Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 31, 2018

The role of fibroblast growth factors and their receptors in gliomas: the mutations involved

Vasiliki Georgiou and Vasiliki Gkretsi ORCID logo


The central nervous system (CNS) comprises of neurons, which are responsible for impulse transmission, and glial cells, which surround neurons providing protection and nutrition. Glial cells are categorized into astrocytes, oligodendrocytes, microglial cells, and ependymal cells. Tumors forming from glial cells are called gliomas, and they are classified accordingly into astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are characterized by high mortality rates and degree of malignancy, heterogeneity, and resistance to treatment. Among the molecular players implicated in glioma pathogenesis are members of the fibroblast growth factor (FGF) superfamily as well as their receptors (FGFRs). In the present study, we provide a review of the literature on the role of FGFs and FGFRs in glioma pathogenesis. We also demonstrate that FGFs, and particularly FGF1 and FGF2, bear a variety of mutations in gliomas, while FGFRs are also crucially involved. In fact, several studies show that in gliomas, FGFRs bear mutations, mainly in the tyrosine kinase domains. Specifically, it appears that FGFR1-TACC1 and FGFR3-TACC3 fusions are common in these receptors. A better understanding of the mutations and the molecular players involved in glioma formation will benefit the scientific community, leading to the development of more effective and innovative therapeutic approaches.


Allen, N.J. (2014). Astrocyte regulation of synaptic behavior. Annu. Rev. Cell Dev. Biol. 30, 439–463.10.1146/annurev-cellbio-100913-013053Search in Google Scholar PubMed

Allerstorfer, S., Sonvilla, G., Fischer, H., Spiegl-Kreinecker, S., Gauglhofer, C., Setinek, U., Czech, T., Marosi, C., Buchroithner, J., Pichler, J., et al. (2008). FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. Oncogene 27, 4180–4190.10.1038/onc.2008.61Search in Google Scholar PubMed PubMed Central

Annabi, B., Rojas-Sutterlin, S., Laflamme, C., Lachambre, M.P., Rolland, Y., Sartelet, H., and Beliveau, R. (2008). Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol. Cancer Res. 6, 907–916.10.1158/1541-7786.MCR-07-2184Search in Google Scholar PubMed

Becker, A.P., Scapulatempo-Neto, C., Carloni, A.C., Paulino, A., Sheren, J., Aisner, D.L., Musselwhite, E., Clara, C., Machado, H.R., Oliveira, R.S., et al. (2015). KIAA1549: BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. J. Neuropathol. Exp. Neurol. 74, 743–754.10.1097/NEN.0000000000000213Search in Google Scholar PubMed PubMed Central

Beenken, A. and Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253.10.1038/nrd2792Search in Google Scholar PubMed PubMed Central

Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., Liu, B., Meyerhof, W., Kasparov, S., and Dale, N. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia 65, 773–789.10.1002/glia.23125Search in Google Scholar PubMed PubMed Central

Blondel, O., Collin, C., McCarran, W.J., Zhu, S., Zamostiano, R., Gozes, I., Brenneman, D.E., and McKay, R.D. (2000). A glia-derived signal regulating neuronal differentiation. J. Neurosci. 20, 8012–8020.10.1523/JNEUROSCI.20-21-08012.2000Search in Google Scholar PubMed

Bouzier-Sore, A.K. and Pellerin, L. (2013). Unraveling the complex metabolic nature of astrocytes. Front. Cell Neurosci. 7, 179.10.3389/fncel.2013.00179Search in Google Scholar PubMed PubMed Central

Brooks, A.N., Kilgour, E., and Smith, P.D. (2012). Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin. Cancer Res. 18, 1855–1862.10.1158/1078-0432.CCR-11-0699Search in Google Scholar PubMed

Chen, K., Ohkubo, Y., Shin, D., Doetschman, T., Sanford, L.P., Li, H., and Vaccarino, F.M. (2008). Decrease in excitatory neurons, astrocytes and proliferating progenitors in the cerebral cortex of mice lacking exon 3 from the Fgf2 gene. BMC Neurosci. 9, 94.10.1186/1471-2202-9-94Search in Google Scholar PubMed PubMed Central

Collette, J.C., Choubey, L., and Smith, K.M. (2017). Glial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system. Peer J. 5, e3519.10.7717/peerj.3519Search in Google Scholar PubMed PubMed Central

Correa-Gillieron, E.M. and Cavalcante, L.A. (1999). Synaptogenesis in retino-receptive layers of the superior colliculus of the opossum Didelphis marsupialis. Brain Behav. Evol. 54, 71–84.10.1159/000006614Search in Google Scholar PubMed

Di Stefano, A.L., Fucci, A., Frattini, V., Labussiere, M., Mokhtari, K., Zoppoli, P., Marie, Y., Bruno, A., Boisselier, B., Giry, M., et al. (2015). Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin. Cancer Res. 21, 3307–3317.10.1158/1078-0432.CCR-14-2199Search in Google Scholar PubMed PubMed Central

Eisele, S.C. and Reardon, D.A. (2016). Adult brainstem gliomas. Cancer 122, 2799–2809.10.1002/cncr.29920Search in Google Scholar PubMed

Farmer, W.T. and Murai, K. (2017). Resolving astrocyte heterogeneity in the CNS. Front. Cell Neurosci. 11, 300.10.3389/fncel.2017.00300Search in Google Scholar PubMed PubMed Central

Fortin, D., Rom, E., Sun, H., Yayon, A., and Bansal, R. (2005). Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J. Neurosci. 25, 7470–7479.10.1523/JNEUROSCI.2120-05.2005Search in Google Scholar PubMed PubMed Central

Frattini, V., Pagnotta, S.M., Tala, Fan, J.J., Russo, M.V., Lee, S.B., Garofano, L., Zhang, J., Shi, P., Lewis, G., et al. (2018). A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature 553, 222–227.10.1038/nature25171Search in Google Scholar PubMed PubMed Central

Fukai, J., Yokote, H., Yamanaka, R., Arao, T., Nishio, K., and Itakura, T. (2008). EphA4 promotes cell proliferation and migration through a novel EphA4-FGFR1 signaling pathway in the human glioma U251 cell line. Mol. Cancer Ther. 7, 2768–2778.10.1158/1535-7163.MCT-07-2263Search in Google Scholar PubMed

Fuller, C.E., Jones, D.T.W., and Kieran, M.W. (2017). New classification for central nervous system tumors: implications for diagnosis and therapy. Am. Soc. Clin. Oncol. Educ. Book. 37, 753–763.10.14694/EDBK_175088Search in Google Scholar PubMed

Gallo, L.H., Nelson, K.N., Meyer, A.N., and Donoghue, D.J. (2015). Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev. 26, 425–449.10.1016/j.cytogfr.2015.03.003Search in Google Scholar PubMed

Gergely, F., Karlsson, C., Still, I., Cowell, J., Kilmartin, J., and Raff, J.W. (2000). The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. USA 97, 14352–14357.10.1073/pnas.97.26.14352Search in Google Scholar PubMed PubMed Central

Gouaze-Andersson, V., Delmas, C., Taurand, M., Martinez-Gala, J., Evrard, S., Mazoyer, S., Toulas, C., and Cohen-Jonathan-Moyal, E. (2016). FGFR1 induces glioblastoma radioresistance through the PLCgamma/Hif1alpha pathway. Cancer Res. 76, 3036–3044.10.1158/0008-5472.CAN-15-2058Search in Google Scholar PubMed

Granberg, K.J., Annala, M., Lehtinen, B., Kesseli, J., Haapasalo, J., Ruusuvuori, P., Yli-Harja, O., Visakorpi, T., Haapasalo, H., Nykter, M., et al. (2017). Strong FGFR3 staining is a marker for FGFR3 fusions in diffuse gliomas. Neuro. Oncol. 19, 1206–1216.Search in Google Scholar PubMed

Grant, R., Kolb, L., and Moliterno, J. (2014). Molecular and genetic pathways in gliomas: the future of personalized therapeutics. CNS Oncol. 3, 123–136.10.2217/cns.14.7Search in Google Scholar PubMed PubMed Central

Gupta, A., Shaller, N., and McFadden, K.A. (2017). Pediatric thalamic gliomas: an updated review. Arch. Pathol. Lab. Med. 141, 1316–1323.10.5858/arpa.2017-0249-RASearch in Google Scholar PubMed

Haley, E.M. and Kim, Y. (2014). The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett. 346, 1–5.10.1016/j.canlet.2013.12.003Search in Google Scholar PubMed

Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.10.1016/j.cell.2011.02.013Search in Google Scholar PubMed

Jakel, S. and Dimou, L. (2017). Glial cells and their function in the adult brain: a journey through the history of their ablation. Front. Cell Neurosci. 11, 24.10.3389/fncel.2017.00024Search in Google Scholar PubMed PubMed Central

Jebelli, J., Su, W., Hopkins, S., Pocock, J., and Garden, G.A. (2015). Glia: guardians, gluttons, or guides for the maintenance of neuronal connectivity? Ann. NY Acad. Sci. 1351, 1–10.10.1111/nyas.12711Search in Google Scholar PubMed PubMed Central

Jiang, H., Cui, Y., Wang, J., and Lin, S. (2017). Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system. Oncotarget 8, 20354–20361.10.18632/oncotarget.13555Search in Google Scholar PubMed PubMed Central

Kang, W. and Hebert, J.M. (2015). FGF signaling is necessary for neurogenesis in young mice and sufficient to reverse its decline in old mice. J. Neurosci. 35, 10217–10223.10.1523/JNEUROSCI.1469-15.2015Search in Google Scholar PubMed PubMed Central

Khalid, A. and Javaid, M.A. (2016). Fibroblast growth factors and their emerging cancer-related aspects. J. Cancer Sci. Ther. 8, 190–205.10.4172/1948-5956.1000413Search in Google Scholar

Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura, T., and Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Front. Neurosci. 10, 502.10.3389/fnins.2016.00502Search in Google Scholar PubMed PubMed Central

Korc, M. and Friesel, R.E. (2009). The role of fibroblast growth factors in tumor growth. Curr. Cancer Drug Targets 9, 639–651.10.2174/156800909789057006Search in Google Scholar PubMed PubMed Central

Kuroda, M., Muramatsu, R., Maedera, N., Koyama, Y., Hamaguchi, M., Fujimura, H., Yoshida, M., Konishi, M., Itoh, N., Mochizuki, H., et al. (2017). Peripherally derived FGF21 promotes remyelination in the central nervous system. J. Clin. Invest. 127, 3496–3509.10.1172/JCI94337Search in Google Scholar PubMed PubMed Central

Lehtinen, B., Raita, A., Kesseli, J., Annala, M., Nordfors, K., Yli-Harja, O., Zhang, W., Visakorpi, T., Nykter, M., Haapasalo, H., et al. (2017). Clinical association analysis of ependymomas and pilocytic astrocytomas reveals elevated FGFR3 and FGFR1 expression in aggressive ependymomas. BMC Cancer 17, 310.10.1186/s12885-017-3274-9Search in Google Scholar PubMed PubMed Central

Ludwig, P. and Bhimji, S.S. (2017). Histology, Glial Cells, StatPearls Publishing LLC.Search in Google Scholar

Mei, S.C. and Wu, R.T. (2008). The G-rich promoter and G-rich coding sequence of basic fibroblast growth factor are the targets of thalidomide in glioma. Mol Cancer Ther. 7, 2405–2414.10.1158/1535-7163.MCT-07-2398Search in Google Scholar PubMed

Morrison, R.S., Gross, J.L., Herblin, W.F., Reilly, T.M., LaSala, P.A., Alterman, R.L., Moskal, J.R., Kornblith, P.L., and Dexter, D.L. (1990). Basic fibroblast growth factor-like activity and receptors are expressed in a human glioma cell line. Cancer Res. 50, 2524–2529.Search in Google Scholar

Nair, A.G., Pathak, R.S., Iyer, V.R., and Gandhi, R.A. (2014). Optic nerve glioma: an update. Int. Ophthalmol. 34, 999–1005.10.1007/s10792-014-9942-8Search in Google Scholar PubMed

Nelson, K.N., Meyer, A.N., Siari, A., Campos, A.R., Motamedchaboki, K., and Donoghue, D.J. (2016). Oncogenic gene fusion FGFR3-TACC3 is regulated by tyrosine phosphorylation. Mol. Cancer Res. 14, 458–469.10.1158/1541-7786.MCR-15-0497Search in Google Scholar PubMed

Nortley, R. and Attwell, D. (2017). Control of brain energy supply by astrocytes. Curr. Opin. Neurobiol. 47, 80–85.10.1016/j.conb.2017.09.012Search in Google Scholar PubMed

Ohkubo, Y., Uchida, A.O., Shin, D., Partanen, J., and Vaccarino, F.M. (2004). Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J. Neurosci. 24, 6057–6069.10.1523/JNEUROSCI.1140-04.2004Search in Google Scholar PubMed PubMed Central

Ornitz, D.M. and Itoh, N. (2001). Fibroblast growth factors. Genome Biol. 2, REVIEWS3005.10.1016/B0-12-370879-6/00155-1Search in Google Scholar PubMed

Ornitz, D.M. and Itoh, N. (2015). The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266.10.1002/wdev.176Search in Google Scholar PubMed PubMed Central

Park, S.H., Won, J., Kim, S.I., Lee, Y., Park, C.K., Kim, S.K., and Choi, S.H. (2017). Molecular testing of brain tumor. J. Pathol. Transl. Med. 51, 205–223.10.4132/jptm.2017.03.08Search in Google Scholar PubMed PubMed Central

Parker, B.C., Annala, M.J., Cogdell, D.E., Granberg, K.J., Sun, Y., Ji, P., Li, X., Gumin, J., Zheng, H., Hu, L., et al. (2013). The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J. Clin. Invest. 123, 855–865.10.1172/JCI67144Search in Google Scholar PubMed PubMed Central

Peña-Ortiz, M., Germán-Castelán, L., and González-Arenas, A. (2016). Growth factors and kinases in glioblastoma growth. Adv. Mod. Oncol. Res. 2, 248–260.10.18282/amor.v2.i5.100Search in Google Scholar

Prelaj, A., Rebuzzi, S.E., Caffarena, G., Giron Berrios, J.R., Pecorari, S., Fusto, C., Caporlingua, A., Caporlingua, F., Di Palma, A., Magliocca, F.M., et al. (2018). Therapeutic approach in glioblastoma multiforme with primitive neuroectodermal tumor components: case report and review of the literature. Oncol. Lett. 15, 6641–6647.10.3892/ol.2018.8102Search in Google Scholar PubMed PubMed Central

Qaddoumi, I., Orisme, W., Wen, J., Santiago, T., Gupta, K., Dalton, J.D., Tang, B., Haupfear, K., Punchihewa, C., Easton, J., et al. (2016). Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 131, 833–845.10.1007/s00401-016-1539-zSearch in Google Scholar PubMed PubMed Central

Rash, B.G., Lim, H.D., Breunig, J.J., and Vaccarino, F.M. (2011). FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J. Neurosci. 31, 15604–15617.10.1523/JNEUROSCI.4439-11.2011Search in Google Scholar PubMed PubMed Central

Reni, M., Mazza, E., Zanon, S., Gatta, G., and Vecht, C.J. (2017). Central nervous system gliomas. Crit. Rev. Oncol. Hematol. 113, 213–234.10.1016/j.critrevonc.2017.03.021Search in Google Scholar PubMed

Rodriguez, F.J., Vizcaino, M.A., and Lin, M.T. (2016). Recent advances on the molecular pathology of glial neoplasms in children and adults. J. Mol. Diagn. 18, 620–634.10.1016/j.jmoldx.2016.05.005Search in Google Scholar PubMed PubMed Central

Singh, D., Chan, J.M., Zoppoli, P., Niola, F., Sullivan, R., Castano, A., Liu, E.M., Reichel, J., Porrati, P., Pellegatta, S., et al. (2012). Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235.10.1126/science.1220834Search in Google Scholar PubMed

Smith, S.J., Diksin, M., Chhaya, S., Sairam, S., Estevez-Cebrero, M.A., and Rahman, R. (2017). The invasive region of glioblastoma defined by 5ALA guided surgery has an altered cancer stem cell marker profile compared to central tumour. Int. J. Mol. Sci. 18, pii: E2452.10.3390/ijms18112452Search in Google Scholar PubMed

Sobol-Milejska, G., Mizia-Malarz, A., Musiol, K., Chudek, J., Bozentowicz-Wikarek, M., Wos, H., and Mandera, M. (2017). Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in children with brain tumors. Adv. Clin. Exp. Med. 26, 571–575.10.17219/acem/62320Search in Google Scholar PubMed

Tan, S.K., Jermakowicz, A., Mookhtiar, A.K., Nemeroff, C.B., Schurer, S.C., and Ayad, N.G. (2018). Drug repositioning in glioblastoma: a pathway perspective. Front. Pharmacol. 9, 218.10.3389/fphar.2018.00218Search in Google Scholar PubMed

Tsai, H.H., Li, H., Fuentealba, L.C., Molofsky, A.V., Taveira-Marques, R., Zhuang, H., Tenney, A., Murnen, A.T., Fancy, S.P., Merkle, F., et al. (2012). Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362.10.1126/science.1222381Search in Google Scholar PubMed

Ullian, E.M., Sapperstein, S.K., Christopherson, K.S., and Barres, B.A. (2001). Control of synapse number by glia. Science 291, 657–661.10.1126/science.291.5504.657Search in Google Scholar PubMed

Uwechue, N.M., Marx, M.C., Chevy, Q., and Billups, B. (2012). Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J. Physiol. 590, 2317–2331.10.1113/jphysiol.2011.226605Search in Google Scholar PubMed

Vaccarino, F.M., Ganat, Y., Zhang, Y., and Zheng, W. (2001). Stem cells in neurodevelopment and plasticity. Neuropsychopharmacology 25, 805–815.10.1016/S0893-133X(01)00349-9Search in Google Scholar PubMed

Wang, F., Yang, L., Shi, L., Li, Q., Zhang, G., Wu, J., Zheng, J., and Jiao, B. (2015). Nuclear translocation of fibroblast growth factor-2 (FGF2) is regulated by Karyopherin-beta2 and Ran GTPase in human glioblastoma cells. Oncotarget 6, 21468–21478.10.18632/oncotarget.4097Search in Google Scholar PubMed PubMed Central

Wang, Z., Zhang, C., Sun, L., Liang, J., Liu, X., Li, G., Yao, K., Zhang, W., and Jiang, T. (2016). FGFR3, as a receptor tyrosine kinase, is associated with differentiated biological functions and improved survival of glioma patients. Oncotarget 7, 84587–84593.10.18632/oncotarget.13139Search in Google Scholar PubMed PubMed Central

Weinhard, L., di Bartolomei, G., Bolasco, G., Machado, P., Schieber, N.L., Neniskyte, U., Exiga, M., Vadisiute, A., Raggioli, A., Schertel, A., et al. (2018). Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9, 1228.10.1038/s41467-018-03566-5Search in Google Scholar PubMed

Welcome, M.O. and Mastorakis, N.E. (2018). Emerging concepts in brain glucose metabolic functions: from glucose sensing to how the sweet taste of glucose regulates its own metabolism in astrocytes and neurons. Neuromolecular Med. 20, 281–300.10.1007/s12017-018-8503-0Search in Google Scholar PubMed

Weller, M., van den Bent, M., Tonn, J.C., Stupp, R., Preusser, M., Cohen-Jonathan-Moyal, E., Henriksson, R., Le Rhun, E., Balana, C., Chinot, O., et al. (2017). European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 18, e315–e329.10.1016/S1470-2045(17)30194-8Search in Google Scholar

Wu, Y., Dissing-Olesen, L., MacVicar, B.A., and Stevens, B. (2015). Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613.10.1016/ in Google Scholar PubMed

Xie, J., Ma, Y.H., Wan, M., Zhan, R.Y., and Zhou, Y.Q. (2014). Expression of dedifferentiation markers and multilineage markers in U251 glioblastoma cells with silenced EGFR and FGFR genes. Oncol. Lett. 7, 131–136.10.3892/ol.2013.1685Search in Google Scholar PubMed

Xin, W. and Bonci, A. (2018). Functional astrocyte heterogeneity and implications for their role in shaping neurotransmission. Front. Cell Neurosci. 12, 141.10.3389/fncel.2018.00141Search in Google Scholar PubMed

Yamada, S., Yamaguchi, F., Brown, R., Berger, M.S., and Morrison, R.S. (1999). Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 28, 66–76.10.1002/(SICI)1098-1136(199910)28:1<66::AID-GLIA8>3.0.CO;2-MSearch in Google Scholar PubMed

Yang, X., Qiao, D., Meyer, K., and Friedl, A. (2009). Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res. 69, 1668–1677.10.1158/0008-5472.CAN-07-6385Search in Google Scholar PubMed

Yun, Y.R., Won, J.E., Jeon, E., Lee, S., Kang, W., Jo, H., Jang, J.H., Shin, U.S., and Kim, H.W. (2010). Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 218142.10.4061/2010/218142Search in Google Scholar PubMed

Zhang, X., Peng, L., Liang, Z., Kou, Z., Chen, Y., Shi, G., Li, X., Liang, Y., Wang, F., and Shi, Y. (2018). Effects of aptamer to U87-EGFRvIII cells on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol. Ther. Nucleic Acids 10, 438–449.10.1016/j.omtn.2018.01.001Search in Google Scholar PubMed

Zhou, Y.X., Flint, N.C., Murtie, J.C., Le, T.Q., and Armstrong, R.C. (2006). Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation. Glia 54, 578–590.10.1002/glia.20410Search in Google Scholar PubMed PubMed Central

Received: 2018-05-25
Accepted: 2018-08-10
Published Online: 2018-10-31
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow