Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 28, 2019

The effects of dietary methionine restriction on the function and metabolic reprogramming in the liver and brain – implications for longevity

  • Dušan Mladenović , Tatjana Radosavljević , Dragan Hrnčić , Aleksandra Rasic-Markovic and Olivera Stanojlović EMAIL logo


Methionine is an essential sulphur-containing amino acid involved in protein synthesis, regulation of protein function and methylation reactions. Dietary methionine restriction (0.12–0.17% methionine in food) extends the life span of various animal species and delays the onset of aging-associated diseases and cancers. In the liver, methionine restriction attenuates steatosis and delays the development of non-alcoholic steatohepatitis due to antioxidative action and metabolic reprogramming. The limited intake of methionine stimulates the fatty acid oxidation in the liver and the export of lipoproteins as well as inhibits de novo lipogenesis. These effects are mediated by various signaling pathways and effector molecules, including sirtuins, growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding proteins, adenosine monophosphate-dependent kinase and general control nonderepressible 2 pathway. Additionally, methionine restriction stimulates the synthesis of fibroblast growth factor-21 in the liver, which increases the insulin sensitivity of peripheral tissues. In the brain, methionine restriction delays the onset of neurodegenerative diseases and increases the resistance to various forms of stress through antioxidative effects and alterations in lipid composition. This review aimed to summarize the morphological, functional and molecular changes in the liver and brain caused by the methionine restriction, with possible implications in the prolongation of maximal life span.

Award Identifier / Grant number: 175032

Funding statement: This work was supported by the Ministry of Education, Science and Technological Development of Serbia [Grant No 175032].


Ables, G.P., Perrone, C.E., Orentreich, D., and Orentreich, N. (2012). Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS One 7, e51357.10.1371/journal.pone.0051357Search in Google Scholar PubMed PubMed Central

Ables, G.P., Hens, J.R., and Nichenametla, S.N. (2016). Methionine restriction beyond life-span extension. Ann. N.Y. Acad. Sci. 1363, 68–79.10.1111/nyas.13014Search in Google Scholar PubMed

Anstee, Q.M. and Goldin, R.D. (2006). Mouse models of non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16.10.1111/j.0959-9673.2006.00465.xSearch in Google Scholar PubMed PubMed Central

Anthony, T.G., McDaniel, B.J., Byerley, R.L., McGrath, B.C., Cavener, D.R., McNurlan, M.A., and Wek, R.C. (2004). Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J. Biol. Chem. 279, 36553–36561.10.1074/jbc.M404559200Search in Google Scholar PubMed

Antosh, M., Whitaker, R., Kroll, A., Hosier, S., Chang, C., Bauer, J., Cooper, L., Neretti, N., and Helfand, S.L. (2011). Comparative transcriptional pathway bioinformatic analysis of dietary restriction, Sir2, p53 and resveratrol life span extension in Drosophila. Cell Cycle 10, 904–911.10.4161/cc.10.6.14912Search in Google Scholar PubMed PubMed Central

Aoki, Y., Tsubota, M., Nishimoto, Y., Maeda, Y., Sekiguchi, F., and Kawabata, A. (2016). Selective sensitization of C-fiber nociceptors by hydrogen sulfide. J. Pharmacol. Sci. 130, 38–41.10.1016/j.jphs.2015.12.009Search in Google Scholar PubMed

Arriazu, E., Pérez de Obanos, M.P., López-Zabalza, M.J., Herraiz, M.T., and Iraburu, M.J. (2010). Amino acid deprivation decreases intracellular levels of reactive oxygen species in hepatic stellate cells. Cell. Physiol. Biochem. 26, 281–290.10.1159/000320551Search in Google Scholar PubMed

Barja, G. (2014). The mitochondrial free radical theory of aging. Prog. Mol. Biol. Transl. Sci. 127, 1–27.10.1016/B978-0-12-394625-6.00001-5Search in Google Scholar PubMed

Bauernfeind, F., Niepmann, S., Knolle, P.A., and Hornung, V. (2016). Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances. J. Immunol. 197, 2900–2908.10.4049/jimmunol.1501336Search in Google Scholar PubMed

Berks, D., Duvekot, J.J., Basalan, H., De Maat, M.P., Steegers, E.A., and Visser, W. (2015). Associations between phenotypes of preeclampsia and thrombophilia. Eur. J. Obstet. Gynecol. Reprod. Biol. 194, 199–205.10.1016/j.ejogrb.2015.09.021Search in Google Scholar PubMed

Bishop, N.A. and Guarente, L. (2007). Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat. Rev. Genet. 8, 835–844.10.1038/nrg2188Search in Google Scholar PubMed

Bonetti, F., Brombo, G., and Zuliani, G. (2016). The relationship between hyperhomocysteinemia and neurodegeneration. Neurodegener. Dis. Manag. 6, 133–145.10.2217/nmt-2015-0008Search in Google Scholar PubMed

Bukharaeva, E., Shakirzyanova, A., Khuzakhmetova, V., Sitdikova, G., and Giniatullin, R. (2015). Homocysteine aggravates ROS-induced depression of transmitter release from motor nerve terminals: potential mechanism of peripheral impairment in motor neuron diseases associated with hyperhomocysteinemia. Front. Cell. Neurosci. 9, 391.10.3389/fncel.2015.00391Search in Google Scholar PubMed PubMed Central

Calvert, S., Tacutu, R., Sharifi, S., Teixeira, R., Ghosh, P., and de Magalhães, J.P. (2016). A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell 15, 256–266.10.1111/acel.12432Search in Google Scholar PubMed PubMed Central

Caro, P., Gomez, J., Sanchez, I., Naudi, A., Ayala, V., López-Torres, M., Pamplona, R., and Barja, G. (2009). Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Res. 12, 421–434.10.1089/rej.2009.0902Search in Google Scholar PubMed

Castellano, R., Perruchot, M.H., Conde-Aguilera, J.A., van Milgen, J., Collin, A., Tesseraud, S., Mercier, Y., and Gondret, F. (2015). A methionine deficient diet enhances adipose tissue lipid metabolism and alters anti-oxidant pathways in young growing pigs. PLoS One 10, e0130514.10.1371/journal.pone.0130514Search in Google Scholar PubMed PubMed Central

Castilho, B.A., Shanmugam, R., Silva, R.C., Ramesh, R., Himme, B.M., and Sattlegger, E. (2014). Keeping the eIF2α kinase Gcn2 in check. Biochim. Biophys. Acta 1843, 1948–1968.10.1016/j.bbamcr.2014.04.006Search in Google Scholar PubMed

Chitnis, N.S., Pytel, D., Bobrovnikova-Marjon, E., Pant, D., Zheng, H., Maas, N.L., Frederick, B., Kushner, J.A., Chodosh, L.A., Koumenis, C., et al. (2012). miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol. Cell 48, 353–364.10.1016/j.molcel.2012.08.025Search in Google Scholar PubMed PubMed Central

Clarke, R., Daly, L., Robinson, K., Naughten, E., Cahalane, S., Fowler, B., and Graham, I. (1991). Hyperhomocysteinemia: an independent risk factor for vascular disease. N. Engl. J. Med. 324, 1149–1155.10.1056/NEJM199104253241701Search in Google Scholar PubMed

Corbin, K.D. and Zeisel, S.H. (2012). Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 28, 159–165.10.1097/MOG.0b013e32834e7b4bSearch in Google Scholar PubMed PubMed Central

Dever, T.E., Feng, L., Wek, R.C., Cigan, A.M., Donahue, T.F., and Hinnebusch, A.G. (1992). Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585–596.10.1016/0092-8674(92)90193-GSearch in Google Scholar

Djuric, D., Wisotzki, R., and Mitrovic, V. (2000). Homocysteine and arteriosclerosis: established risk factor or new illusion? Am. J. Ther. 7, 381–387.10.1097/00045391-200007060-00007Search in Google Scholar

Durando, X., Tivat, E., Frages, M.C., Cellarier, E., D’Incan, M., Demidem, A., Vasson, M.P., Barthomeuf, C., and Chollet, P. (2008). Optimal methionine-free diet duration for nitrourea treatment: a Phase I clinical trial. Nutr. Cancer 60, 23–30.10.1080/01635580701525877Search in Google Scholar PubMed

Elshorbagy, A.K., Valdivia-Garcia, M., Mattocks, D.A., Plummer, J.D., Smith, A.D., Drevon, C.A., Refsum, H., and Perrone, C.E. (2011). Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J. Lipid Res. 52, 104–112.10.1194/jlr.M010215Search in Google Scholar PubMed PubMed Central

Fang, P., Zhang, D., Cheng, Z., Yan, C., Jiang, X., Kruger, W.D., Meng, S., Arning, E., Bottiglieri, T., Choi, E.T., et al. (2014). Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis. Diabetes 63, 4275–4290.10.2337/db14-0809Search in Google Scholar PubMed PubMed Central

Fang, R., Zhu, X., Zhu, Y., Tong, X., Li, K., Bai, H., Li, X., Ben, J., Zhang, H., Yang, Q., et al. (2016). Miltefosine suppresses hepatic steatosis by activating AMPK signal pathway. PLoS One 11, e0163667.10.1371/journal.pone.0163667Search in Google Scholar PubMed PubMed Central

Foretz, M., Carling, D., Guichard, C., Ferre, P., and Foufelle, F. (1998). AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 273, 14767–14771.10.1074/jbc.273.24.14767Search in Google Scholar PubMed

Forney, L.A., Wanders, D., Stone, K.P., Pierse, A., and Gettys, T.W. (2017). Concentration-dependent linkage of dietary methionine restriction to the components of its metabolic phenotype. Obesity (Silver Spring) 25, 730–738.10.1002/oby.21806Search in Google Scholar PubMed PubMed Central

Gallinetti, J., Harputlugil, E., and Mitchell, J.R. (2013). Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem. J. 449, 1–10.10.1042/BJ20121098Search in Google Scholar PubMed PubMed Central

Gárriz, A., Qiu, H., Dey, M., Seo, E.J., Dever, T.E., and Hinnebusch, A.G. (2009). A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Mol. Cell. Biol. 29, 1592–1607.10.1128/MCB.01446-08Search in Google Scholar PubMed PubMed Central

Gomez, A., Gomez, J., Lopez Torres, M., Naudi, A., Mota-Martorell, N., Pamplona, R., and Barja, G. (2015). Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction. J. Bioenerg. Biomembr. 47, 199–208.10.1007/s10863-015-9608-xSearch in Google Scholar PubMed

Gonçalves de Carvalho, C.M. and Ribeiro, S.M. (2017). Aging, low-grade systemic inflammation and vitamin D: a mini-review. Eur. J. Clin. Nutr. 71, 434–440.10.1038/ejcn.2016.177Search in Google Scholar PubMed

Grant, L., Lees, E.K., Forney, L.A., Mody, N., Gettys, T., Brown, P.A., Wilson, H.M., and Delibegovic, M. (2016). Methionine restriction improves renal insulin signalling in aged kidneys. Mech. Ageing Dev. 157, 35–43.10.1016/j.mad.2016.07.003Search in Google Scholar PubMed

Guéant, J.L., Elakoum, R., Ziegler, O., Coelho, D., Feigerlova, E., Daval, J.L., and Guéant-Rodriguez, R.M. (2014). Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart. Pflüger’s Arch. 466, 833–850.10.1007/s00424-013-1339-4Search in Google Scholar PubMed

Guo, Y., Yu, J., Wang, C., Li, K., Liu, B., Du, Y., Xiao, F., Chen, S., and Guo, F. (2017). miR-212-5p suppresses lipid accumulation by targeting FAS and SCD1. J. Mol. Endocrinol. 59, 205–217.10.1530/JME-16-0179Search in Google Scholar PubMed

Hamilton, R., Walsh, M., Singh, R., Rodriguez, K., Gao, X., Rahman, M.M., Chaudhuri, A., and Bhattacharya, A. (2016). Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice. J. Neurol. Sci. 370, 47–52.10.1016/j.jns.2016.09.021Search in Google Scholar PubMed

Hasek, B.E., Boudreau, A., Shin, J., Feng, D., Hulver, M., Van, N.T., Laque, A., Stewart, L.K., Stone, K.P., Wanders, D., et al. (2013). Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes 62, 3362–3372.10.2337/db13-0501Search in Google Scholar PubMed PubMed Central

Hens, J.R., Sinha, I., Perodin, F., Cooper, T., Sinha, R., Plummer, J., Perrone, C.E., and Orentreich, D. (2016). Methionine-restricted diet inhibits growth of MCF10AT1-derived mammary tumors by increasing cell cycle inhibitors in athymic nude mice. BMC Cancer 16, 349.10.1186/s12885-016-2367-1Search in Google Scholar PubMed PubMed Central

Hrncic, D., Mikić, J., Rasic-Markovic, A., Velimirović, M., Stojković, T., Obrenović, R., Rankov-Petrović, B., Šušić, V., Djuric, D., Petronijević, N., et al. (2016). Anxiety-related behavior in hyperhomocysteinemia induced by methionine nutritional overload in rats: role of the brain oxidative stress. Can. J. Physiol. Pharmacol. 94, 1074–1082.10.1139/cjpp-2015-0581Search in Google Scholar PubMed

Jeon, H., Kim, J.H., Lee, E., Jang, Y.J., Son, J.E., Kwon, J.Y., Lim, T.G., Kim, S., Park, J.H., Kim, J.E., et al. (2016). Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7, 67223–67234.10.18632/oncotarget.11615Search in Google Scholar PubMed PubMed Central

Johnson, J.E. and Johnson, F.B. (2014). Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells. PLoS One 9, e97729.10.1371/journal.pone.0097729Search in Google Scholar PubMed PubMed Central

Jorgačević, B., Mladenović, D., Ninković, M., Prokić, V., Stanković, M.N., Aleksić, V., Cerović, I., Vukićević, R.J., Vučević, D., Stanković, M., et al. (2014). Dynamics of oxidative/nitrosative stress in mice with methionine-choline-deficient diet-induced nonalcoholic fatty liver disease. Hum. Exp. Toxicol. 33, 701–709.10.1177/0960327113506723Search in Google Scholar PubMed

Jové, M., Ayala, V., Ramírez-Núñez, O., Naudí, A., Cabré, R., Spickett, C.M., Portero-Otín, M., and Pamplona, R. (2013). Specific lipidome signatures in central nervous system from methionine-restricted mice. J. Proteome. Res. 12, 2679–2689.10.1021/pr400064aSearch in Google Scholar PubMed

Junnila, R.K., Duran-Ortiz, S., Suer, O., Sustarsic, E.G., Berryman, D.E., List, E.O., and Kopchick, J.J. (2016). Disruption of the GH receptor gene in adult mice increases maximal lifespan in females. Endocrinology 157, 4502–4513.10.1210/en.2016-1649Search in Google Scholar PubMed

Korai, M., Kitazato, K.T., Tada, Y., Miyamoto, T., Shimada, K., Matsushita, N., Kanematsu, Y., Satomi, J., Hashimoto, T., and Nagahiro, S. (2016). Hyperhomocysteinemia induced by excessive methionine intake promotes rupture of cerebral aneurysms in ovariectomized rats. J Neuroinflamm. 13, 165.10.1186/s12974-016-0634-3Search in Google Scholar PubMed PubMed Central

Kramer, P., Jung, A.T., Hamann, A., and Osiewacz, H.D. (2016). Cyclophilin D is involved in the regulation of autophagy and affects the lifespan of P. anserina in response to mitochondrial oxidative stress. Front. Genet. 7, 165.10.3389/fgene.2016.00165Search in Google Scholar PubMed PubMed Central

Krishnamoorthy, T., Pavitt, G.D., Zhang, F., Dever, T.E., and Hinnebusch, A.G. (2001). Tight binding of the phosphorylated α subunit of initiation factor2 (eIF2α) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol. Cell. Biol. 21, 5018–5030.10.1128/MCB.21.15.5018-5030.2001Search in Google Scholar PubMed PubMed Central

Latimer, M., Sabin, N., Le Cam, A., Seiliez, I., Biga, P., and Gabillard, J.C. (2017). miR-210 expression is associated with methionine-induced differentiation of trout satellite cells. J. Exp. Biol. 220, 2932–2938.10.1242/jeb.154484Search in Google Scholar PubMed PubMed Central

Latimer, M.N., Freij, K.W., Cleveland, B.M., and Biga, P.R. (2018). Physiological and molecular mechanisms of methionine restriction. Front. Endocrinol. 9, 217.10.3389/fendo.2018.00217Search in Google Scholar PubMed PubMed Central

Leach, N.V., Dronca, E., Vesa, S.C., Sampelean, D.P., Craciun, E.C., Lupsor, M., Crisan, D., Tarau, R., Rusu, R., Para, I., et al. (2014). Serum homocysteine levels, oxidative stress and cardiovascular risk in non-alcoholic steatohepatitis. Eur. J. Intern. Med. 25, 762–767.10.1016/j.ejim.2014.09.007Search in Google Scholar PubMed

Lee, J.W., Choe, S.S., Jang, H., Kim, J., Jeong, H.W., Jo, H., Jeong, K.H., Tadi, S., Park, M.G., Kwak, T.H., et al. (2012). AMPK activation with glabridin ameliorates adiposity and lipid dysregulation in obesity. J. Lipid Res. 53, 1277–1286.10.1194/jlr.M022897Search in Google Scholar PubMed PubMed Central

Lee, B.C., Kaya, A., Ma, S., Kim, G., Gerashchenko, M.V., Yim, S.H., Hu, Z., Harshman, L.G., and Gladyshev, V.N. (2014). Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun. 5, 3592.10.1038/ncomms4592Search in Google Scholar PubMed PubMed Central

Lee, G., Lim, J.Y., and Frontera, W.R. (2017). Apoptosis in young and old denervated rat skeletal muscle. Muscle Nerve 55, 262–269.10.1002/mus.25221Search in Google Scholar PubMed

Lees, E.K., Król, E., Grant, L., Shearer, K., Wyse, C., Moncur, E., Bykowska, A.S., Mody, N., Gettys, T.W., and Delibegovic, M. (2014). Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 13, 817–827.10.1111/acel.12238Search in Google Scholar PubMed PubMed Central

Liu, H., Zhang, W., Wang, K., Wang, X., Yin, F., Li, C., Wang, C., Zhao, B., Zhong, C., Zhang, J., et al. (2015). Methionine and cystine double deprivation stress suppresses glioma proliferation via inducing ROS/autophagy. Toxicol. Lett. 232, 349–355.10.1016/j.toxlet.2014.11.011Search in Google Scholar PubMed

Maddineni, S., Nichenametla, S., Sinha, R., Wilson, R.P., and Richie, J.P. Jr. (2013). Methionine restriction affects oxidative stress and glutathione-related redox pathways in the rat. Exp. Biol. Med. (Maywood) 238, 392–399.10.1177/1535370213477988Search in Google Scholar PubMed

Malik, R. and Ferguson, A.V. (2016). Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat. Brain Res. 1633, 1–9.10.1016/j.brainres.2015.12.029Search in Google Scholar PubMed

Malloy, V.L., Perrone, C.E., Mattocks, D.A., Ables, G.P., Caliendo, N.S., Orentreich, D.S., and Orentreich, N. (2013). Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice. Metabolism 62, 1651–1661.10.1016/j.metabol.2013.06.012Search in Google Scholar PubMed

Mao, X., Kikani, C.K., Riojas, R.A., Langlais, P., Wang, L., Ramos, F.J., Fang, Q., Christ-Roberts, C.Y., Hong, J.Y., Kim, R.Y., et al. (2006). APPL1 binds to adiponectin receptors and mediates adiponectin signaling and function. Nat. Cell Biol. 8, 516–523.10.1038/ncb1404Search in Google Scholar PubMed

Mattocks, D.A., Mentch, S.J., Shneyder, J., Ables, G.P., Sun, D., Richie, J.P. Jr, Locasale, J.W., and Nichenametla, S.N. (2017). Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Exp. Gerontol. 88, 1–8.10.1016/j.exger.2016.12.003Search in Google Scholar PubMed PubMed Central

Mclsaac, R.S., Lewis, K.N., Gibney, P.A., and Buffenstein, R. (2016). From yeast to human: exploring the comparative biology of methionine restriction in extending eucaryotic life span. Ann. N.Y. Acad. Sci. 1363, 155–170.10.1111/nyas.13032Search in Google Scholar

Mentch, S.J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., Gómez Padilla, P., Ables, G., Bamman, M.M., Thalacker-Mercer, A.E., et al. (2015). Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell. Metab. 22, 861–873.10.1016/j.cmet.2015.08.024Search in Google Scholar

Miller, J.W. (2000). Homocysteine, Alzheimer’s disease, and cognitive function. Nutrition 16, 675–677.10.1016/S0899-9007(00)00307-5Search in Google Scholar

Miller, R.A., Buehner, G., Chang, Y., Harper, J.M., Sigler, R., and Smith-Wheelock, M. (2005). Methionine deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125.10.1111/j.1474-9726.2005.00152.xSearch in Google Scholar PubMed PubMed Central

Miousse, I.R., Tobacyk, J., Quick, C.M., Jamshidi-Parsian, A., Skinner, C.M., Kore, R., Melnyk, S.B., Kutanzi, K.R., Xia, F., Griffin, R.J., et al. (2018). Modulation of dietary methionine intake elicits potent, yet distinct, anticancer effects on primary versus metastatic tumors. Carcinogenesis 39, 1117–1126.10.1093/carcin/bgy085Search in Google Scholar PubMed PubMed Central

Moskovitz, J., Bar-Noy, S., Williams, W.M., Requena, J., Berlett, B.S., and Stadtman, E.R. (2001). Methionine sulfoxide reductase (MSRA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA 98, 12920–12925.10.1073/pnas.231472998Search in Google Scholar PubMed PubMed Central

Najim, N., Podmore, I.D., McGown, A., and Estlin, E.J. (2009). Methionine restriction reduces the chemosensitivity of central nervous system tumour cell lines. Anticancer Res. 29, 3103–3108.Search in Google Scholar

Naudí, A., Caro, P., Jové, M., Gómez, J., Boada, J., Ayala, V., Portero-Otín, M., Barja, G., and Pamplona, R. (2007). Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogenesis and uncoupling protein 4 in rat brain. Rejuven. Res. 10, 473–484.10.1089/rej.2007.0538Search in Google Scholar PubMed

Nicken, P., Empl, M.T., Gerhard, D., Hausmann, J., and Steinberg, P. (2016). Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay. Food Chem. Toxicol. 95, 196–202.10.1016/j.fct.2016.07.014Search in Google Scholar PubMed

Orentreich, N., Matias, J.R., DeFelice, A., and Zimmerman, J.A. (1993). Low methionine ingestion by rats extends life span. J. Nutr. 123, 269–274.Search in Google Scholar

Pamplona, R. and Barja, G. (2006). Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim. Biophys. Acta 1757, 496–508.10.1016/j.bbabio.2006.01.009Search in Google Scholar PubMed

Pang, X., Liu, J., Zhao, J., Mao, J., Zhang, X., Feng, L., Han, C., Li, M., Wang, S., and Wu, D. (2014). Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 236, 73–81.10.1016/j.atherosclerosis.2014.06.021Search in Google Scholar PubMed

Payne, B.A. and Chinnery, P.F. (2015). Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim. Biophys. Acta 1847, 1347–1353.10.1016/j.bbabio.2015.05.022Search in Google Scholar PubMed PubMed Central

Peng, W., Robertson, L., Gallinetti, J., Mejia, P., Vose, S., Charlip, A., Chu, T., and Mitchell, J.R. (2012). Surgical stress resistance induced by single amino acid deprivation requires Gcn2 in mice. Sci. Transl. Med. 4, 118ra11.10.1126/scitranslmed.3002629Search in Google Scholar PubMed PubMed Central

Pereira, C.M., Sattlegger, E., Jiang, H.Y., Longo, B.M., Jaqueta, C.B., Hinnebusch, A.G., Wek, R.C., Mello, L.E., and Castilho, B.A. (2005). IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation. J. Biol. Chem. 280, 28316–28323.10.1074/jbc.M408571200Search in Google Scholar PubMed

Pérez-Martí, A., Sandoval, V., Marrero, P.F., Haro, D., and Relat, J. (2016). Nutritional regulation of fibroblast growth factor 21: from macronutrients to bioactive dietary compounds. Horm. Mol. Biol. Clin. Investig. 30, doi: 10.1515/hmbci-2016-0034.10.1515/hmbci-2016-0034Search in Google Scholar PubMed

Perrone, C.E., Mattocks, D.A., Hristopoulos, G., Plummer, J.D., Krajcik, R.A., and Orentreich, N. (2008). Methionine restriction effects on 11-HSD1 activity and lipogenic/lipolytic balance in F344 rat adipose tissue. J. Lipid Res. 49, 12–23.10.1194/jlr.M700194-JLR200Search in Google Scholar PubMed

Perrone, C.E., Mattocks, D.A., Jarvis-Morar, M., Plummer, J.D., and Orentreich, N. (2010). Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats. Metabolism 59, 1000–1011.10.1016/j.metabol.2009.10.023Search in Google Scholar PubMed

Plaisance, E.P., Greenway, F.L., Boudreau, A., Hill, K.L., Johnson, W.D., Krajcik, R.A., Perrone, C.E., Orentreich, N., Cefalu, W.T., and Gettys, T.W. (2011). Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E836–E840.10.1210/jc.2010-2493Search in Google Scholar PubMed PubMed Central

Plummer, J., Park, M., Perodin, F., Horowitz, M.C., and Hens, J.R. (2017). Methionine-restricted diet increases miRNAs that can target RUNX2 expression and alters bone structure in young mice. J. Cell. Biochem. 118, 31–42.10.1002/jcb.25604Search in Google Scholar PubMed PubMed Central

Purushotham, A., Schug, T.T., Xu, Q., Surapureddi, S., Guo, X., and Li, X. (2009). Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9, 327–338.10.1016/j.cmet.2009.02.006Search in Google Scholar PubMed PubMed Central

Rasić-Marković, A., Stanojlović, O., Hrncić, D., Krstić, D., Colović, M., Susić, V., Radosavljević, T., and Djuric, D. (2009). The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration. Mol. Cell. Biochem. 327, 39–45.10.1007/s11010-009-0040-6Search in Google Scholar PubMed

Richie, J.P. Jr., Komninou, D., Leutzinger, Y., Kleinman, W., Orentreich, N., Malloy, V., and Zimmerman, J.A. (2004). Tissue glutathione and cysteine levels in methionine-restricted rats. Nutrition 20, 800–805.10.1016/j.nut.2004.05.009Search in Google Scholar PubMed

Romero, Y., Bueno, M., Ramirez, R., Álvarez, D., Sembrat, J.C., Goncharova, E.A., Rojas, M., Selman, M., Mora, A.L., and Pardo, A. (2016). mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell 15, 1103–1112.10.1111/acel.12514Search in Google Scholar PubMed PubMed Central

Russo, C., Morabito, F., Luise, F., Piromalli, A., Battaglia, L., Vinci, A., Trapani Lombardo, V., de Marco, V., Morabito, P., Condino, F., et al. (2008). Hyperhomocysteinemia is associated with cognitive impairment in multiplesclerosis. J. Neurol. 255, 64–69.10.1007/s00415-007-0668-7Search in Google Scholar PubMed

Salmon, A.B., Pérez, V.I., Bokov, A., Jernigan, A., Kim, G., Zhao, H., Levine, R.L., and Richardson, A. (2009). Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J. 23, 3601–3608.10.1096/fj.08-127415Search in Google Scholar PubMed PubMed Central

Sanchez-Roman, I. and Barja, G. (2013). Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp. Gerontol. 48, 1030–1042.10.1016/j.exger.2013.02.021Search in Google Scholar PubMed

Sanchez-Roman, I., Gómez, A., Pérez, I., Sanchez, C., Suarez, H., Naudí, A., Jové, M., Lopez-Torres, M., Pamplona, R., and Barja, G. (2012). Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria. Biogerontology 13, 399–411.10.1007/s10522-012-9384-5Search in Google Scholar PubMed

Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., and Barja, G. (2006). Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 20, 1064–1073.10.1096/fj.05-5568comSearch in Google Scholar PubMed

Sattlegger, E. and Hinnebusch, A.G. (2000). Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. EMBO J. 19, 6622–6633.10.1093/emboj/19.23.6622Search in Google Scholar PubMed PubMed Central

Selhub, J. and Troen, A.M. (2016). Sulfur amino acids and atherosclerosis: a role for excess dietary methionine. Ann. N. Y. Acad. Sci. 1363, 18–25.10.1111/nyas.12962Search in Google Scholar PubMed

Sen, U., Pushpakumar, S.B., Amin, M.A., and Tyagi, S.C. (2014). Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator. Nitric Oxide 41, 27–37.10.1016/j.niox.2014.06.006Search in Google Scholar PubMed PubMed Central

Sinha, R., Cooper, T.K., Rogers, C.J., Sinha, I., Turbitt, W.J., Calcagnotto, A., Perrone, C.E., and Richie, J.P. Jr. (2014). Dietary methionine restriction inhibits prostatic intraepithelial neoplasia in TRAMP mice. Prostate 74, 1663–1673.10.1002/pros.22884Search in Google Scholar PubMed

Stanković, M.N., Mladenović, D., Ninković, M., Ethuričić, I., Sobajić, S., Jorgačević, B., deLuka, S., Vukicevic, R.J., and Radosavljević, T.S. (2014). The effects of α-lipoic acid on liver oxidative stress and free fatty acid composition in methionine-choline deficient diet-induced NAFLD. J. Med. Food 17, 254–261.10.1089/jmf.2013.0111Search in Google Scholar PubMed PubMed Central

Stanojlović, O., Rasić-Marković, A., Hrncić, D., Susić, V., Macut, D., Radosavljević, T., and Djuric, D. (2009). Two types of seizures in homocysteine thiolactone-treated adult rats, behavioral and electroencephalographic study. Cell. Mol. Neurobiol. 29, 329–339.10.1007/s10571-008-9324-8Search in Google Scholar PubMed

Stone, K.P., Wanders, D., Orgeron, M., Cortez, C.C., and Gettys, T.W. (2014). Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63, 3721–3733.10.2337/db14-0464Search in Google Scholar PubMed PubMed Central

Stone, K.P., Wanders, D., Calderon, L.F., Spurgin, S.B., Scherer, P.E., and Gettys, T.W. (2015). Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice. Obesity (Silver Spring) 23, 1836–1844.10.1002/oby.21177Search in Google Scholar PubMed PubMed Central

Tahara, E.B., Cunha, F.M., Basso, T.O., Della Bianca, B.E., Gombert, A.K., and Kowaltowski, A.J. (2013). Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism. PLoS One 8, e56388.10.1371/journal.pone.0056388Search in Google Scholar PubMed PubMed Central

Takizawa, D., Kakizaki, S., Horiguchi, N., Yamazaki, Y., Tojima, H., and Mori, M. (2011). Constitutive active/androstane receptor promotes hepatocarcinogenesis in a mouse model of non-alcoholic steatohepatitis. Carcinogenesis 32, 576–583.10.1093/carcin/bgq277Search in Google Scholar PubMed

Thivat, E., Farges, M.C., Bacin, F., D’Incan, M., Mouret-Reynier, M.A., Cellarier, E., Madelmont, J.C., Vasson, M.P., Chollet, P., and Durando, X. (2009). Phase II trial of the association of a methionine-free diet with cystemustine therapy in melanoma and glioma. Anticancer Res. 29, 5235–5240.Search in Google Scholar

Toriguchi, K., Hatano, E., Tanabe, K., Takemoto, K., Nakamura, K., Koyama, Y., Seo, S., Taura, K., and Uemoto, S. (2014). Attenuation of steatohepatitis, fibrosis, and carcinogenesis in mice fed a methionine-choline deficient diet by CCAAT/enhancer-binding protein homologous protein deficiency. J. Gastroenterol. Hepatol. 29, 1109–1118.10.1111/jgh.12481Search in Google Scholar PubMed

Troen, A.M., French, E.E., Roberts, J.F., Selhub, J., Ordovas, J.M., Parnell, L.D., and Lai, C.Q. (2007). Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. Age (Dordr.) 29, 29–39.10.1007/s11357-006-9018-4Search in Google Scholar PubMed PubMed Central

Vucević, D., Mladenović, D., Ninković, M., Stanković, M., Jorgacević, B., Stanković, M., de Luka, S., and Radosavljević, T. (2013). Influence of aging on ethanol-induced oxidative stress in digestive tract of rats. Hum. Exp. Toxicol. 32, 698–705.10.1177/0960327112467045Search in Google Scholar PubMed

Wanders, D., Stone, K.P., Forney, L.A., Cortez, C.C., Dille, K.N., Simon, J., Xu, M., Hotard, E.C., Nikonorova, I.A., Pettit, A.P., et al. (2016). Role of GCN2-independent signaling through a non-canonical PERK/NRF2 pathway in the physiological responses to dietary methionine restriction. Diabetes 65, 1499–1510.10.2337/db15-1324Search in Google Scholar PubMed PubMed Central

Wek, S.A., Zhu, S., and Wek, R.C. (1995). The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15, 4497–4506.10.1128/MCB.15.8.4497Search in Google Scholar PubMed PubMed Central

Xie, D., Yuan, Y., Guo, J., Yang, S., Xu, X., Wang, Q., Li, Y., Qin, X., Tang, G., Huo, Y., et al. (2015). Hyperhomocysteinemia predicts renal function decline: a prospective study in hypertensive adults. Sci. Rep. 5, 16268.10.1038/srep16268Search in Google Scholar PubMed PubMed Central

Xu, J., Lloyd, D.J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., Vonderfecht, S., Hecht, R., Li, Y.S., Lindberg, R.A., et al. (2009). Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259.10.2337/db08-0392Search in Google Scholar PubMed PubMed Central

Yu, D., Yang, S.E., Miller, B.R., Wisinski, J.A., Sherman, D.S., Brinkman, J.A., Tomasiewicz, J.L., Cummings, N.E., Kimple, M.E., Cryns, V.L., et al. (2018). Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 32, 3471–3482.10.1096/fj.201701211RSearch in Google Scholar PubMed PubMed Central

Zhang, Z., Fang, X., Hua, Y., Liu, B., Ji, X., Tang, Z., Wang, C., Guan, S., Wu, X., Liu, H., et al. (2016). Combined effect of hyperhomocysteinemia and hypertension on the presence of early carotid artery atherosclerosis. J. Stroke Cerebrovasc. Dis. 25, 1254–1262.10.1016/j.jstrokecerebrovasdis.2016.01.037Search in Google Scholar PubMed

Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J.C., Liu, Y., Peng, Q., et al. (2006). Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758, 1864–1884.10.1016/j.bbamem.2006.08.009Search in Google Scholar PubMed

Zhou, X., He, L., Wan, D., Yang, H., Yao, K., Wu, G., Wu, X., and Yin, Y. (2016). Methionine restriction on lipid metabolism and its possible mechanisms. Amino Acids 48, 1533–1540.10.1007/s00726-016-2247-7Search in Google Scholar PubMed

Received: 2018-07-19
Accepted: 2018-10-26
Published Online: 2019-02-28
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.2.2024 from
Scroll to top button