Vidyasagar, S. (2016a). An amino acid-based oral rehydration solution (AA-ORS) enhanced intestinal epithelial proliferation in mice exposed to radiation. Sci. Rep. 6, 37220.10.1038/srep37220Search in Google Scholar PubMed PubMed Central

Yin, L., Vijaygopal, P., Menon, R., Vaught, L.A., Zhang, M., Zhang, L., Okunieff, P., and Vidyasagar, S. (2016b). An amino acid mixture mitigates radiation-induced gastrointestinal toxicity. Sci. Rep. 6, 37220.10.1038/srep37220Search in Google Scholar

Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97.10.1038/nature12347Search in Google Scholar PubMed

Yuan, A.H. and Hochschild, A. (2017). A bacterial global regulator forms a prion. Science 355, 198–201.10.1126/science.aai7776Search in Google Scholar PubMed PubMed Central

Zhang, R., Miller, R.G., Gascon, R., Champion, S., Katz, J., Lancero, M., Narvaez, A., Honrada, R., Ruvalcaba, D., and McGrath, M.S. (2009). Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J. Neuroimmunol. 206, 121–124.10.1016/j.jneuroim.2008.09.017Search in Google Scholar PubMed PubMed Central

Zhang, Y.G., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., and Sun, J. (2017). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Ther. 39, 322–336.10.1016/j.clinthera.2016.12.014Search in Google Scholar PubMed PubMed Central

Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., Sánchez, M.S., Vázquez, C., Peiró, C., Egido, J. and Mas, S. (2017). High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic. Biol. Med. 104, 165–177.10.1016/j.freeradbiomed.2017.01.009Search in Google Scholar PubMed

Received: 2018-03-18
Accepted: 2018-06-21
Published Online: 2018-09-03
Published in Print: 2019-01-28

©2019 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow