Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 27, 2018

Segmentation and clustering in brain MRI imaging

Golrokh Mirzaei and Hojjat Adeli

Abstract

Clustering is a vital task in magnetic resonance imaging (MRI) brain imaging and plays an important role in the reliability of brain disease detection, diagnosis, and effectiveness of the treatment. Clustering is used in processing and analysis of brain images for different tasks, including segmentation of brain regions and tissues (grey matter, white matter, and cerebrospinal fluid) and clustering of the atrophy in different parts of the brain. This paper presents a state-of-the-art review of brain MRI studies that use clustering techniques for different tasks.

References

Abbasi, H., Bennet, L., Gunn, A.J., and Unsworth, C.P. (2017). Robust wavelet stabilized footprints of uncertainty for fuzzy system classifiers to automatically detect sharp waves in the eeg after hypoxia ischemia. Int. J. Neural Syst. 27, 1650051 (16 pages).10.1142/S0129065716500519Search in Google Scholar PubMed

Abdel-Maksoud, E., Elmogy, M., and Al-Awadi, R. (2015). Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inform. J. 16, 71–81.10.1016/j.eij.2015.01.003Search in Google Scholar

Adeli, H. and Hung, S.L. (1995). Machine Learning – Neural Networks, Genetic Algorithms, and Fuzzy Systems (New York, USA: John Wiley and Sons).Search in Google Scholar

Adeli, H. and Ghosh-Dastidar, S. (2004). Mesoscopic-wavelet freeway work zone flow and congestion feature extraction model. J. Transport. Eng. 130, 94–103.10.1061/(ASCE)0733-947X(2004)130:1(94)Search in Google Scholar

Aggarwal, C.C. and Reddy, C.K. (2014). Data Clustering: Algorithms and Applications (Boca Raton, FL, USA: Chapman & Hall/CRC), 617 pages.10.1201/b17320Search in Google Scholar

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD International Conference on Management of Data, Washington, USA, pp. 94–105.10.1145/276304.276314Search in Google Scholar

Ahmadlou, M. and Adeli, H. (2010). Enhanced probabilistic neural network with local decision circles: a robust classifier. Integr. Comput. Aided Eng. 17, 197–210.10.3233/ICA-2010-0345Search in Google Scholar

Ahmmed, R. and Hossain, F. (2016). Tumor detection in brain MRI image using template based K-means and Fuzzy C-means clustering algorithm. IEEE International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, pp. 1–6.10.1109/ICCCI.2016.7479972Search in Google Scholar

Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., and Erickson, B.J. (2017). Deep learning for brain mri segmentation: state of the art and future directions. J. Digit. Imag. 30, 449–459.10.1007/s10278-017-9983-4Search in Google Scholar PubMed PubMed Central

Alexandridis, A., Paizis, E., Chondrodima, E., and Stogiannos, M. (2017). A particle swarm optimization approach in printed circuit board thermal design. Integr. Comput. Aided Eng. 24, 143–155.10.3233/ICA-160536Search in Google Scholar

Alhasan, A., White, D.J., and De Brabanter, K. (2016). Wavelet filter design for pavement roughness analysis. Comput. Aided Civ. Inf. Eng. 31, 907–920.10.1111/mice.12242Search in Google Scholar

Ali, S.I. and Shahzad, W. (2012). A feature subset selection on method based on conditional mutual information and ant colony optimization. Int. J. Comput. Appl. 60, 5–10.Search in Google Scholar

Alshawi, T.A.., Elsamie, F.E., and Alshebeili, S.A. (2015). Magnetic resonance and computed tomography image fusion using bidimensional empirical mode decomposition. 2015 IEEE Global Conference on Signal and Information processing, Orlando, FL, USA, pp. 413–417.10.1109/GlobalSIP.2015.7418228Search in Google Scholar

Aydin, S., Demitras, S., Ates, K., and Tunga, M.A. (2016). Emotion recognition with eigen features of frequency band activities embedded in induced brain oscillations mediated by affective pictures. Int. J. Neural Syst. 26, 1650013 (16 pages).10.1142/S0129065716500131Search in Google Scholar PubMed

Balafar, M.A. (2011). Spatial based expectation maximizing (EM). Diagn. Pathol. 6, 14 pages. doi: 10.1186/1746-1596-6–10310.1186/1746-1596-6–103Search in Google Scholar

Baumgartner, J., Flesia, A.G., Gimenez, J., and Pucheta, J. (2016). A new image segmentation framework based on two-dimensional hidden Markov models. Integr. Comput. Aided Eng. 23, 1–13.10.3233/ICA-150497Search in Google Scholar

Benaichouche, N., Oulhadj, H., and Siarry, P. (2013). Improved spatial Fuzzy C-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digital Signal Process. 23, 1390–1400.10.1016/j.dsp.2013.07.005Search in Google Scholar

Bezdek, J.C. (1999). Fuzzy Models and Algorithms for Pattern Recognition and Image Processing (Boston, USA: Springer US).10.1007/b106267Search in Google Scholar

Cabria, I. and Gondra, I. (2015). Automated localization of brain tumors in MRI using potential-K-means clustering algorithm. 2015 IEEE Conference on Computer and Robot Vision, Halifax, NS, Canada, pp. 125–132.10.1109/CRV.2015.51Search in Google Scholar

Cadenas, J.M., Garrido, M.C., and Martínez, R. (2013). Feature subset selection filter–wrapper based on low quality data. Expert Syst. Appl. 40, 6241–6252.10.1016/j.eswa.2013.05.051Search in Google Scholar

Castro, L.N. (2006). Fundamental of Natural Computing (FL, USA: Chapman & Hall/CRC).10.1201/9781420011449Search in Google Scholar

Cha, Y.J., Choi, W., and Buyukozturk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Inf. Eng. 32, 361–378.10.1111/mice.12263Search in Google Scholar

Charron, O., Lallement, A., Janet, D., Noblet, V., Clavier, J.B., and Meyer, P. (2018). Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput. Biol. Med. 95, 43–54.10.1016/j.compbiomed.2018.02.004Search in Google Scholar PubMed

Chuzel, P., Mansour, A., Ognard, J., Gentric, J., Bressollette, L., Hamad, D., and Betrouni, N. (2016). Automatic clustering for MRI images, application on perfusion MRI of brain. IEEE 2nd International Conference on Frontiers of Signal Processing, Warsaw, Poland, pp. 63–66.10.1109/ICFSP.2016.7802958Search in Google Scholar

Dai, H. (2017). A wavelet support vector machine-based neural network meta model for structural reliability assessment. Comput. Aided Civ. Infr. Eng. 32, 344–357.10.1111/mice.12257Search in Google Scholar

Dale, B.M., Brown, M.A., and Semelka, R.C. (2015). MRI: Basic Principles and Applications (Hoboken, NJ, USA: Wiley-Blackwell), 248 pages.10.1002/9781119013068Search in Google Scholar

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE Comput. Intell. Mag. 4, 28–39.10.1109/MCI.2006.329691Search in Google Scholar

Duda, R.O., Hart, P.E., and Stork, D.G. (2012). Pattern Classification (Hoboken, NJ, USA: Wiley-Interscience), 680 pages.Search in Google Scholar

Dvorak, P. and Menze, B.H. (2015). Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 13–24.Search in Google Scholar

Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A density based algorithm for discovering clusters in large spatial databases with noise. KDD’96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, pp. 226–231.Search in Google Scholar

Forcael, E., González, V., Orozco, F., Vargas, S., Moscoso, P., Pantoja, A., and Moscoso, P. (2014). Ant colony optimization model for tsunamis evacuation routes. Comput. Aided Civ. Inf. Eng. 29, 723–737.10.1111/mice.12113Search in Google Scholar

Gao, Z.-K., Cai, Q., Yang, Y.-X., Dong, N., and Zhang, S.-S. (2017). Visibility graph from adaptive optimal-kernel time-frequency representation for classification of epileptiform EEG. Int. J. Neural Syst. 27, 1750005 (12 pages).10.1142/S0129065717500058Search in Google Scholar PubMed

Ghosh-Dastidar, S. and Adeli, H. (2003). Wavelet-clustering-neural network model for freeway incident detection. Comput. Aided Civ. Inf. Eng. 18, 325–338.10.1111/1467-8667.t01-1-00311Search in Google Scholar

Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N. (2006). Voxel-based morphometry in Alzheimer’s patients. J. Alzheimers Dis. 10, 445–447.10.3233/JAD-2006-10414Search in Google Scholar PubMed

Gors, D., Suetens, P., Vandenberghe, R., and Claes, P. (2017). Hierarchical spectral clustering of MRI for global-to-local shape analysis: applied to brain variations in Alzheimer’s disease. IEEE International Symposium on Biomedical Imaging, April 2017, Melbourne, Australia, pp. 787–791.10.1109/ISBI.2017.7950636Search in Google Scholar

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., et al. (2018). Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377.10.1016/j.patcog.2017.10.013Search in Google Scholar

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Yoshua, B., Pal, C., Jodin, P.M., and Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31.10.1016/j.media.2016.05.004Search in Google Scholar PubMed

He, K., Zhang, X., Sun, J. (2015). Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, pp. 1026–1034.10.1109/ICCV.2015.123Search in Google Scholar

Hinnebur, A. and Keim, D.A. (1998). An efficient approach to clustering in large multimedia databases with noise. KDD’98 Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 58–65.Search in Google Scholar

Hoo-Chang, S., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., and Summers, R.M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298.10.1109/TMI.2016.2528162Search in Google Scholar PubMed

Hung, S.L. and Adeli, H. (1993). Parallel backpropagation learning algorithms on Cray Y-MP8/864 Supercomputer. Neurocomputing 5, 287–302.10.1016/0925-2312(93)90042-2Search in Google Scholar

Hussain, S, Anwar, S.M., and Majid, M. (2018). Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261.10.1016/j.neucom.2017.12.032Search in Google Scholar

Irani, J., Pise, N., and Phatak, M. (2016). Clustering techniques and the similarity measures used in clustering: a survey. Int. J. Comput. Appl. 134, 9–14.10.5120/ijca2016907841Search in Google Scholar

Jain, A.K. (2010). Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651–666.10.1016/j.patrec.2009.09.011Search in Google Scholar

Ji, Z., Liu, J., Cao, G., Sun, Q., and Qiang, C. (2014). Robust spatially constrained Fuzzy C-means algorithm for brain MR image segmentation. Pattern Recognit. 47, 2454–2466.10.1016/j.patcog.2014.01.017Search in Google Scholar

Jiang, K.Z., Zhen, Z.T., and Li, L. (2017). Topological structure matching measure between two graphs. Comput. Aided Civ. Inf. Eng. 32, 515–524.10.1111/mice.12270Search in Google Scholar

Jovic, A., Brkic, K., and Bogunovic, N. (2015). A review of feature selection methods with applications. IEEE International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, May 2015, pp. 1200–1205.10.1109/MIPRO.2015.7160458Search in Google Scholar

Kamnitsas, K., Leding, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., and Glocker, B. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78.10.1016/j.media.2016.10.004Search in Google Scholar PubMed

Khaliluzzaman, M., Dolon, L.I., and Deb, K. (2016). Analyzing MRI segmentation based on wavelet and BEMD using Fuzzy C-means clustering. 2016 International Workshop on Computational Intelligence (IWCI), Bangladesh, pp. 15–20.10.1109/IWCI.2016.7860331Search in Google Scholar

Khedher, L., Illan, I.A., Gorriz, J.M., Ramirez, J., Brahim, A., and Meyer-Baese, A. (2017). Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support. Int. J. Neural Syst. 27, 1650050 (18 pages).10.1142/S0129065716500507Search in Google Scholar PubMed

Kim, Y.H. and Peeta, S. (2016). Graph-based modeling of information flow evolution and propagation under V2V communications based advanced traveler information systems. Comput. Aided Civ. Inf. Eng. 31, 499–514.10.1111/mice.12188Search in Google Scholar

Kinani, J.M.V., Silva, A.J.R., Funes, F.J.G., and Arellano, A. (2014). Fuzzy C-means applied to MRI images for an automatic lesion detection using image enhancement and constrained clustering. 2014 IEEE 4th International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France, pp. 1–7.Search in Google Scholar

Kotler, P. and Keller, K.L. (2009). Marketing Management, 13th ed. (Upper Saddle River, NJ, USA: Prentice Hall (Pearson)).Search in Google Scholar

Koziarski, M. and Cyganek, B. (2017). Image recognition with deep neural networks in presence of noise – dealing with and taking advantage of distortions. Integr. Comput. Aided Eng. 24, 337–350.10.3233/ICA-170551Search in Google Scholar

Kulkarni, A., Tokekar, V., and Kulkarni, P. (2015). Discovering context of labelled text documents using context similarity coefficient. Procedia Comput. Sci. 49, 118–127.10.1016/j.procs.2015.04.235Search in Google Scholar

Lebenberg, J., Poupon, C., Thirion, B., Leroy, F., Mangin, J.F., Lambertz, G., and Dubois, J. (2015). Clustering the infant brain tissues based on microstructural properties and maturation assessment using multi-parametric, 2015 IEEE 12th International Symposium on Biomedical Imaging, New York, USA, pp. 148–151.10.1109/ISBI.2015.7163837Search in Google Scholar

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nat. Int. J. Sci. 521, 436–444.10.1038/nature14539Search in Google Scholar PubMed

Lin, Y.Z., Nie, Z.H., and Ma, H.W. (2017). Structural damage detection with automatic feature-extraction through deep learning. Comput. Aided Civ. Inf. Eng. 32, 1025–1046.10.1111/mice.12313Search in Google Scholar

Liu, J. and Guo, L. (2015a). A new brain MRI image segmentation strategy based on wavelet transform and k-means clustering. IEEE International Conference on Signal Processing, Communications and Computing, Ningbo, China, pp. 1–4.10.1109/ICSPCC.2015.7338884Search in Google Scholar

Liu, J.W. and Guo, L. (2015b). Selection of initial parameters of K-means clustering algorithm for MRI brain image segmentation. 2015 IEEE International Conference on Machine Learning and Cybernetics (ICMLC), Guangzhou, China, pp. 123–127.10.1109/ICMLC.2015.7340909Search in Google Scholar

Liu, R. Wang, Y., Newman, G.I., Ying, S., and Thakor, N.V. (2017). EEG classification with a sequential decision-making method in motor imagery BCI. Int. J. Neural. Syst. 27, 1750046.10.1142/S0129065717500460Search in Google Scholar PubMed

Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls, L., Torrenta, L.R., and Rovira, A. (2012). Segmentation of multiple sclerosis lesions in brain MRI: a review of automated approaches. Inf. Sci. 186, 164–185.10.1016/j.ins.2011.10.011Search in Google Scholar

Luxburg, U.V. (2006). A tutorial on spectral clustering. Technical Report, No. TR-149.Search in Google Scholar

Ma, M., Liang, J., Guo, M., Fan, Y., and Yin, Y. (2011). SAR image segmentation based on artificial bee colony algorithm. Appl. Soft Comput. 11, 5205–5214.10.1016/j.asoc.2011.05.039Search in Google Scholar

Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J.V., Edwards, A.D., and Counsell, S.J. (2014). Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33, 1818–1831.10.1109/TMI.2014.2322280Search in Google Scholar PubMed

Mbuyamba, E.I., Duarte, J.M.C., Cervantes, J.G.A., Correa-Cely, C.R., Linder, D., and Chalopin, C. (2016). Active contours driven by cuckoo search strategy for brain tumor images segmentation. Expert Syst. Appl. 56, 59–68.10.1016/j.eswa.2016.02.048Search in Google Scholar

Mekhmoukh, A. and Makrani, K. (2015). Improved Fuzzy C-means based particle swarm optimization (PSO) initialization and outlier rejection with level set methods for MR brain image segmentation. Comput. Methods Programs Biomed. 122, 266–281.10.1016/j.cmpb.2015.08.001Search in Google Scholar PubMed

Menon, N. and Ramakrishnan, R. (2015). Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering. 2015 IEEE International Conference on Communications and Signal Processing, Melmaruvathur, India, pp. 6–9.10.1109/ICCSP.2015.7322635Search in Google Scholar

Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–20124.10.1109/TMI.2014.2377694Search in Google Scholar PubMed PubMed Central

Milletari, F., Ahmadi, S.A., Kroll, C., Hennersperger, C., Tombari, F., Shah, A., Plate, A., Boetzel, K., and Nassir, N. (2015). Robust segmentation of various anatomies in 3D ultrasound using Hough forests and learned data representations. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, Germany, pp. 111–118.10.1007/978-3-319-24571-3_14Search in Google Scholar

Milletari, F., Ahmadi, S.A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K., et al. (2017). Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image Understand. 164, 92–102.10.1016/j.cviu.2017.04.002Search in Google Scholar

Mirzaei, G. and Adeli, H. (2016). Resting state functional magnetic resonance imaging processing techniques in stroke studies. Rev. Neurosci. 27, 871–885.10.1515/revneuro-2016-0052Search in Google Scholar PubMed

Mirzaei, G., Majid, M.W., Ross, J., Jamali, M.M., Gorsevski, P.V., Frizado, J., and Bingman, V.P. (2012a). Implementation of ant clustering algorithm for IR imagery in wind turbine applications. 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, pp. 868–871.10.1109/MWSCAS.2012.6292158Search in Google Scholar

Mirzaei, G., Majid, M.W., Ross, J., Jamali, M.M., Gorsevski, P.V., Frizado, J., and Bingman, V.P. (2012b). The bio-acoustic feature extraction and classification of bat echolocation calls. 2012 IEEE International Conference on Electro/Information Technology, Indianapolis, IN, USA, pp. 1–4.10.1109/EIT.2012.6220700Search in Google Scholar

Mirzaei, G., Jamali, M.M., Ross, J., Gorsevski, P.V., and Bingman, V.P. (2015). Data fusion of acoustics, infrared, and marine radar. IEEE Sens. J. 15, 6625–6632.10.1109/JSEN.2015.2464232Search in Google Scholar

Mirzaei, G., Adeli, A., and Adeli, H. (2016). Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Rev. Neurosci. 27, 857–870.10.1515/revneuro-2016-0029Search in Google Scholar PubMed

Morabito, F.C., Campolo, M., Mammone, N., Versaci, M., Franceschetti, S., Tagliavini, F., Sofia, V., Fatuzzo, D., Gambardella, A., Labate, A., et al. (2017). Deep learning representation from electroencephalography of early-stage Creutzfeld-Jakob disease and features for differentiation from rapidly progressive dementia. Int. J. Neural. Syst. 27, 1650039 (15 pages).10.1142/S0129065716500398Search in Google Scholar PubMed

Muneer, K.V.H. and Joseph, K.P. (2018). Performance analysis of combined K-means and Fuzzy C-means segmentation of MR brain images. Computational Vision Bio Insp. Comp. 28, 830–836.10.1007/978-3-319-71767-8_71Search in Google Scholar

Nayak, J., Naik, B., and Behera, H.S. (2014). Fuzzy C-means (FCM) clustering algorithm: a decade review from 2000 to 2014. Comput. Intell. Data Mining 2, 133–149.10.1007/978-81-322-2208-8_14Search in Google Scholar

O’Neill, M. and Brabazon, A. (2006). Grammatical swarm: the generation of programs by social programming. Nat. Comput. 5, 443–462.10.1007/s11047-006-9007-7Search in Google Scholar

Ortega-Zamorano, F., Jerez, J.M., Gómez, I., and Franco, L. (2017). Layer multiplexing FPGA implementation for deep back-propagation learning. Integr. Comput. Aided Eng. 24, 171–185.10.3233/ICA-170538Search in Google Scholar

Ortiz-Garcia, A., Munilla, J., Gorriz, J.M., and Ramirez, J. (2016). Ensembles of deep learning architectures for the early diagnosis of Alzheimer’s disease. Int. J. Neural Syst. 26, 1650025 (23 pages).10.1142/S0129065716500258Search in Google Scholar PubMed

Palomo, E.J. and Lopez-Rubio, E. (2016). Learning topologies with the growing neural forest. Int. J. Neural Syst. 26, 1650019 (21 pages).10.1142/S0129065716500192Search in Google Scholar PubMed

Peng, H., Wang, J., Shi, P., Perez-Jimenez, M.J., and Riscos-Nunez, A. (2016). An extended membrane system with active membranes to solve automatic fuzzy clustering problems. Int. J. Neural Syst. 26, 1650004 (17 pages).10.1142/S0129065716500040Search in Google Scholar PubMed

Pereira, S., Pinto, A., Alves, V., and Silva, C. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251.10.1109/TMI.2016.2538465Search in Google Scholar PubMed

Prakash, R.M. and Kumari, R.S.S. (2017). Spatial Fuzzy C means and expectation maximization algorithms with bias correction for segmentation of MR brain images. J. Med. Syst. 41, 9 pages. doi: 10.1007/s10916-016-0662-7.10.1007/s10916-016-0662-7Search in Google Scholar PubMed

Qiu, B.Z., Li, X.L., and Shen, J.Y. (2007). Grid-based clustering algorithm based on intersecting partition and density estimation. T. Washio, eds. Emerging Technologies in Knowledge Discovery and Data Mining. PAKDD 2007. Lecture Notes in Computer Science, 4819 (Berlin, Heidelberg: Springer).10.1007/978-3-540-77018-3_37Search in Google Scholar

Rafiei, M.H. and Adeli, H. (2016). A novel machine learning model for estimation of sale prices of real estate units. Construct. Eng. Manage. 142, 04015066, doi: 10.1061/(ASCE)Co.1943-7862.000104.10.1061/(ASCE)CO.1943-7862.0001047Search in Google Scholar

Rafiei, M.H. and Adeli, H. (2017). A new neural dynamic classification algorithm. IEEE Trans. Neural Netw. Learn. Syst. 28, 3074–3083.10.1109/TNNLS.2017.2682102Search in Google Scholar PubMed

Rafiei, M.H. and Adeli, H. (2018). A novel unsupervised deep learning model for global and local health condition assessment of structures. Eng. Struct. 156, 598–607.10.1016/j.engstruct.2017.10.070Search in Google Scholar

Rani, U. and Sahu, S. (2017). Comparison of clustering techniques for measuring similarity in articles. 3rd IEEE International Conference on Computational Intelligence and Communication Technology, Ghaziabad, India, pp. 1–7.10.1109/CIACT.2017.7977377Search in Google Scholar

Rashidi, T.H., Rey, D., Jian, S., and Waller, S.T. (2016). A clustering algorithm for bi-criteria stop location design with elastic demand. Comput. Aided Civ. Inf. Eng. 31, 117–131.10.1111/mice.12162Search in Google Scholar

Rigos, A., Tsekouras, G.E., Vousdoukas, M.I., Chatzipavlis, A., and Velegrakis, A.F. (2016). A Chebyshev polynomial radial basis function neural network for automated shoreline extraction from coastal imagery. Integr. Comput. Aided Eng. 23, 141–160.10.3233/ICA-150507Search in Google Scholar

Saignavongs, M., Ciumas, C., Petton, M., Bouet, R., Boulogne, S., Rheims, S., Lachaux, J.-P., and Ryvlin P. (2017). Neural activity elicited by a cognitive task can be detected in single-trials with simultaneous intracerebral EEG-fMRI recordings. Int. J. Neural Syst. 27, 1750001 (14 pages).10.1142/S0129065717500010Search in Google Scholar PubMed

Samant, A. and Adeli, H. (2000). Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis. Comput. Aided Civ. Inf. Eng. 15, 241–250.10.1111/0885-9507.00188Search in Google Scholar

Sandri, M. and Zuccolotto, P. (2006). Variable selection using random forests. Data Analysis, Classification and the Forward Search. Studies in Classification, Data Analysis, and Knowledge Organization. S. Zani, A. Cerioli, M. Riani, M. Vichi, eds. (Berlin, Heidelberg: Springer).10.1007/3-540-35978-8_30Search in Google Scholar

Sankari, Z. and Adeli, H. (2011). Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J. Neurosci. Methods 197, 165–170.10.1016/j.jneumeth.2011.01.027Search in Google Scholar PubMed

Sarafrazi, S. and Nezamabadi-pour, H. (2013). Facing the classification of binary problems with a GSA-SVM hybrid system. Math. Comput. Modell. 57, 270–278.10.1016/j.mcm.2011.06.048Search in Google Scholar

Sharma, M., Purohit, G.N., and Mukherjee, S. (2018). Information retrieves from brain MRI images for tumor detection using hybrid technique K-means and artificial neural network (KMANN). Networking Communication and Data Knowledge Engineering, Vol. 4 (Berlin, Heidelberg: Springer), pp. 145–157.10.1007/978-981-10-4600-1_14Search in Google Scholar

Shirkhorshidi, A.S., Aghabozorgi, S., and Wah, T.Y. (2015). A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10, e0144059, doi: 10.1371/journal.pone.0144059.10.1371/journal.pone.0144059Search in Google Scholar PubMed PubMed Central

Siddique, N. and Adeli, H. (2013). Computational intelligence – synergies of fuzzy logic. Neural Netw. Evol. Comput. (West Sussex, UK: Wiley).Search in Google Scholar

Siddique, N. and Adeli, H. (2017). Nature Inspired Computing – Physics- and Chemistry-based Algorithms (Boca Raton, FL: CRC Press, Taylor & Francis).10.1201/9781315118628Search in Google Scholar

Siddique, N.H. and Adeli, H. (2015). Nature-inspired computing: an overview and some future directions. Cogn. Comput. 7, 706–714.10.1007/s12559-015-9370-8Search in Google Scholar PubMed PubMed Central

Siddique, N.H. and Adeli, H. (2016a). Brief history of natural sciences for nature-inspired computing in engineering. J. Civ. Eng. Manage. 22, 287–301.10.3846/13923730.2016.1157095Search in Google Scholar

Siddique, N.H. and Adeli, H. (2016b). Physics-based search and optimization: inspirations from nature. Expert Syst. 33, 607–623.10.1111/exsy.12185Search in Google Scholar

Singh, N., Fletcher, P.T., Preston, J.S., King, R.D., Marron, J.S., Weiner, M.W., Joshi, S., and Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2014). Quantifying anatomical shape variations in neurological disorders. Med. Image Anal. 18, 616–633.10.1016/j.media.2014.01.001Search in Google Scholar PubMed PubMed Central

Tonks, D.G. (2009). Validity and the design of market segments. J. Market. Manage. 25, 341–356.10.1362/026725709X429782Search in Google Scholar

Vaishnavee, K.B. and Amshakala, K. (2015). An automated MRI brain image segmentation and tumor detection using SOM-clustering and proximal support vector machine classifier. 2015 IEEE International Conference on Engineering and Technology, Coimbatore, India, pp. 1–6.10.1109/ICETECH.2015.7275030Search in Google Scholar

Von Luxburg, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17, 395–416.10.1007/s11222-007-9033-zSearch in Google Scholar

Vora, A. and Raman, S. (2018). Iterative spectral clustering for unsupervised object localization. Pattern Recognit. Lett. 106, 27–32.10.1016/j.patrec.2018.02.012Search in Google Scholar

Wang, W., Yang, J., and Muntz, R.R. (1997). STING: a statistical information grid approach to spatial data mining. VLDB 97, Proceeding of 23rd International Conference on Very large Data Bases, Morgan Kaufmann, pp. 186–195.Search in Google Scholar

Wang, R., Zhang, Y., and Zhang, L. (2016). An adaptive neural network approach for operator functional state prediction using psychophysiological data. Integr. Comput. Aided Eng. 23, 81–97.10.3233/ICA-150502Search in Google Scholar

Washimkar, S.P. and Chede, S.D. (2015). Application of FCM clustering on AM-FM to detect MRI disease progression for multiple sclerosis. International Conference on Computational Intelligence and Commutation Networks, December 2015, Jabalpur, India, pp. 283–287.10.1109/CICN.2015.63Search in Google Scholar

Witten, I.H., Frank, E., and Hall, M. (2011). Data Mining: Practical Machine Learning Tools and Techniques (San Francisco, CA, USA: Morgan Kaufmann).Search in Google Scholar

Xiaoyun, C., Yi, C., Xiaoli, Q., Min, Y., and Yanshan, H. (2009). PGMCLU: a novel parallel grid-based clustering algorithm for multi-density datasets. IEEE Symposium on Web Society, Lanzhou, China, pp. 166–171.10.1109/SWS.2009.5271791Search in Google Scholar

Xu, R. and Wunsch, D.C. (2010). Clustering algorithms in biomedical research: a review. IEEE Rev. Biomed. Eng. 3, 120–154.10.1109/RBME.2010.2083647Search in Google Scholar PubMed

Xu, F., Zhou, W., Zhen, Y., Yuan, Q., and Wu, Q. (2016). Using fractal and local binary pattern features for motor imagery classification of ECOG motor imagery task obtained from the right brain hemisphere. Int. J. Neural Syst. 26, 1650022 (13 pages).10.1142/S0129065716500222Search in Google Scholar PubMed

Yoo, Y., Tang, L.Y.W., Brosch, T., Li, D.K.B., Kolind, S., Vavasour, I., Rauscher, A., Mackay, A.L., Traboulsee, A., and Tam, R.C. (2018). Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage Clin. 17, 69–178.10.1016/j.nicl.2017.10.015Search in Google Scholar PubMed PubMed Central

Zeinalia, Y. and Story, B. (2017). Competitive probabilistic neural network. Integrated Comput. Aided Eng. 24, 105–118.10.3233/ICA-170540Search in Google Scholar

Zhang, D.Q. and Chen, S.C. (2004). A novel kernelized Fuzzy C-means algorithm with application in medical image segmentation. Artif. Intell. Med. 32, 37–50.10.1016/j.artmed.2004.01.012Search in Google Scholar PubMed

Zhang, A., Wang, K.C.P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q., and Chen, C. (2017a). Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comput. Aided Civ. Inf. Eng. 32, 805–819.10.1111/mice.12297Search in Google Scholar

Zhang, Y., Wang, Y., Jin, J., and Wang, X. (2017b). Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int. J. Neural Syst. 27, 1650032.10.1142/S0129065716500325Search in Google Scholar PubMed

Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., and Fan, Y. (2018). A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111.10.1016/j.media.2017.10.002Search in Google Scholar PubMed PubMed Central

Received: 2018-05-22
Accepted: 2018-07-19
Published Online: 2018-09-27
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston