Abstract
Sexual behavior plays a fundamental role for reproduction in mammals and other animal species. It is characterized by an anticipatory and a consummatory phase, and several copulatory parameters have been identified in each phase, mainly in rats. Sexual behavior varies significantly across rats even when they are of the same strain and reared under identical conditions. This review shows that rats of the same strain selectively bred for showing a divergent behavioral trait when exposed to stress or novelty (i.e. Roman high and low avoidance rats, bred for their different avoidance response to the shuttle box, and high and low novelty exploration responders rats, bred for their different exploratory response to a novel environment) or a spontaneous behavior with divergent frequency (i.e. low and high yawning frequency rats, bred for their divergent yawning frequency) show similar differences in sexual behavior, mainly in copulatory pattern, but also in sexual motivation. As shown by behavioral pharmacology and intracerebral microdialysis experiments carried out mainly in Roman rats, these sexual differences may be due to a more robust dopaminergic tone present in the mesocorticolimbic dopaminergic system of one of the two sub-lines (e.g. high avoidance, high novelty exploration, and low yawning rat sub-lines). Thus, differences in genotype and/or in prenatal/postnatal environment lead not only to individual differences in temperament and environmental/emotional reactivity but also in sexual behavior. Because of the highly conserved mechanisms controlling reproduction in mammals, this may occur not only in rats but also in humans.
Acknowledgments
This work was partially supported by grants from the University of Cagliari (CAR 2014, PRID 2015 and FIR 2016) to AA, MRM, and FS, and by a MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca Scientifica) grant (Scientific Independence of Young Researchers, SIR 2014, Project Code no. RBSI14IUX7) to FS.
Conflict of interest statement: The authors declare no conflicts of interest in this work.
References
Afonso, V.M., Sison, M., Lovic, V., and Fleming, A.S. (2007). Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behav. Neurosci. 121, 515–526.10.1037/0735-7044.121.3.515Search in Google Scholar
Agmo, A. (1997). Male rat sexual behavior. Brain Res. Brain Res. Protoc. 1, 203–209.10.1016/S1385-299X(96)00036-0Search in Google Scholar
Agmo, A., Villalpando, A., Picker, Z., and Fernandez, H. (1995). Lesions of the medial prefrontal cortex and sexual behavior in the male rat. Brain Res. 696, 177–186.10.1016/0006-8993(95)00852-HSearch in Google Scholar
Argiolas, A. (1994). Nitric oxide is a central mediator of penile erection. Neuropharmacology 33, 1339–1344.10.1016/0028-3908(94)90034-5Search in Google Scholar
Argiolas, A. (1999). Neuropeptides and sexual behaviour. Neurosci. Biobehav. Rev. 23, 1127–1142.10.1016/S0149-7634(99)00068-8Search in Google Scholar
Argiolas, A. (2005). Male erectile dysfunction: chemical pharmacology of penikle erection. Drug Discov. Today: Ther. Strateg. 2, 31–36.10.1016/j.ddstr.2005.05.005Search in Google Scholar
Argiolas, A. and Melis, M.R. (1995). Neuromodulation of penile erection: an overview of the role of neurotransmitters and neuropeptides. Prog. Neurobiol. 47, 235–255.10.1016/0301-0082(95)80003-QSearch in Google Scholar
Argiolas, A. and Melis, M.R. (1998). The neuropharmacology of yawning. Eur. J. Pharmacol. 343, 1–16.10.1016/S0014-2999(97)01538-0Search in Google Scholar
Argiolas, A. and Melis, M.R. (2004). The role of oxytocin and the paraventricular nucleus in the sexual behaviour of male mammals. Physiol. Behav. 83, 309–317.10.1016/j.physbeh.2004.08.019Search in Google Scholar PubMed
Argiolas, A. and Melis, M.R. (2005). Central control of penile erection: role of the paraventricular nucleus of the hypothalamus. Prog. Neurobiol. 76, 1–21.10.1016/j.pneurobio.2005.06.002Search in Google Scholar PubMed
Argiolas, A. and Melis, M.R. (2013). Neuropeptides and central control of sexual behavior from the past to the present: a review. Prog. Neurobiol. 108, 80–107.10.1016/j.pneurobio.2013.06.006Search in Google Scholar
Argiolas, A., Collu, M., Gessa, G.L., Melis, M.R., and Serra, G. (1988). The oxytocin antagonist d(CH2)5Tyr(Me)-Orn8-vasotocin inhibits male copulatory behaviour in rats. Eur. J. Pharmacol. 149, 389–392.10.1016/0014-2999(88)90675-9Search in Google Scholar
Argiolas, A., Collu, M., D’Aquila, P., Gessa, G.L., Melis, M.R., and Serra, G. (1989). Apomorphine stimulation of male copulatory behavior is prevented by the oxytocin antagonist d(CH2)5 Tyr(Me)-Orn8-vasotocin in rats. Pharmacol. Biochem. Behav. 33, 81–83.10.1016/0091-3057(89)90433-4Search in Google Scholar
Argiolas, A., Melis, M.R., Murgia, S., and Schiöth, H.B. (2000). ACTH- and alpha-MSH-induced grooming, stretching, yawning and penile erection in male rats: site of action in the brain and role of melanocortin receptors. Brain Res. Bull. 51, 425–431.10.1016/S0361-9230(99)00270-1Search in Google Scholar
Balfour, M.E., Brown, J.L., Yu, L., and Coolen, L.M. (2006). Potential contributions of efferents from medial prefrontal cortex to neural activation following sexual behavior in the male rat. Neuroscience 137, 1259–1276.10.1016/j.neuroscience.2005.11.013Search in Google Scholar
Baskerville, T.A. and Douglas, A.J. (2008). Interactions between dopamine and oxytocin in the control of sexual behaviour. Prog. Brain Res. 170, 277–290.10.1016/S0079-6123(08)00423-8Search in Google Scholar
Baskerville, T.A., Allard, J., Wayman, C., and Douglas, A.J. (2009). Dopamine-oxytocin interactions in penile erection. Eur. J. Neurosci. 30, 2151–2164.10.1111/j.1460-9568.2009.06999.xSearch in Google Scholar PubMed
Bertolini, A. and Gessa, G.L. (1981). Behavioral effects of ACTH and MSH peptides. J. Endocrinol. Invest. 4, 241–251.10.1007/BF03350461Search in Google Scholar PubMed
Bisagno, V. and Cadet, J.L. (2014). Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin. Behav. Pharmacol. 25, 445–457.10.1097/FBP.0000000000000049Search in Google Scholar PubMed PubMed Central
Bodnar, R.J. (2013). Endogenous opiates and behavior: 2012. Peptides 50, 55–95.10.1016/j.peptides.2013.10.001Search in Google Scholar PubMed
Brioni, J.D., Moreland, R.B., Cowart, M., Hsieh, G.C., Stewart, A.O., Hedlund, P., Donnelly-Roberts, D.L., Nakane, M., Lynch, J.J. 3rd, Kolasa, T., et al. (2004). Activation of dopamine D4 receptors by ABT-724 induces penile erection in rats. Proc. Natl. Acad. Sci. U S A 101, 6758–6763.10.1073/pnas.0308292101Search in Google Scholar
Broadhurst, P.L. and Bignami, G. (1965). Correlative effects of psychogenetic selection: a study of the Roman high and low avoidance strains of rats. Behav. Res. Ther. 2, 273–280.10.1016/0005-7967(64)90033-6Search in Google Scholar
Buijs, R.M., Geffard, M., Pool, C.W., and Hoorneman, E.M. (1984). The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study. Brain Res. 323, 65–72.10.1016/0006-8993(84)90265-8Search in Google Scholar
Carboni, E., Tanda, G.L., Frau, R., and Di Chiara, G. (1990). Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J. Neurochem. 55, 1067–1070.10.1111/j.1471-4159.1990.tb04599.xSearch in Google Scholar PubMed
Carboni, E., Silvagni, A., Vacca, C., and Di Chiara, G. (2006). Cumulative effect of norepinephrine and dopamine carrier blockade on extracellular dopamine increase in the nucleus accumbens shell, bed nucleus of stria terminalis and prefrontal cortex. J. Neurochem. 96, 473–481.10.1111/j.1471-4159.2005.03556.xSearch in Google Scholar PubMed
Carrasco, J., Márquez, C., Nadal, R., Tobeña, A., Fernández-Teruel, A., and Armario, A. (2008). Characterization of central and peripheral components of the hypothalamus-pituitary-adrenal axis in the inbred Roman rat strains. Psychoneuroendocrinology 33, 437–445.10.1016/j.psyneuen.2008.01.001Search in Google Scholar PubMed
Carter, C.S. and Altemus, M. (1997). Integrative functions of lactational hormones in social behavior and stress management. Ann. N.Y. Acad. Sci. 807, 164–74.10.1111/j.1749-6632.1997.tb51918.xSearch in Google Scholar PubMed
Carter, C.S., DeVries, A.C., Taymans, S.E., Roberts, R.L., Williams, J.R., and Getz, L.L. (1997a). Peptides, steroids, and pair bonding. Ann. N.Y. Acad. Sci. 807, 260–272.10.1111/j.1749-6632.1997.tb51925.xSearch in Google Scholar PubMed
Carter, C.S., Lederhendler, I., and Kirkpatrick, B. (1997b). The integrative neurobiology of affiliation. Introduction. Ann. N.Y. Acad. Sci. 807, xiii–xviii.10.1111/j.1749-6632.1997.tb51909.xSearch in Google Scholar PubMed
Carvalho, J. and Nobre, P. (2010). Sexual desire in women: an integrative approach regarding psychological, medical, and relationship dimensions. J. Sex. Med. 7, 1807–1815.10.1111/j.1743-6109.2010.01716.xSearch in Google Scholar PubMed
Carvalho, J. and Nobre, P. (2011). Biopsychosocial determinants of men’s sexual desire: testing an integrative model. J. Sex. Med. 8, 754–763.10.1111/j.1743-6109.2010.02156.xSearch in Google Scholar
Castanon, N., Dulluc, J., Le Moal, M., and Mormede, P. (1994). Maturation of the behavioral and neuroendocrine difference between the Roman rat lines. Physiol. Behav. 55, 775–782.10.1016/0031-9384(94)90059-0Search in Google Scholar
Clinton, S.M., Miller, S., Watson, S.J., and Akil, H. (2008). Prenatal stress does not alter innate novelty-seeking behavioral traits, but differentially affects individual differences in neuroendocrine stress responsivity. Psychoneuroendocrinology 33, 162–177.10.1016/j.psyneuen.2007.10.012Search in Google Scholar
Clinton, S.M., Stead, J.D., Miller, S., Watson, S.J., and Akil, H. (2011). Developmental underpinnings of differences in rodent novelty-seeking and emotional reactivity. Eur. J. Neurosci. 34, 994–1005.10.1111/j.1460-9568.2011.07811.xSearch in Google Scholar
Cloninger, C.R. (1987). A systematic method for clinical description and classification of personality variants. A proposal. Arch. Gen. Psychiatry 44, 573–588.10.1001/archpsyc.1987.01800180093014Search in Google Scholar
Cohen, J.L., Ata, A.E., Jackson, N.L., Rahn, E.J., Ramaker, R.C., Cooper, S., Kerman, I.A., and Clinton, S.M. (2017). Differential stress induced c-Fos expression and identification of region-specific miRNA-mRNA networks in the dorsal raphe and amygdala of high-responder/low-responder rats. Behav. Brain Res. 319, 110–123.10.1016/j.bbr.2016.11.015Search in Google Scholar
Collins, G.T., Newman, A.H., Grundt, P., Rice, K.C., Husbands, S.M., Chauvignac, C., Chen, J., Wang, S., and Woods, J.H. (2007). Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacology 193, 159–170.10.1007/s00213-007-0766-3Search in Google Scholar
Collins, G.T., Truccone, A., Haji-Abdi, F., Newman, A.H., Grundt, P., Rice, K.C., Husbands, S.M., Greedy, B.M., Enguehard-Gueiffier, C., Gueiffier, A., et al. (2009). Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice. J. Pharmacol. Exp. Ther. 329, 210–217.10.1124/jpet.108.144048Search in Google Scholar
Cools, A.R., Brachten, R., Heeren, D., Willemen, A., and Ellenbroek, B. (1990). Search after neurobiological profile of individual-specific features of Wistar rats. Brain Res. Bull. 24, 49–69.10.1016/0361-9230(90)90288-BSearch in Google Scholar
Coppens, C.M., de Boer, S.F., Steimer, T., and Koolhaas, J.M. (2012). Impulsivity and aggressive behavior in Roman high and low avoidance rats: baseline differences and adolescent social stress induced changes. Physiol. Behav. 105, 1156–1160.10.1016/j.physbeh.2011.12.013Search in Google Scholar PubMed
Corda, M.G., Lecca, D., Piras, G., Di Chiara, G., and Giorgi, O. (1997). Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behav. Genet. 27, 527–536.10.1023/A:1021452814574Search in Google Scholar
Corda, M.G., Piras, G., Piludu, M.A., and Giorgi, O. (2014). Differential effects of voluntary ethanol consumption on dopamine output in the nucleus accumbens shell of Roman high- and low-avoidance rats: a behavioral and brain microdialysis study. World J. Neurosci. 4, 279–292.10.4236/wjns.2014.43031Search in Google Scholar
Cummings, J.A., Gowl, B.A., Westenbroek, C., Clinton, S.M., Akil, H., and Becker, J.B. (2011). Effects of a selectively bred novelty-seeking phenotype on the motivation to take cocaine in male and female rats. Biol. Sex Differ. 11, 3.10.1186/2042-6410-2-3Search in Google Scholar PubMed PubMed Central
Cummings, J.A., Clinton, S.M., Perry, A.N., Akil, H., and Becker, J.B. (2013). Male rats that differ in novelty exploration demonstrate distinct patterns of sexual behaviour. Behav. Neurosci. 127, 47–58.10.1037/a0031528Search in Google Scholar PubMed PubMed Central
Dahlström, A. and Fuxe, K. (1964). Evidence for the existence of monoamine containing neurons in the central nervous system. I: demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, 1–55.Search in Google Scholar
Davis, B.A., Clinton, S.M., Akil, H., and Becker, J.B. (2008). The effects of novelty-seeking phenotypes and sex differences on acquisition of cocaine self-administration in selectively bred high-responder and low-responder rats. Pharmacol. Biochem. Behav. 90, 331–338.10.1016/j.pbb.2008.03.008Search in Google Scholar PubMed PubMed Central
Davis, J.F., Loos, M., Di Sebastiano, A.R., Brown, J.L., Lehman, M.N., and Coolen, L.M. (2010). Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats. Biol. Psychiatry 67, 1199–1204.10.1016/j.biopsych.2009.12.029Search in Google Scholar PubMed PubMed Central
Depoortère, R., Bardin, L., Rodrigues, M., Abrial, E., Allaga, M., and Newman-Tancredi, A. (2009). Penile erection and yawning induced by dopamine D2-like receptor agonists in rats: influence of strain and contribution of dopamine D2, but not D3 and D4 receptors. Behav. Pharmacol. 20, 303–311.10.1097/FBP.0b013e32832ec5aaSearch in Google Scholar PubMed
Derefinko, K.J., Peters, J.R., Eisenlohr-Moul, T.A., Walsh, E.C., Adams, Z.W., and Lunam, D.R. (2014). Relations between trait impulsivity, behavioral impulsivity, physiological arousal, and risky sexual behavior among young men. Arch. Sex. Behav. 43, 1149–1158.10.1007/s10508-014-0327-xSearch in Google Scholar PubMed PubMed Central
Diaz-Romero, M., Arias-Montaño, J.A., Eguibar, J.R., and Flores, G. (2005). Enhanced binding of dopamine D1 receptors in caudate-putamen subregions in high-yawning Sprague–Dawley rats. Synapse 56, 69–73.10.1002/syn.20132Search in Google Scholar PubMed
Díaz-Morán, S., Palència, M., Mont-Cardona, C., Cañete, T., Blázquez, G., Martínez-Membrives, E., López-Aumatell, R., Tobeña, A., and Fernández-Teruel, A. (2012). Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav. Brain Res. 228, 203–210.10.1016/j.bbr.2011.12.002Search in Google Scholar PubMed
Dominguez, J.M., Muschamp, J.W., Schmich, J.M., and Hull, E.M. (2004). Nitric oxide mediates glutamate-evoked dopamine release in the medial preoptic area. Neuroscience 125, 203–210.10.1016/j.neuroscience.2004.01.022Search in Google Scholar
Dominguez, J.M., Gil, M., and Hull, E.M. (2006). Preoptic glutamate facilitates male sexual behavior. J. Neurosci. 26, 1699–1703.10.1523/JNEUROSCI.4176-05.2006Search in Google Scholar
Dornan, W.A. and Malsbury, C.W. (1989). Neuropeptides and male sexual behavior. Neurosci. Biobehav. Rev. 13, 1–15.10.1016/S0149-7634(89)80046-6Search in Google Scholar
Driscoll, P. and Battig, K. (1982). Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. Genetics of the Brain. I. Lieblich, ed. (Amsterdam: Elsevier), pp. 95–123.Search in Google Scholar
Driscoll, P., Dedek, J., Martin, J.R., and Zivkovic, B. (1983). Two-way avoidance and acute shock stress induced alterations of regional noradrenergic, dopaminergic and serotonergic activity in Roman high- and low-avoidance rats. Life Sci. 33, 1719–1725.10.1016/0024-3205(83)90729-4Search in Google Scholar
Driscoll, P., Lieblich, I., and Cohen, E. (1986). Amphetamine-induced stereotypic responses in Roman high- and Roman low-avoidance rats. Pharmacol. Biochem. Behav. 24, 1329–1332.10.1016/0091-3057(86)90192-9Search in Google Scholar
Driscoll, P., Escorihuela, R.M., Fernández-Teruel, A., Giorgi, O., Schwegler, H., Steimer, T., Wiersma, A., Corda, M.G., Flint, J., Koolhaas, J.M., et al. (1998). Genetic selection and differential stress responses: the Roman lines/strains of rats. Ann. N. Y. Acad. Sci. 851, 501–510.10.1111/j.1749-6632.1998.tb09029.xSearch in Google Scholar
Durcan, M.J., Fulker, D.W., and Campbell, I.C. (1984). Differences in the stereotypy response but not the hypomotility response to apomorphine in the Roman high and low avoiding strains of rats. Psychopharmacology 82, 215–220.10.1007/BF00427776Search in Google Scholar
Eguibar, J.R. and Moyaho, A. (1997). Inhibition of grooming by pilocarpine differs in high- and low-yawning sublines of Sprague-Dawley rats. Pharmacol. Biochem. Behav. 58, 317–322.10.1016/S0091-3057(97)00108-1Search in Google Scholar
Eguibar, J.R., Romero-Carbente, J.C., and Moyaho, A. (2003). Behavioral differences between selectively bred rats: D1 versus D2 receptors in yawning and grooming. Pharmacol. Biochem. Behav. 74, 827–832.10.1016/S0091-3057(02)01082-1Search in Google Scholar
Eguibar, J.R., Cortes, C., Isidro, O., and Ugarte, A. (2015). Central administration of oxytocin differentially increases yawning, penile erections and scratching in high- (HY) and low-yawning (LY) sublines of Sprague-Dawley rats. Pharmacol. Biochem. Behav. 134, 6–11.10.1016/j.pbb.2015.04.009Search in Google Scholar PubMed
Eguibar, J.R., Cortes, C., Toriz, C.G., Romero-Carbente, J.C., Gonzales-Flores, O., and Fernandez-Guasti, A. (2016). Differential organization of male copulatory patterns in high- and low-yawning-frequency sublines versus outbred Sprague-Dawley rats. Physiol. Behav. 153, 84–90.10.1016/j.physbeh.2015.10.030Search in Google Scholar
Escorihuela, R.M., Tobeña, A., Driscoll, P., and Fernández-Teruel, A. (1995). Effects of training, early handling, and perinatal flumazenil on shuttle box acquisition in Roman low-avoidance rats: toward overcoming a genetic deficit. Neurosci. Biobehav. Rev. 19, 353–367.10.1016/0149-7634(94)00051-2Search in Google Scholar
Escorihuela, R.M., Fernández-Teruel, A., Tobeña, A., Langhans, W., Bättig, K., and Driscoll, P. (1997). Labyrinth exploration, emotional reactivity, and conditioned fear in young Roman/Verh inbred rats. Behav. Genet. 27, 573–578.10.1023/A:1021413200461Search in Google Scholar
Escorihuela, R.M., Fernández-Teruel, A., Gil, L., Aguilar, R., Tobeña, A., and Driscoll, P. (1999). Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiol. Behav. 67, 19–26.10.1016/S0031-9384(99)00064-5Search in Google Scholar
Esnal, A., Sánchez-González, A., Río-Álamos, C., Oliveras, I., Cañete, T., Blázquez, G., Tobeña, A., and Fernández-Teruel, A. (2016). Prepulse inhibition and latent inhibition deficits in Roman high-avoidance vs. Roman low-avoidance rats: modeling schizophrenia-related feature. Physiol. Behav. 163, 267–273.10.1016/j.physbeh.2016.05.020Search in Google Scholar
Estanislau, C., Díaz-Morán, S., Cañete, T., Blázquez, G., Tobeña, A., and Fernández-Teruel, A. (2013). Context-dependent differences in grooming behavior among the NIH heterogeneous stock and the Roman high- and low-avoidance rats. Neurosci. Res. 77, 187–201.10.1016/j.neures.2013.09.012Search in Google Scholar
Everitt, B.J. (1990). Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232.10.1016/S0149-7634(05)80222-2Search in Google Scholar
Everitt, B.J. and Robbins, T.W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489. Review. Erratum in: Nat. Neurosci. 9, 979.10.1038/nn1579Search in Google Scholar PubMed
Fattore, L., Piras, G., Corda, M.G., and Giorgi, O. (2009). The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology 34, 1091–1101.10.1038/npp.2008.43Search in Google Scholar PubMed
Febo, M. (2011). Prefrontal cell firing in male rats during approach towards sexually receptive female: interactions with cocaine. Synapse 65, 271–277.10.1002/syn.20843Search in Google Scholar PubMed PubMed Central
Fernandez-Guasti, A., Omana-Zapata, I., Lujan, M., and Condes-Lara, M. (1994). Actions of sciatic nerve ligature on sexual behavior of sexually experienced and inexperienced male rats: effects of frontal pole decortication. Physiol. Behav. 55, 577–581.10.1016/0031-9384(94)90119-8Search in Google Scholar
Fernández-Teruel, A., Escorihuela, R.M., Castellano, B., González, B., and Tobeña, A. (1997). Neonatal handling and environmental enrichment effects on emotionality, novelty/reward seeking, and age-related cognitive and hippocampal impairments: focus on the Roman rat lines. Behav. Genet. 27, 13–26.Search in Google Scholar
Fernández-Teruel, A., Driscoll, P., Gil, L., Aguilar, R., Tobeña, A., and Escorihuela, R.M. (2002a). Enduring effects of environmental enrichment on novelty seeking, saccharin and ethanol intake in two rat lines (RHA/Verh and RLA/Verh) differing in incentive-seeking behavior. Pharmacol. Biochem. Behav. 73, 225–231.10.1016/S0091-3057(02)00784-0Search in Google Scholar
Fernández-Teruel, A., Escorihuela, R.M., Gray, J.A., Aguilar, R., Gil, L., Giménez-Llort, L., Tobeña, A., Bhomra, A., Nicod, A., Mott, R., et al. (2002b). A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res. 12, 618–626.10.1101/gr.203402Search in Google Scholar PubMed PubMed Central
Fibiger, H.C. and Phillips, A.G. (1988). Mesocorticolimbic dopamine systems and reward. Ann. N. Y. Acad. Sci. 537, 206–215.10.1111/j.1749-6632.1988.tb42107.xSearch in Google Scholar PubMed
Flagel, S.B., Robinson, T.E., Clark, J.J., Clinton, S.M., Watson, S.J., Seeman, P., and Akil, H. (2010). An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology 35, 388–400.10.1038/npp.2009.142Search in Google Scholar PubMed PubMed Central
Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., and Akil, H. (2011). A selective role for dopamine in stimulus-reward learning. Nature 469, 53–57.10.1038/nature09588Search in Google Scholar PubMed PubMed Central
Fomsgaard, L., Moreno, J.L., de la Fuente Revenga, M., Brudek, T., Adamsen, D., Rio-Alamos, C., Saunders, J., Klein, A.B., Oliveras, I., Cañete, T., et al. (2018). Differences in 5-HT2A and mGlu2 receptor expression levels and repressive epigenetic modifications at the 5-HT2A promoter region in the Roman low- (RLA-I) and high- (RHA-I) avoidance rat strains. Mol. Neurobiol. 55, 1998–2012.10.1007/s12035-017-0457-ySearch in Google Scholar PubMed PubMed Central
Frohmader, K.S., Pitchers, K.K., Balfour, M.E., and Coolen, L.M. (2010). Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models. Horm. Behav. 58, 149–162.10.1016/j.yhbeh.2009.11.009Search in Google Scholar PubMed
Garcia-Fuster, M.J., Perez, J.A., Clinton, S.M., Watson, S.J., and Akil, H. (2010). Impact of cocaine on adult hippocampal neurogenesis in an animal model of differential propensity to drug abuse. Eur. J. Neurosci. 31, 79–89.10.1111/j.1460-9568.2009.07045.xSearch in Google Scholar PubMed PubMed Central
Garcia-Fuster, M.J., Parks, G.S., Clinton, S.M., Watson, S.J., Akil, H., and Civelli, O. (2012). The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur. Neuropsychopharmacol. 22, 607–613.10.1016/j.euroneuro.2011.12.001Search in Google Scholar PubMed PubMed Central
Gentsch, C., Lichtsteiner, M., Driscoll, P., and Feer, H. (1982). Differential hormonal and physiological responses to stress in Roman high- and low-avoidance rats. Physiol. Behav. 28, 259–263.10.1016/0031-9384(82)90072-5Search in Google Scholar
Gil, M., Bhatt, R., Picotte, K.B., and Hull, E.M. (2011). Oxytocin in the medial preoptic area facilitates male sexual behavior in the rat. Horm. Behav. 59, 435–443.10.1016/j.yhbeh.2010.12.012Search in Google Scholar
Gil, M., Bhatt, R., Picotte, K.B., and Hull, E.M. (2013). Sexual experience increases oxytocin receptor gene expression and protein in the medial preoptic area of the male rat. Psychoneuroendocrinology 38, 1688–1697.10.1016/j.psyneuen.2013.02.002Search in Google Scholar
Giménez-Llort, L., Cañete, T., Guitart-Masip, M., Fernández-Teruel, A., and Tobeña, A. (2005). Differential apomorphine-induced locomotion, stereotypy and yawning patterns in Roman high- and low avoidance rats: revealing two singular dopaminergic phenotypes. Physiol. Behav. 86, 458–466.10.1016/j.physbeh.2005.07.021Search in Google Scholar
Giorgi, O., Orlandi, M., Escorihuela, R.M., Driscoll, P., Lecca, D., and Corda, M.G. (1994). GABAergic and dopaminergic transmission in the brain of Roman high-avoidance and Roman low-avoidance rats. Brain Res. 638, 133–138.10.1016/0006-8993(94)90642-4Search in Google Scholar
Giorgi, O., Corda, M.G., Carboni, G., Frau, V., Valentini, V., and Di Chiara, G. (1997). Effects of cocaine and morphine in rats from two psychogenetically selected lines: a behavioral and brain dialysis study. Behav. Genet. 27, 537–546.10.1023/A:1021405031412Search in Google Scholar
Giorgi, O., Lecca, D., Piras, G., Driscoll, P., and Corda, M.G. (2003a). Dissociation between mesocortical dopamine release and fear-related behaviours in two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Eur. J. Neurosci. 17, 2716–2726.10.1046/j.1460-9568.2003.02689.xSearch in Google Scholar PubMed
Giorgi, O., Piras, G., Lecca, D., Hansson, S., Driscoll, P., and Corda, M.G. (2003b). Differential neurochemical properties of central serotonergic transmission in Roman high- and low-avoidance rats. J. Neurochem. 86, 422–431.10.1046/j.1471-4159.2003.01845.xSearch in Google Scholar PubMed
Giorgi, O., Lecca, D., Piras, G., and Corda, M.G. (2005). Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: a comparative study in the Roman high- and low-avoidance rat lines. Neuroscience 135, 987–998.10.1016/j.neuroscience.2005.06.075Search in Google Scholar PubMed
Giorgi, O., Piras, G., and Corda, M.G. (2007). The psychogenetically selected Roman high- and low-avoidance rat lines: a model to study the individual vulnerability to drug addiction. Neurosci. Biobehav. Rev. 31, 148–163.10.1016/j.neubiorev.2006.07.008Search in Google Scholar PubMed
Gonzalez-Lima, F. and Sadile, A.G. (2000). Network operations revealed by brain metabolic mapping in a genetic model of hyperactivity and attention deficit: the naples high- and low-excitability rats. Neurosci. Biobehav. Rev. 24, 157–160.10.1016/S0149-7634(99)00049-4Search in Google Scholar
Goto, Y. and Grace, A.A. (2005). Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 8, 805–812.10.1038/nn1471Search in Google Scholar
Gresch, P.J., Sved, A.F., Zigmond, M.J., and Finlay, J.M. (1995). Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J. Neurochem. 65, 111–116.10.1046/j.1471-4159.1995.65010111.xSearch in Google Scholar
Guitart-Masip, M., Johansson, B., Fernández-Teruel, A., Cañete, T., Tobeña, A., Terenius, L., and Giménez-Llort, L. (2006). Divergent anatomical pattern of D1 and D3 binding and DARPP-32 mRNA expression in the Roman rat strains. Implications for drug addiction. Neuroscience 142, 1231–1243.10.1016/j.neuroscience.2006.07.041Search in Google Scholar
Guitart-Masip, M., Johansson, B., Fernández-Teruel, A., Tobeña, A., and Giménez-Llort, L. (2008). Divergent effect of the selective D3 receptor agonist PD-128,907 on locomotor activity in Roman high- and low-avoidance rats: relationship to NGFI-A gene expression in the Calleja islands. Psychopharmacology 196, 39–49.10.1007/s00213-007-0925-6Search in Google Scholar
Hernandez-Gonzales, M., Guevara, M.A., Cervantes, M., Morali, G., and Corsi-Cabrera, M. (1998). Characteristic frequency bands of the cortico-frontal EEG during the sexual interaction of the male rat as a result of factorial analysis. J. Physiol. 92, 43–50.10.1016/S0928-4257(98)80022-3Search in Google Scholar
Hernandez-Gonzales, M., Prieto-Beracoechea, C.A., Arteaga-Silva, M., and Guevara, M.A. (2007). Different functionality of the medial and orbital prefrontal cortex during a sexually motivated task in rats. Physiol. Behav. 90, 450–458.10.1016/j.physbeh.2006.10.006Search in Google Scholar
Holmgren, B., Urbá-Holmgren, R., Trucios, N., Zermeño, M., and Eguibar, J.R. (1985). Association of spontaneous and dopaminergic-induced yawning and penile erection in the rat. Pharmacol. Biochem. Behav. 22, 31–35.10.1016/0091-3057(85)90481-2Search in Google Scholar
Holstege, G. (2016). How the emotional motor system controls the pelvic organs. Sex. Med. Rev. 4, 303–328.10.1016/j.sxmr.2016.04.002Search in Google Scholar PubMed
Hooks, M.S. and Kalivas, P.W. (1994). Involvement of dopamine and excitatory amino acid transmission in novelty induced motor activity. J. Pharmacol. Exp. Ther. 269, 976–988.Search in Google Scholar
Hooks, M.S., Jones, G.H., Smith, A.D., Neill, D.B., and Justice, J.B. Jr. (1991). Response to novelty predicts the locomotor and nucleus accumbens dopamine response to cocaine. Synapse 9, 121–128.10.1002/syn.890090206Search in Google Scholar PubMed
Hooks, M.S., Juncos, J.L., Justice, J.B. Jr., Meiergerd, S.M., Povlock, S.L., Schenk, J.O., and Kalivas, P.W. (1994). Individual locomotor response to novelty predicts selective alterations in D1 and D2 receptors and mRNAs. J. Neurosci. 14, 6144–6152.10.1523/JNEUROSCI.14-10-06144.1994Search in Google Scholar
Hull, E.M. and Dominguez, J.M. (2006). Getting his act together: roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain Res. 1126, 66–75.10.1016/j.brainres.2006.08.031Search in Google Scholar
Hull, E.M. and Dominguez, J.M. (2007). Sexual behavior in male rodents. Horm. Behav. 52, 45–55.10.1016/j.yhbeh.2007.03.030Search in Google Scholar
Hull, E.M., Weber, M.S., Eaton, R.C., Dua, R., Markowski, V.P., Lumley, L., and Moses, J. (1991). Dopamine receptors in the ventral tegmental area affect motor, but not motivational or reflexive, components of copulation in male rats. Brain Res. 554, 72–76.10.1016/0006-8993(91)90173-SSearch in Google Scholar
Hull, E.M., Du, J., Lorrain, D.S., and Matuszewich, L. (1995). Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J. Neurosci. 15, 7465–7471.10.1523/JNEUROSCI.15-11-07465.1995Search in Google Scholar
Hull, E.M., Lorrain, D.S., Du, J., Matuszewich, L., Lumley, L.A., Putnam, S.K., and Moses, J. (1999). Hormone-neurotransmitter interactions in the control of sexual behavior. Behav. Brain. Res. 105, 105–116.10.1016/S0166-4328(99)00086-8Search in Google Scholar
Hull, E.M., Meisel, R.L., and Sachs, B.D. (2002). Male sexual behavior. hormones, brain and behavior. D.W. Pfaff, A.P. Arnold, A.M. Etgen, S.E. Fahrbach and R.T. Rubin, eds. (New York, USA: Academic Press), pp. 3–137.10.1016/B978-012532104-4/50003-2Search in Google Scholar
Hull, E.M., Muschamp, J.W., and Sato, S. (2004). Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav. 83, 291–307.10.1016/j.physbeh.2004.08.018Search in Google Scholar
Kabbaj, M. and Akil, H. (2001). Individual differences in novelty-seeking behavior in rats: a c-fos study. Neuroscience 106, 535–545.10.1016/S0306-4522(01)00291-3Search in Google Scholar
Kabbaj, M., Devine, D.P., Savage, V.R., and Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J. Neurosci. 20, 6983–6988.10.1523/JNEUROSCI.20-18-06983.2000Search in Google Scholar
Kakeyama, M., Sone, H., Miyabara, Y., and Tohyama, C. (2003). Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters activity-dependent expression of BDNF mRNA in the neocortex and male rat sexual behavior in adulthood. Neurotoxicology 24, 207–217.10.1016/S0161-813X(02)00214-0Search in Google Scholar
Kaplan, H.S. (1979). Disorders of Sexual Desire (New York, USA: Brunner/Mazel).Search in Google Scholar
Kerman, I.A., Clinton, S.M., Bedrosian, T.A., Abraham, A.D., Rosenthal, D.T., Akil, H., and Watson, S.J. (2011). High novelty-seeking predicts aggression and gene expression differences within defined serotonergic cell groups. Brain Res. 1419, 34–45.10.1016/j.brainres.2011.08.038Search in Google Scholar
Klein, A.B., Ultved, L., Adamsen, D., Santini, M.A., Tobeña, A., Fernandez-Teruel, A., Flores, P., Moreno, M., Cardona, D., Knudsen, G.M., et al. (2014). 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains. Neuroscience 263, 36–45.10.1016/j.neuroscience.2013.12.063Search in Google Scholar
Kulagowski, J.J., Broughton, H.B., Curtis, N.R., Mawer, I.M., Ridgill, M.P., Baker, R., Emms, F., Freedman, S.B., Marwood, R., Patel, S., et al. (1996). 3-[[4-(4-Chlorophenyl)piperazin-1-yl]-methyl]-1H-pyrrolo[2,3-b]pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J. Med. Chem. 39, 1941–1942.10.1021/jm9600712Search in Google Scholar
Lecca, D., Piras, G., Driscoll, P., Giorgi, O., and Corda, M.G. (2004). A differential activation of dopamine output in the shell and core of the nucleus accumbens is associated with the motor responses to addictive drugs: a brain dialysis study in Roman high- and low-avoidance rats. Neuropharmacology 46, 688–699.10.1016/j.neuropharm.2003.11.011Search in Google Scholar
Leiblum, S.R. (1998). Definition and classification of female sexual disorders. Int. J. Impot. Res. 10, S104–S106; discussion S124–S125.Search in Google Scholar
Lemaire, V., Aurousseau, C., Le Moal, M., and Abrous, D.N. (1999). Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur. J. Neurosci. 11, 4006–4014.10.1046/j.1460-9568.1999.00833.xSearch in Google Scholar
Leo, D., Sukhanov, I., Zoratto, F., Illiano, P., Caffino, L., Sanna, F., Messa, G., Emanuele, M., Esposito, A., Dorofeikova, M., et al. (2018). Pronounced hyperactivity, cognitive dysfunctions and bdnf dysregulation in dopamine transporter knockout rats. J. Neurosci. 38, 1959–1972.10.1523/JNEUROSCI.1931-17.2018Search in Google Scholar
Levine, S.B. (2010). What is sexual addiction? J. Sex. Marital Ther. 36, 261–275.10.1037/e512632013-030Search in Google Scholar
Lindvall, O., Björklund, A., and Skagerberg, G. (1984). Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Res. 306, 19–30.10.1016/0006-8993(84)90352-4Search in Google Scholar
Löber, S., Hubner, H., Utz, W., and Gmeiner, P. (2001). Rationally based efficacy tuning of selective dopamine D4 receptor ligands leading to the complete antagonist 2-[4-(4-Chlorophenyl) piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine (FAUC 213). J. Med. Chem. 44, 2691–2694.10.1021/jm015522jSearch in Google Scholar PubMed
Löber, S., Hübner, H., Buschauer, A., Sanna, F., Argiolas, A., Melis, M.R., and Gmeiner, P. (2012). Novel azulene derivatives for the treatment of erectile dysfunction. Bioorg. Med. Chem. Lett. 22, 7151–7154.10.1016/j.bmcl.2012.09.064Search in Google Scholar
López-Aumatell, R., Vicens-Costa, E., Guitart-Masip, M., Martínez-Membrives, E., Valdar, W., Johannesson, M., Cañete, T., Blázquez, G., Driscoll, P., Flint, J., et al. (2009). Unlearned anxiety predicts learned fear: a comparison among heterogeneous rats and the Roman rat strains. Behav. Brain Res. 202, 92–101.10.1016/j.bbr.2009.03.024Search in Google Scholar
Lukasiewicz, M., Neveu, X., Blecha, L., Falissard, B., Reynaud, M., and Gasquet, I. (2008). Pathways to substance-related disorder: a structural model approach exploring the influence of temperament, character, and childhood adversity in a national cohort of prisoners. Alcohol Alcohol 43, 287–295.10.1093/alcalc/agm183Search in Google Scholar
Mabrouk, O.S., Han, J.L., Wong, J.T., Akil, H., Kennedy, R.T., and Flagel, S.B. (2018). The in vivo neurochemical profile of selectively bred high-responder and low responder rats reveals baseline, cocaine-evoked, and novelty-evoked differences in monoaminergic systems. ACS Chem. Neurosci. 9, 715–724.10.1021/acschemneuro.7b00294Search in Google Scholar
Maejima, S., Ohishi, N., Yamaguchi, S., and Tsukahara, S. (2015). A neural connection between the central part of the medial preoptic nucleus and the bed nucleus of the stria terminalis to regulate sexual behavior in male rats. Neurosci. Lett. 606, 66–71.10.1016/j.neulet.2015.08.047Search in Google Scholar
Magariños, A.M. and Pfaff, D. (2016). Sexual motivation in the female and its opposition by stress. Curr. Top. Behav. Neurosci. 27, 35–49.10.1007/7854_2015_392Search in Google Scholar
Manzo, L., Gómez, M.J., Callejas-Aguilera, J.E., Donaire, R., Sabariego, M., Fernández-Teruel, A., Cañete, A., Blázquez, G., Papini, M.R., and Torres, C. (2014). Relationship between ethanol preference and sensation/novelty seeking. Physiol. Behav. 133, 53–60.10.1016/j.physbeh.2014.05.003Search in Google Scholar
Masters, W.H. and Johnson, V.E. (1966). Human Sexual Response (Boston, USA: Little, Brown).Search in Google Scholar
McKenna, K.E. (2000). Some proposals regarding the organization of the central nervous system control of penile erection. Neurosci. Biobehav. Rev. 24, 535–540.10.1016/S0149-7634(00)00021-XSearch in Google Scholar
Meisel, R.L. and Sachs, B.D. (1994). The physiology of male sexual behaviour. The Physiology of Reproduction. E. Knobil and J. Neil, eds. 2nd ed., vol. 2. (New York, USA: Raven Press), pp. 3–96.Search in Google Scholar
Melis, M.R. and Argiolas, A. (1995). Dopamine and sexual behavior. Neurosci. Biobehav. Rev. 19, 19–38.10.1016/0149-7634(94)00020-2Search in Google Scholar
Melis, M.R. and Argiolas, A. (1997). Role of central nitric oxide in the control of penile erection and yawning. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 899–922.10.1016/S0278-5846(97)00088-2Search in Google Scholar
Melis, M.R. and Argiolas, A. (1999). Yawning: role of hypothalamic paraventricular nitric oxide. Acta Pharmacol. Sin. 20, 778–788.Search in Google Scholar
Melis, M.R. and Argiolas, A. (2002). Reduction of drug-induced yawning and penile erection and of non contact erections in male rats by the activation of GABAA receptors in the paraventricular nucleus: involvement of nitric oxide. Eur. J. Neurosci. 15, 852–860.10.1046/j.1460-9568.2002.01922.xSearch in Google Scholar
Melis, M.R. and Argiolas, A. (2003). Central oxytocinergic neurotransmission: a drug target for the therapy of psychogenic erectile dysfunction. Curr. Drug Targets 4, 55–66.10.2174/1389450033347190Search in Google Scholar
Melis, M.R. and Argiolas, A. (2011). Central control of penile erection: a re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats. Neurosci. Biobehav. Rev. 35, 939–955.10.1016/j.neubiorev.2010.10.014Search in Google Scholar
Melis, M.R., Argiolas, A., and Gessa, G.L. (1987). Apomorphine-induced penile erection and yawning: site of action in brain. Brain Res. 415, 98–104.10.1016/0006-8993(87)90272-1Search in Google Scholar
Melis, M.R., Succu, S., and Argiolas, A. (1997a). Prevention by morphine of N-methyl-D-aspartic acid-induced penile erection and yawning: involvement of nitric oxide. Brain Res. Bull. 44, 689–694.10.1016/S0361-9230(97)00235-9Search in Google Scholar
Melis, M.R., Succu, S., Iannucci, U., and Argiolas, A. (1997b). Prevention by morphine of apomorphine- and oxytocin-induced penile erection and yawning: involvement of nitric oxide. Naunyn-Schmiedeberg’s Arch. Pharmacol. 355, 595–600.10.1007/PL00004989Search in Google Scholar
Melis, M.R., Succu, S., Mascia, M.S., and Argiolas, A. (2001). The activation of gamma aminobutyric acid(A) receptors in the paraventricular nucleus of the hypothalamus reduces non-contact penile erections in male rats. Neurosci. Lett. 314, 123–126.10.1016/S0304-3940(01)02287-XSearch in Google Scholar
Melis, M.R., Succu, S., Mascia, M.S., Cortis, L., and Argiolas, A. (2003). Extracellular dopamine increases in the paraventricular nucleus of male rats during sexual activity. Eur. J. Neurosci. 17, 1266–1272.10.1046/j.1460-9568.2003.02558.xSearch in Google Scholar PubMed
Melis, M.R., Succu, S., Mascia, M.S., Cortis, L., and Argiolas, A. (2004). Extracellular excitatory amino acids increase in the paraventricular nucleus of male rats during sexual activity: main role of N-methyl-d-aspartic acid receptors in erectile function. Eur. J. Neurosci. 19, 2569–2575.10.1111/j.0953-816X.2004.03362.xSearch in Google Scholar PubMed
Melis, M.R., Succu, S., Mascia, M.S., and Argiolas, A. (2005). PD-168,077, a selective dopamine D4 receptor agonist, induces penile erection when injected into the paraventricular nucleus of male rats. Neurosci. Lett. 379, 59–62.10.1016/j.neulet.2004.12.053Search in Google Scholar PubMed
Melis, M.R., Succu, S., Mascia, M.S., Sanna, F., Melis, T., Castelli, M.P., and Argiolas, A. (2006a). The cannabinoid receptor antagonist SR-141716A induces penile erection in male rats: involvement of paraventricular glutamic acid and nitric oxide. Neuropharmacology 50, 219–228.10.1016/j.neuropharm.2005.09.009Search in Google Scholar
Melis, M.R., Succu, S., Sanna, F., Melis, T., Mascia, M.S., Enguehard-Gueiffier, C., Hubner, H., Gmeiner, P., Gueiffier, A., and Argiolas, A. (2006b). PIP3EA and PD-168077, two selective dopamine D4 receptor agonists, induce penile erection in male rats: site and mechanism of action in the brain. Eur. J. Neurosci. 24, 2021–2030.10.1111/j.1460-9568.2006.05043.xSearch in Google Scholar
Melis, M.R., Melis, T., Cocco, C., Succu, S., Sanna, F., Pillolla, G., Boi, A., Ferri, G.L., and Argiolas, A. (2007). Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur. J. Neurosci. 26, 1026–1035.10.1111/j.1460-9568.2007.05721.xSearch in Google Scholar
Melis, M.R., Succu, S., Sanna, F., Boi, A., and Argiolas, A. (2009). Oxytocin injected into the ventral subiculum or the posteromedial cortical nucleus of the amygdala induces penile erection and increases extracellular dopamine levels in the nucleus accumbens of male rats. Eur. J. Neurosci. 30, 1349–135.10.1111/j.1460-9568.2009.06912.xSearch in Google Scholar
Melis, M.R., Succu, S., Cocco, C., Caboni, E., Sanna, F., Boi, A., Ferri, G.L., and Argiolas, A. (2010). Oxytocin induces penile erection when injected into the ventral subiculum: role of nitric oxide and glutamic acid. Neuropharmacology. 58, 1153–1160.10.1016/j.neuropharm.2010.02.008Search in Google Scholar
Melis, M.R., Sanna, F., Succu, S., Ferri, G.L., and Argiolas, A. (2012). Neuroendocrine regulatory peptide-1 and neuroendocrine regulatory peptide-2 influence differentially feeding and penile erection in male rats: sites of action in the brain. Regul. Pept. 177, 46–52.10.1016/j.regpep.2012.04.007Search in Google Scholar
Mendelson, S.D. and Gorzalka, B.B. (1987). An improved chamber for the observation and analysis of the suxual behavior of the female rat. Physiol. Behav. 39, 67–71.10.1016/0031-9384(87)90345-3Search in Google Scholar
Meraz-Medina, T., Hernández-González, M., Bonilla-Jaime, H., Guevara, M.A., Flores-Mancilla, L., Vigueras-Villaseñor, R.M., and Arteaga-Silva, M. (2017). Changes in hormonal levels associated with enforced interval copulation and anxiety in sexually inexperienced and experienced male rats. Physiol. Behav. 177, 74–81.10.1016/j.physbeh.2017.03.031Search in Google Scholar PubMed
Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225.10.1152/physrev.1998.78.1.189Search in Google Scholar PubMed
Miwa, Y., Nagase, K., Oyama, N., Akino, H., and Yokoyama, O. (2011). Effect of corticotropin-releasing factor receptor antagonist on psychologically suppressed masculine sexual behavior in rats. J. Sex. Med. 8, 688–695.10.1111/j.1743-6109.2010.02055.xSearch in Google Scholar PubMed
Moreno, M., Cardona, D., Gómez, M.J., Sánchez-Santed, F., Tobeña, A., Fernández-Teruel, A., Campa, L., Suñol, C., Escarabajal, M.D., Torres, C., et al. (2010). Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35, 1198–1208.10.1038/npp.2009.224Search in Google Scholar
Moses, J., Loucks, J.A., Watson, H.L., Matuszewich, L., and Hull, E.M. (1995). Dopaminergic drugs in the medial preoptic area and nucleus accumbens: effects on motor activity, sexual motivation, and sexual performance. Pharmacol. Biochem. Behav. 51, 681–686.10.1016/0091-3057(94)00437-NSearch in Google Scholar
Moss, H.B., Blackson, T.C., Martin, C.S., and Tarter, R.E. (1992). Heightened motor activity level in male offspring of substance abusing fathers. Biol. Psychiatry 32, 1135–1147.10.1016/0006-3223(92)90193-4Search in Google Scholar
Moyaho, A., Barajas, M., Ugarte, A., and Eguibar, J. R. (2009). Genetic and littermate influences on yawning in two selectively bred strains of rats. Dev. Psychobiol. 51, 243–248.10.1002/dev.20359Search in Google Scholar PubMed
Nagoshi, C.T., Wilson, J.R., and Rodriguez, L.A. (1991). Impulsivity, sensation seeking, and behavioral and emotional responses to alcohol. Alcohol Clin. Exp. Res. 15, 661–667.10.1111/j.1530-0277.1991.tb00575.xSearch in Google Scholar PubMed
Oliveras, I., Río-Álamos, C., Cañete, T., Blázquez, G., Martínez-Membrives, E., Giorgi, O., Corda, M.G., Tobeña, A., and Fernández-Teruel, A. (2015). Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia. Front. Behav. Neurosci. 9, 213.10.3389/fnbeh.2015.00213Search in Google Scholar PubMed PubMed Central
Overstreet, D.H., Russell, R.W., Hay, D.A., and Crocker, A.D. (1992). Selective breeding for increased cholinergic function: biometrical genetic analysis of muscarinic responses. Neuropsychopharmacology 7, 197–204.Search in Google Scholar
Paredes, R.G. (2014). Opioids and sexual reward. Pharmacol. Biochem. Behav. 121, 124–131.10.1016/j.pbb.2013.11.004Search in Google Scholar PubMed
Patel, S., Freedman, S., Chapman, K.L., Emms, F., Fletcher, A.E., Knowles, M., Marwood, R., Mcallister, G., Myers, J., Curtis, N., et al. (1997). Biological profile of L 745,870, a selective antagonist with high affinity for the dopamine D4 receptor. J. Pharmacol. Exp. Ther. 283, 636–647.Search in Google Scholar
Pedersen, C.A., Caldwell, J.D., Peterson, G., Walker, C.H., and Mason, G.A. (1992). Oxytocin activation of maternal behavior in the rat. Ann. N. Y. Acad. Sci. 652, 58–69.10.1111/j.1749-6632.1992.tb34346.xSearch in Google Scholar PubMed
Perez, J.A., Clinton, S.M., Turner, C.A., Watson, S.J., and Akil, H. (2009). A new role for FGF2 as an endogenous inhibitor of anxiety. J. Neurosci. 29, 6379–6387.10.1523/JNEUROSCI.4829-08.2009Search in Google Scholar PubMed PubMed Central
Pfaus, J.G. (2010). Dopamine: helping males copulate for at least 200 million years: theoretical comment on Kleitz-Nelson et al. Behav. Neurosci. 124, 877–880.10.1037/a0021823Search in Google Scholar PubMed
Pfaus, J.G. and Everitt, B.J. (1995). Psychopharmacology: The Fourth Generation of Progress. F.E. Knobil, and D.J. Kupfer, eds. (New York, USA: Raven Press), pp. 742–758.Search in Google Scholar
Pfaus, J.G. and Gorzalka, B.B. (1987). Opioids and sexual behavior. Neurosci. Biobehav. Rev. 11, 1–34.10.1016/S0149-7634(87)80002-7Search in Google Scholar
Pfaus, J.G. and Phillips, A.G. (1989). Differential effects of dopamine receptor antagonists on the sexual behaviour of male rats. Psychopharmacology 98, 363–368.10.1007/BF00451688Search in Google Scholar
Pfaus, J.G. and Phillips, A.G. (1991). Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav. Neurosci. 105, 727–747.10.1037/0735-7044.105.5.727Search in Google Scholar
Pfaus, J.G., Damsma, G., Nomikos, G.G., Wenkstern, D.G., Blaha, C.D., Phillips, A.G., and Fibiger, H.C. (1990). Sexual behavior enhances central dopamine transmission in the male rat. Brain Res. 530, 345–348.10.1016/0006-8993(90)91309-5Search in Google Scholar
Piazza, P.V., Rouge-Pont, F., Deminiere, J.M., Kharoubi, M., Le Moal, M., and Simon, H. (1991). Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Res. 567, 169–174.10.1016/0006-8993(91)91452-7Search in Google Scholar
Piras, G., Giorgi, O., and Corda, M.G. (2010). Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Psychopharmacology 211, 403–414.10.1007/s00213-010-1904-xSearch in Google Scholar
Poeppl, T.B., Langguth, B., Rupprecht, R., Laird, A.R., and Eickhoff, S.B. (2016). A neural circuit encoding sexual preference in humans. Neurosci. Biobehav. Rev. 68, 530–536.10.1016/j.neubiorev.2016.06.025Search in Google Scholar
Pomerantz, S.M. (1990). Apomorphine facilitates male sexual behavior of rhesus monkeys. Pharmacol. Biochem. Behav. 35, 659–664.10.1016/0091-3057(90)90304-ZSearch in Google Scholar
Pomerantz, S.M. (1991). Quinelorane (LY163502), a D2 dopamine receptor agonist, acts centrally to facilitate penile erections of male rhesus monkeys. Pharmacol. Biochem. Behav. 39, 123–128.10.1016/0091-3057(91)90408-TSearch in Google Scholar
Pomerantz, S.M., Hepner, B.C., and Wertz, J.M. (1993). Serotonergic influences on male sexual behavior of rhesus monkeys: effects of serotonin agonists. Psychopharmacology 111, 47–54.10.1007/BF02257406Search in Google Scholar PubMed
Portillo, W. and Paredes, R.G. (2003). Sexual and olfactory preference in noncopulating male rats. Physiol. Behav. 80, 155–162.10.1016/S0031-9384(03)00231-2Search in Google Scholar
Portillo, W. and Paredes, R.G. (2004). Sexual incentive motivation, olfactory preference, and activation of the vomeronasal projection pathway by sexually relevant cues in non-copulating and naive male rats. Horm. Behav. 46, 330–340.10.1016/j.yhbeh.2004.03.001Search in Google Scholar
Portillo, W., Camacho, F., Eguibar, J.R., and Paredes, R.G. (2010). Behavioral characterization of non-copulating male rats with high spontaneous yawning frequency rate. Behav. Brain Res. 214, 225–230.10.1016/j.bbr.2010.05.028Search in Google Scholar
Portillo, W., Antonio-Cabrera, E., Camacho, F.J., Diaz, N.F., and Paredes, R.G. (2013). Behavioral characterization of non-copulating male mice. Horm. Behav. 64, 70–80.10.1016/j.yhbeh.2013.05.001Search in Google Scholar
Reavill, C., Taylor, S.G., Wood, M.D., Ashmeade, T., Austin, N.E., Avenell, K.Y., Boyfield, I., Branch, C.L., Cilia, J., Coldwell, M.C., et al. (2000). Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011A. J. Pharmacol. Exp. Ther. 294, 1154–1165.Search in Google Scholar
Rettemberger, M., Kelin, V., and Briken, P. (2016). The relationship between hypersexual behavior, sexual excitation, sexual inhibition and personalities. Arch. Sex. Behav. 45, 219–233.10.1007/s10508-014-0399-7Search in Google Scholar
Robbins, T.W. and Arnsten, A.F.T. (2009). The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Ann. Rev. Neurosci. 32, 267–287.10.1146/annurev.neuro.051508.135535Search in Google Scholar
Rosario, L.A. and Abercrombie, E.D. (1999). Individual differences in behavioral reactivity: correlation with stress induced norepinephrine efflux in the hippocampus of Sprague-Dawley rats. Brain Res. Bull. 48, 595–602.10.1016/S0361-9230(99)00040-4Search in Google Scholar
Rouge-Pont, F., Deroche, V., Le Moal, M., and Piazza, P.V. (1998). Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur. J. Neurosci. 10, 3903–3907.10.1046/j.1460-9568.1998.00438.xSearch in Google Scholar
Sachs, B.D. (1997). Erection evoked in male rats by airborne scent from estrous females. Physiol. Behav. 62, 921–924.10.1016/S0031-9384(97)00307-7Search in Google Scholar
Sachs, B.D. and Barfield, R.J. (1976). Functional analysis of masculine copulatory behavior in the rat. Adv. Study Behav. 7, 91–154.10.1016/S0065-3454(08)60166-7Search in Google Scholar
Sachs, B.D. and Meisel, R.L. (1988). The Physiology of Reproduction, vol. 2. E. Knobil and J. Neil, eds. (New York, USA: Raven Press), pp. 1393–1485.Search in Google Scholar
Sachs, B.D., Akasofu, K., Citro, J.K., Daniels, S.B., and Natoli, J.H. (1994). Non-contact stimulation from estrus females evokes penile erection in rats. Physiol. Behav. 55, 1073–1079.10.1016/0031-9384(94)90390-5Search in Google Scholar
Sanna, F., Succu, S., Hübner, H., Gmeiner, P., Argiolas, A., and Melis, M.R. (2011). Dopamine D2-like receptor agonists induce penile erection in male rats: differential role of D2, D3 and D4 receptors in the paraventricular nucleus of the hypothalamus. Behav. Brain Res. 225, 169–176.10.1016/j.bbr.2011.07.018Search in Google Scholar PubMed
Sanna, F., Argiolas, A., and Melis, M.R. (2012a). Oxytocin-induced yawning: sites of action in the brain and interaction with mesolimbic/mesocortical and incertohypothalamic dopaminergic neurons in male rats. Horm. Behav. 62, 505–514.10.1016/j.yhbeh.2012.08.010Search in Google Scholar PubMed
Sanna, F., Succu, S., Melis, M.R., and Argiolas, A. (2012b). Dopamine agonist-induced penile erection and yawning: differential role of D₂-like receptor subtypes and correlation with nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats. Behav. Brain Res. 230, 355–364.10.1016/j.bbr.2012.02.033Search in Google Scholar PubMed
Sanna, F., Corda, M.G., Melis, M.R., Piludu, M.A., Löber, S., Hübner, H., Gmeiner, P., Argiolas, A., and Giorgi, O. (2013). Dopamine agonist-induced penile erection and yawning: a comparative study in outbred Roman high- and low-avoidance rats. Pharmacol. Biochem. Behav. 109, 59–66.10.1016/j.pbb.2013.05.002Search in Google Scholar PubMed
Sanna, F., Corda, M.G., Melis, M.R., Piludu, M.A., Giorgi, O., and Argiolas, A. (2014a). Male Roman high and low avoidance rats show different patterns of copulatory behaviour: comparison with Sprague-Dawley rats. Physiol. Behav. 127, 27–36.10.1016/j.physbeh.2014.01.002Search in Google Scholar PubMed
Sanna, F., Piludu, M.A., Corda, M.G., Argiolas, A., Giorgi, O., and Melis, M.R. (2014b). Dopamine is involved in the different patterns of copulatory behaviour of Roman high and low avoidance rats: studies with apomorphine and haloperidol. Pharmacol. Biochem. Behav. 124, 211–219.10.1016/j.pbb.2014.06.012Search in Google Scholar PubMed
Sanna, F., Contini, A., Melis, M.R., and Argiolas, A. (2015a). Role of dopamine D4 receptors in copulatory behavior: studies with selective D4 agonists and antagonists in male rats. Pharmacol. Biochem. Behav. 137, 110–118.10.1016/j.pbb.2015.08.012Search in Google Scholar PubMed
Sanna, F., Piludu, M.A., Corda, M.G., Melis, M.R., Giorgi, O., and Argiolas, A. (2015b). Involvement of dopamine in the differences in sexual behaviour between Roman high and low avoidance rats: an intracerebral microdialysis study. Behav. Brain Res. 281, 177–186.10.1016/j.bbr.2014.12.009Search in Google Scholar PubMed
Sanna, F., Argiolas, A., and Melis, M.R. (2016). Dopamine, erectile function and sexual behavior: last discoveries and possible advances. New Developments in Dopamine Research. G. Hopkins, ed. (New York, USA: Nova Publishers, Inc.), pp. 45–84.Search in Google Scholar
Sanna, F., Bratzu, J., Piludu, M.A., Corda, M.G., Melis, M.R., Giorgi, O., and Argiolas, A. (2017a). Dopamine, noradrenaline and differences in sexual behavior between Roman high and low avoidance male rats: a microdialysis study in the medial prefrontal cortex. Front. Behav. Neurosci. 11, 108.10.3389/fnbeh.2017.00108Search in Google Scholar PubMed PubMed Central
Sanna, F., Bratzu, J., Argiolas, A., and Melis, M.R. (2017b). Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis of male rats: involvement of glutamic acid, dopamine and nitric oxide. Horm. Behav. 96, 52–61.10.1016/j.yhbeh.2017.09.004Search in Google Scholar
Schwegler, H., Pilz, P.K.D., Koch, M., Fendt, M., Linke, R., and Driscoll, P. (1997). The acoustic startle response in inbred Roman high and low-avoidance rats. Behav. Genet. 27, 579–582.10.1023/A:1021465217299Search in Google Scholar
Seeman, P. and Van Tol, H.H. (1994). Dopamine receptor pharmacology. Trends Pharmacol. Sci. 15, 264–270.10.1016/0165-6147(94)90323-9Search in Google Scholar
Serretti, A., Mandelli, L., Lorenzi, C., Landoni, S., Calati, R., Insacco, C., and Cloninger, C.R. (2006). Temperament and character in mood disorders: influence of DRD4, SERTPR, TPH and MAO-A polymorphisms. Neuropsychobiology 53, 9–16.10.1159/000089916Search in Google Scholar
Siegel, J. (1997). Augmenting and reducing of visual evoked potentials in high- and low sensation seeking humans, cats, and rats. Behav. Genet. 27, 557–563.10.1023/A:1021409132320Search in Google Scholar
Skakoon-Sparling, S., Cramer, K.M., and Shuper, P.A. (2016). The impact of sexual arousal on sexual risk-taking and decision-making in men and women. Arch. Sex. Behav. 45, 33–42.10.1007/s10508-015-0589-ySearch in Google Scholar
Sokoloff, P. and Schwartz, J.C. (1995). Novel dopamine receptors half a decade later. Trends Pharmacol. Sci. 16, 270–275.10.1016/S0165-6147(00)89044-6Search in Google Scholar
Solla, P., Bortolato, M., Cannas, A., Mulas, C.S., and Marrosu, F. (2015). Paraphilias and paraphilic disorders in Parkinson’s disease: a systematic review of the literature. Mov. Disord. 30, 604–613.10.1002/mds.26157Search in Google Scholar PubMed PubMed Central
Stead, J.D., Clinton, S., Neal, C., Schneider, J., Jama, A., Miller, S., Vazquez, D.M., Watson, S.J., and Akil, H. (2006). Selective breeding for divergence in novelty-seeking traits: heritability and enrichment in spontaneous anxiety-related behaviors. Behav. Genet. 36, 697–712.10.1007/s10519-006-9058-7Search in Google Scholar PubMed
Stedenfeld, K.A., Clinton, S.M., Kerman, I.A., Akil, H., Watson, S.J., and Sved, A.F. (2011). Novelty-seeking behaviour predicts vulnerability in a rodent model of depression. Physiol. Behav. 103, 210–216.10.1016/j.physbeh.2011.02.001Search in Google Scholar PubMed PubMed Central
Steimer, T. and Driscoll, P. (2003). Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress 6, 87–100.10.1080/1025389031000111320Search in Google Scholar
Steimer, T. and Driscoll, P. (2005). Inter-individual vs. kine/strain differences in psychogenetically selected Roman High-(RHA) and low-(RLA) avoidance rats: neuroendocrine and behavioural aspects. Neurosci. Biobehav. Rev. 29, 99–112.10.1016/j.neubiorev.2004.07.002Search in Google Scholar
Steimer, T., la Fleur, S., and Schulz, P.E. (1997). Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh)- and low (RLA/Verh)-avoidance lines. Behav. Genet. 27, 503–512.10.1023/A:1021448713665Search in Google Scholar
Stemp, G., Ashmeade, T., Branch, C.L., Hadley, M.S., Hunter, A.J., Johnson, C.N., Nash, D.J., Thewlis, K.M., Vong, A.K., Austin, N.E., et al. (2000). Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): a potent and selective dopamine D(3) receptor antagonist with high oral bioavailability and CNS penetration in the rat. J. Med. Chem. 43, 1878–1885.10.1021/jm000090iSearch in Google Scholar
Succu, S., Sanna, F., Melis, T., Boi, A., Argiolas, A., and Melis, M.R. (2007). Stimulation of dopamine receptors in the paraventricular nucleus of the hypothalamus of male rats induces penile erection and increases extra-cellular dopamine in the nucleus accumbens: involvement of central oxytocin. Neuropharmacology 52, 1034–1043.10.1016/j.neuropharm.2006.10.019Search in Google Scholar
Succu, S., Sanna, F., Cocco, C., Melis, T., Boi, A., Ferri, G.L., Argiolas, A., and Melis, M.R. (2008). Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur. J. Neurosci. 28, 813–821.10.1111/j.1460-9568.2008.06385.xSearch in Google Scholar
Succu, S., Sanna, F., Argiolas, A., and Melis, M.R. (2011). Oxytocin injected into the hippocampal ventral subiculum induces penile erection in male rats by increasing glutamatergic neurotransmission in the ventral tegmental area. Neuropharmacology 61, 181–188.10.1016/j.neuropharm.2011.03.026Search in Google Scholar
Tournier, B.B., Steimer, T., Millet, P., Moulin-Sallanon, M., Vallet, P., Ibañez, V., and Ginovart, N. (2013). Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine. Int. J. Neuropsychopharmacol. 16, 1819–1834.10.1017/S1461145713000205Search in Google Scholar
Ugarte, A., Eguibar, J.R., Cortés Mdel, C., León-Chávez, B.A., and Melo, A.I. (2011). Comparative analysis of maternal care in the high-yawning (HY) and low-yawning (LY) sublines from Sprague-Dawley rats. Dev. Psychobiol. 53, 105–117.10.1002/dev.20497Search in Google Scholar
Urbá-Holmgren, R., Trucios, N., Holmgren, B., Eguibar, J.R., Gavito, A., Cruz, G., and Santos, A. (1990). Genotypic dependency of spontaneous yawning frequency in the rat. Behav. Brain Res. 40, 29–35.10.1016/0166-4328(90)90039-HSearch in Google Scholar
Van Laere, K., Goffin, K., Bormans, G., Casteels, C., Mortelmans, L., de Hoon, J., Grachev, I., Vandenbulcke, M., and Pieters, G. (2009). Relationship of type 1 cannabinoid receptor availability in the human brain to novelty-seeking temperament. Arch. Gen. Psychiatry 66, 196–204.10.1001/archgenpsychiatry.2008.530Search in Google Scholar
Veening, J.G., de Jong, T.R., Waldinger, M.D., Korte, S.M., and Olivier, B. (2015). The role of oxytocin in male and female reproductive behavior. Eur. J. Pharmacol. 753, 209–228.10.1016/j.ejphar.2014.07.045Search in Google Scholar
Viggiano, D., Ruocco, L.A., and Sadile, A.G. (2003a). Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 27, 623–627.10.1016/j.neubiorev.2003.08.006Search in Google Scholar
Viggiano, D., Vallone, D., Ruocco, L.A., and Sadile, A.G. (2003b). Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci. Biobehav. Rev. 27, 683–689.10.1016/j.neubiorev.2003.08.011Search in Google Scholar
Walker, C.D., Rivest, R.W., Meaney, M.J., and Aubert, M.L. (1989). Differential activation of the pituitary–adrenocortical axis after stress in the rat: use of two genetically selected lines (Roman low- and high-avoidance rats) as a model. J. Endocrinol. 123, 477–485.10.1677/joe.0.1230477Search in Google Scholar
Walusinski, O. (2010a). Historical perspectives. Front. Neurol. Neurosci. 28, 1–21.10.1159/000307069Search in Google Scholar
Walusinski, O. (2010b). Popular knowledge and beliefs. Front. Neurol. Neurosci. 28, 22–25.10.1159/000307071Search in Google Scholar
Walusinski, O. (2010c). Fetal yawning. Front. Neurol. Neurosci. 28, 32–41.10.1159/000307075Search in Google Scholar
Westernik, B.H.C., De Boer, P., De Vries, J.B., and Long, S. (1998). Antipsychotic drugs induce similar effects on the release of dopamine and noradrenaline in the medial prefrontal cortex of the rat brain. Eur. J. Pharmacol. 361, 27–33.10.1016/S0014-2999(98)00711-0Search in Google Scholar
Will, R.G., Hull, E.M., and Dominguez, J.M. (2014). Influences of dopamine and glutamate in the medial preoptic area on male sexual behavior. Pharmacol. Biochem. Behav. 121, 115–123.10.1016/j.pbb.2014.02.005Search in Google Scholar PubMed
Wise, R.A. and Romprè, P.P. (1989). Brain dopamine and reward. Annu. Rev. Psychol. 40, 191–225.10.1146/annurev.ps.40.020189.001203Search in Google Scholar
White, D.A., Kalinichev, M., and Holtzman, S.G. (2007). Locomotor response to novelty as a predictor of reactivity to aversive stimuli in the rat. Brain Res. 1149, 141–148.10.1016/j.brainres.2007.02.050Search in Google Scholar
Zeier, H., Baettig, K., and Driscoll, P. (1978). Acquisition of DRL-20 behavior in male and female, Roman high- and low-avoidance rats. Physiol. Behav. 20, 791–793.10.1016/0031-9384(78)90307-4Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston