Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 15, 2019

Dynamics of brain connectivity after stroke

Adela Desowska ORCID logo and Duncan L. Turner


Recovery from a stroke is a dynamic time-dependent process, in which the central nervous system reorganises to accommodate for the impact of the injury. The purpose of this paper is to review recent longitudinal studies of changes in brain connectivity after stroke. A systematic review of research papers reporting functional or effective connectivity at two or more time points in stroke patients was conducted. Stroke leads to an early reduction of connectivity in the motor network. With recovery time, the connectivity increases and can reach the same levels as in healthy participants. The increase in connectivity is correlated with functional motor gains. A new, more randomised pattern of connectivity may then emerge in the longer term. In some instances, a pattern of increased connectivity even higher than in healthy controls can be observed, and is related either to a specific time point or to a specific neural structure. Rehabilitation interventions can help improve connectivity between specific regions. Moreover, motor network connectivity undergoes reorganisation during recovery from a stroke and can be related to behavioural recovery. A detailed analysis of changes in connectivity pattern may enable a better understanding of adaptation to a stroke and how compensatory mechanisms in the brain may be supported by rehabilitation.

  1. Funding: This research did not receive any specific grant from funding agencies in the public, commercial or non-profit sectors.

  2. Conflict of interest statement: The authors declare that there is no conflict of interest regarding the publication of this paper.


Adamson, J., Beswick, A., and Ebrahim, S. (2004). Is stroke the most common cause of disability? J. Stroke Cerebrovasc. Dis. 13, 171–177.10.1016/j.jstrokecerebrovasdis.2004.06.003Search in Google Scholar PubMed

Bajaj, S., Butler, A.J., Drake, D., and Dhamala, M. (2015a). Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation. Neuroimage Clin. 8, 572–582.10.1016/j.nicl.2015.06.006Search in Google Scholar PubMed PubMed Central

Bajaj, S., Butler, A.J., Drake, D., and Dhamala, M. (2015b). Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation. Front. Hum. Neurosci. 9, 173.10.3389/fnhum.2015.00173Search in Google Scholar PubMed PubMed Central

Bajaj, S., Housley, S.N., Wu, D., Dhamala, M., James, G.A., and Butler, A.J. (2016a). Dominance of the Unaffected Hemisphere Motor Network and Its Role in the Behavior of Chronic Stroke Survivors. Front Hum Neurosci. 10, 650.10.3389/fnhum.2016.00650Search in Google Scholar PubMed PubMed Central

Bajaj, S., Adhikari, B.M., Friston, K.J., and Dhamala, M. (2016b). Bridging the Gap: Dynamic Causal Modeling and Granger Causality Analysis of Resting State Functional Magnetic Resonance Imaging. Brain Connect. 6, 8.10.1089/brain.2016.0422Search in Google Scholar PubMed

Beckmann, C.F., DeLuca, M., Devlin, J.T., and Smith, S.M. (2005). Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1001–1013.10.1098/rstb.2005.1634Search in Google Scholar PubMed PubMed Central

Bosnell, R.A., Kincses, T., Stagg, C.J., Tomassini, V., Kischka, U., Jbabdi, S., Woolrich, M.W., Andersson, J., Matthews, P.M., and Johansen-Berg, H. (2011). Motor practice promotes increased activity in brain regions structurally disconnected after subcortical stroke. Neurorehabil. Neural Repair 25, 607–616.10.1177/1545968311405675Search in Google Scholar PubMed PubMed Central

Bundy, D.T., Souders, L., Baranyai, K., Leonard, L., Schalk, G., Coker, R., Moran, D.W., Huskey, T., and Leuthardt, E.C. (2017). Contralesional Brain-Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors. Stroke 48, 1908–1915.10.1161/STROKEAHA.116.016304Search in Google Scholar PubMed PubMed Central

Carey, J.R., Kimberley, T.J., Lewis, S.M., Auerbach, E.J., Dorsey, L., Rundquist, P., and Ugurbil, K. (2002). Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125, 773–788.10.1093/brain/awf091Search in Google Scholar PubMed

Cheng, L., Wu, Z., Fu, Y., Miao, F., Sun, J., and Tong, S. (2012). Reorganization of functional brain networks during the recovery of stroke: a functional MRI study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 4132–4135.Search in Google Scholar

Cheng, L., Wu, Z., Sun, J., Fu, Y., Wang, X., Yang, G.Y., Miao, F., and Tong, S. (2015). Reorganization of Motor Execution Networks During Sub-Acute Phase After Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 713–723.10.1109/TNSRE.2015.2401978Search in Google Scholar PubMed

De Vico Fallani, F., Clausi, S., Leggio, M., Chavez, M., Valencia, M., Maglione, A.G., Babiloni, F., Cincotti, F., Mattia, D., and Molinari, M. (2016). Interhemispheric Connectivity Characterizes Cortical Reorganization in Motor-Related Networks After Cerebellar Lesions. Cereb. 16, 358–375.10.1007/s12311-016-0811-zSearch in Google Scholar PubMed

Debas, K., Carrier, J., Orban, P., Barakat, M., Lungu, O., Vandewalle, G., Hadj Tahar, A., Bellec, P., Karni, A., Ungerleider, L.G., et al. (2010). Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc. Natl. Acad. Sci USA 107, 17839–17844.10.1073/pnas.1013176107Search in Google Scholar PubMed PubMed Central

Dipietro, L., Krebs, H.I., Volpe, B.T., Stein, J., Bever, C., Mernoff, S.T., Fasoli, S.E., and Hogan, N. (2012). Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 48–57.10.1109/TNSRE.2011.2175008Search in Google Scholar PubMed PubMed Central

Fan, Y.T., Wu, C.Y., Liu, H.L., Lin, K.C., Wai, Y.Y., and Chen, Y.L. (2015). Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Front. Hum. Neurosci. 9, 546.10.3389/fnhum.2015.00546Search in Google Scholar PubMed PubMed Central

Feigin, V.L., Norrving, B., and Mensah, G.A. (2017). Global Burden of Stroke. Circ Res. 120, 439–448.10.1016/B978-0-323-29544-4.00013-XSearch in Google Scholar

Fregni, F., Boggio, P.S., Valle, A.C., Rocha, R.R., Duarte, J., Ferreira, M.J., Wagner, T., Fecteau, S., Rigonatti, S.P., Riberto, M., et al. (2006). A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 37, 2115–2122.10.1161/01.STR.0000231390.58967.6bSearch in Google Scholar PubMed

Friston, K., Moran, R., and Seth, A.K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol. 23, 172–178.10.1016/j.conb.2012.11.010Search in Google Scholar PubMed PubMed Central

Gerloff, C., Bushara, K., Sailer, A., Wassermann, E.M., Chen, R., Matsuoka, T., Waldvogel, D., Wittenberg, G.F., Ishii, K., Cohen, L.G., et al. (2006). Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129, 791–808.10.1093/brain/awh713Search in Google Scholar PubMed

Golestani, A.M., Tymchuk, S., Demchuk, A., and Goodyear, B.G., Group, V.-S. (2013). Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil. Neural Repair 27, 153–163.10.1177/1545968312457827Search in Google Scholar PubMed

Grefkes, C., Nowak, D.A., Eickhoff, S.B., Dafotakis, M., Kust, J., Karbe, H., and Fink, G.R. (2008). Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol. 63, 236–246.10.1002/ana.21228Search in Google Scholar PubMed

Hikosaka, O., Nakamura, K., Sakai, K., and Nakahara, H. (2002). Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222.10.1016/S0959-4388(02)00307-0Search in Google Scholar

James, G.A., Lu, Z.L., VanMeter, J.W., Sathian, K., Hu, X.P., and Butler, A.J. (2009). Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top. Stroke Rehabil. 16, 270–281.10.1310/tsr1604-270Search in Google Scholar

Jiang, T., He, Y., Zang, Y., and Weng, X. (2004). Modulation of functional connectivity during the resting state and the motor task. Hum. Brain Mapp. 22, 63–71.10.1002/hbm.20012Search in Google Scholar

Jiang, L., Xu, H., and Yu, C. (2013). Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plast. 2013, 924192.10.1155/2013/924192Search in Google Scholar

Koch, P., Schulz, R., and Hummel, F.C. (2016). Structural connectivity analyses in motor recovery research after stroke. Ann. Clin. Transl. Neurol. 3, 233–244.10.1002/acn3.278Search in Google Scholar

Krebs, H.I., Brashers-Krug, T., Rauch, S.L., Savage, C.R., Hogan, N., Rubin, R.H., Fischman, A.J., and Alpert, N.M. (1998). Robot-aided functional imaging: application to a motor learning study. Hum Brain Mapp. 6, 59–72.10.1002/(SICI)1097-0193(1998)6:1<59::AID-HBM5>3.0.CO;2-KSearch in Google Scholar

Laney, J., Adali, T., McCombe Waller, S., and Westlake, K.P. (2015). Quantifying motor recovery after stroke using independent vector analysis and graph-theoretical analysis. Neuroimage Clin. 8, 298–304.10.1016/j.nicl.2015.04.014Search in Google Scholar

Lawrence, E.S., Coshall, C., Dundas, R., Stewart, J., Rudd, A.G., Howard, R., and Wolfe, C.D. (2001). Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 32, 1279–1284.10.1161/01.STR.32.6.1279Search in Google Scholar

Lazaridou, A., Astrakas, L., Mintzopoulos, D., Khanchiceh, A., Singhal, A., Moskowitz, M., Rosen, B., and Tzika, A. (2013). fMRI as a molecular imaging procedure for the functional reorganization of motor systems in chronic stroke. Mol. Med. Rep. 8, 775–779.10.3892/mmr.2013.1603Search in Google Scholar

Lee, J., Lee, M., Kim, D.S., and Kim, Y.H. (2015). Functional reorganization and prediction of motor recovery after a stroke: A graph theoretical analysis of functional networks. Restor. Neurol. Neurosci. 33, 785–793.10.3233/RNN-140467Search in Google Scholar

Lefebvre, S., Dricot, L., Laloux, P., Gradkowski, W., Desfontaines, P., Evrard, F., Peeters, A., Jamart, J., and Vandermeeren, Y. (2015). Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients. Front. Hum. Neurosci. 9, 320.10.3389/fnhum.2015.00320Search in Google Scholar PubMed PubMed Central

Li, W., Li, Y., Zhu, W., and Chen, X. (2014). Changes in brain functional network connectivity after stroke. Neural Regen. Res. 9, 51–60.10.4103/1673-5374.125330Search in Google Scholar PubMed PubMed Central

Lin, Y.C., Daducci, A., Meskaldji, D.E., Thiran, J.P., Michel, P., Meuli, R., Krueger, G., Menegaz, G., and Granziera, C. (2015). Quantitative Analysis of Myelin and Axonal Remodeling in the Uninjured Motor Network After Stroke. Brain Connect. 5, 401–412.10.1089/brain.2014.0245Search in Google Scholar PubMed PubMed Central

Liu, J., Qin, W., Zhang, J., Zhang, X., and Yu, C. (2015). Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke 46, 1045–1051.10.1161/STROKEAHA.114.007044Search in Google Scholar PubMed

Liu, H., Tian, T., Qin, W., Li, K., and Yu, C. (2016). Contrasting Evolutionary Patterns of Functional Connectivity in Sensorimotor and Cognitive Regions after Stroke. Front. Behav. Neurosci. 10, 72.10.3389/fnbeh.2016.00072Search in Google Scholar PubMed PubMed Central

Lohse, K.R., Wadden, K., Boyd, L.A., and Hodges, N.J. (2014). Motor skill acquisition across short and long time scales: a meta-analysis of neuroimaging data. Neuropsychologia 59, 130–141.10.1016/j.neuropsychologia.2014.05.001Search in Google Scholar PubMed

Mayka, M.A., Corcos, D.M., Leurgans, S.E., and Vaillancourt, D.E. (2006). Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31, 1453–1474.10.1016/j.neuroimage.2006.02.004Search in Google Scholar PubMed PubMed Central

Meehan, S.K., Randhawa, B., Wessel, B., and Boyd, L.A. (2011). Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study. Hum. Brain Mapp. 32, 290–303.10.1002/hbm.21019Search in Google Scholar PubMed PubMed Central

Mihara, M., Hattori, N., Hatakenaka, M., Yagura, H., Kawano, T., Hino, T., and Miyai, I. (2013). Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 44, 1091–1098.10.1161/STROKEAHA.111.674507Search in Google Scholar PubMed

Mottaz, A., Solca, M., Magnin, C., Corbet, T., Schnider, A., and Guggisberg, A.G. (2015). Neurofeedback training of alpha-band coherence enhances motor performance. Clin. Neurophysiol. 126, 1754–1760.10.1016/j.clinph.2014.11.023Search in Google Scholar PubMed

Nicolo, P., Rizk, S., Magnin, C., Pietro, M.D., Schnider, A., and Guggisberg, A.G. (2015). Coherent neural oscillations predict future motor and language improvement after stroke. Brain 138, 3048–3060.10.1093/brain/awv200Search in Google Scholar PubMed

Noyes, J., Gough, D., Lewin, S., Mayhew, A., Michie, S., Pantoja, T., Petticrew, M., Pottie, K., Rehfuess, E., Shemilt, I., et al. (2015). A research and development agenda for systematic reviews that ask complex questions about complex interventions. J Clin Epidemiol. 66, 1262–1270.10.1016/j.jclinepi.2013.07.003Search in Google Scholar PubMed

Ovadia-Caro, S., Villringer, K., Fiebach, J., Jungehulsing, G.J., van der Meer, E., Margulies, D.S., and Villringer, A. (2013). Longitudinal effects of lesions on functional networks after stroke. J. Cereb. Blood Flow Metab. 33, 1279–1285.10.1038/jcbfm.2013.80Search in Google Scholar PubMed PubMed Central

Park, C.H., Chang, W.H., Ohn, S.H., Kim, S.T., Bang, O.Y., Pascual-Leone, A., and Kim, Y.H. (2011). Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 42, 1357–1362.10.1161/STROKEAHA.110.596155Search in Google Scholar PubMed PubMed Central

Park, C.H., Kou, N., and Ward, N.S. (2016). The contribution of lesion location to upper limb deficit after stroke. J. Neurol. Neurosurg. Psychiatry. 87, 1283–1286.10.1136/jnnp-2015-312738Search in Google Scholar PubMed PubMed Central

Pellegrino, G., Tomasevic, L., Tombini, M., Assenza, G., Bravi, M., Sterzi, S., Giacobbe, V., Zollo, L., Guglielmelli, E., Cavallo, G., et al. (2012). Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restor. Neurol. Neurosci. 30, 497–510.10.3233/RNN-2012-120227Search in Google Scholar PubMed

Ramos-Murguialday, A., Broetz, D., Rea, M., Laer, L., Yilmaz, O., Brasil, F.L., Liberati, G., Curado, M.R., Garcia-Cossio, E., Vyziotis, A., et al. (2013). Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108.10.1002/ana.23879Search in Google Scholar PubMed PubMed Central

Rehme, A.K., Eickhoff, S.B., Wang, L.E., Fink, G.R., and Grefkes, C. (2011). Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55, 1147–1158.10.1016/j.neuroimage.2011.01.014Search in Google Scholar PubMed PubMed Central

Rodgers, H., Shaw, L., Bosomworth, H., Aird, L., Alvarado, N., Andole, S., Cohen, D.L., Dawson, J., Eyre, J., Finch, T., et al. (2017). Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial. Trials. 18, 340.10.1186/s13063-017-2083-4Search in Google Scholar PubMed PubMed Central

Rondina, J.M., Filippone, M., Girolami, M., and Ward, N.S. (2016). Decoding post-stroke motor function from structural brain imaging. Neuroimage Clin. 12, 372–380.10.1016/j.nicl.2016.07.014Search in Google Scholar PubMed PubMed Central

Rosso, C., Valabregue, R., Attal, Y., Vargas, P., Gaudron, M., Baronnet, F., Bertasi, E., Humbert, F., Peskine, A., Perlbarg, V., et al. (2013). Contribution of corticospinal tract and functional connectivity in hand motor impairment after stroke. PLoS One 8, e73164.10.1371/journal.pone.0073164Search in Google Scholar PubMed PubMed Central

Serrien, D.J., Strens, L.H., Cassidy, M.J., Thompson, A.J., and Brown, P. (2004). Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Exp. Neurol. 190, 425–432.10.1016/j.expneurol.2004.08.004Search in Google Scholar PubMed

Shadmehr, R. and Holcomb, H.H. (1997). Neural correlates of motor memory consolidation. Science. 277, 821–825.10.1126/science.277.5327.821Search in Google Scholar PubMed

Sharma, N., Baron, J.C., and Rowe, J.B. (2009). Motor imagery after stroke: relating outcome to motor network connectivity. Ann. Neurol. 66, 604–616.10.1002/ana.21810Search in Google Scholar PubMed PubMed Central

Stinear, C.M., Byblow, W.D., Ackerley, S.J., Smith, M.C., Borges, V.M., and Barber, P.A. (2017). PREP2: A biomarker-based algorithm for predicting upper limb function after stroke. Ann Clin Transl Neurol. 4, 811–820.10.1002/acn3.488Search in Google Scholar PubMed PubMed Central

Strens, L.H., Asselman, P., Pogosyan, A., Loukas, C., Thompson, A.J., and Brown, P. (2004). Corticocortical coupling in chronic stroke: its relevance to recovery. Neurology 63, 475–484.10.1212/01.WNL.0000133010.69694.F8Search in Google Scholar

Turner, D.L., Tang, X., Winterbotham, W., and Kmetova, M. (2012). Recovery of submaximal upper limb force production is correlated with better arm position control and motor impairment early after a stroke. Clin Neurophysiol. 123, 183–192.10.1016/j.clinph.2011.06.009Search in Google Scholar PubMed

Varkuti, B., Guan, C., Pan, Y., Phua, K.S., Ang, K.K., Kuah, C.W., Chua, K., Ang, B.T., Birbaumer, N., and Sitaram, R. (2013). Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil. Neural Repair 27, 53–62.10.1177/1545968312445910Search in Google Scholar PubMed

Volz, L.J., Sarfeld, A.S., Diekhoff, S., Rehme, A.K., Pool, E.M., Eickhoff, S.B., Fink, G.R., and Grefkes, C. (2015). Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization. Brain Struct. Funct. 220, 1093–1107.10.1007/s00429-013-0702-8Search in Google Scholar PubMed

von Carlowitz-Ghori, K., Bayraktaroglu, Z., Hohlefeld, F.U., Losch, F., Curio, G., and Nikulin, V.V. (2014). Corticomuscular coherence in acute and chronic stroke. Clin. Neurophysiol. 125, 1182–1191.10.1055/s-0034-1371233Search in Google Scholar

Wadden, K.P., Woodward, T.S., Metzak, P.D., Lavigne, K.M., Lakhani, B., Auriat, A.M., and Boyd, L.A. (2015). Compensatory motor network connectivity is associated with motor sequence learning after subcortical stroke. Behav. Brain Res. 286, 136–145.10.1016/j.bbr.2015.02.054Search in Google Scholar PubMed PubMed Central

Wang, L., Yu, C., Chen, H., Qin, W., He, Y., Fan, F., Zhang, Y., Wang, M., Li, K., Zang, Y., Woodward, T.S., and Zhu, C. (2010). Dynamic functional reorganization of the motor execution network after stroke. Brain 133, 1224–1238.10.1093/brain/awq043Search in Google Scholar PubMed

Ward, N.S. (2017). Restoring brain function after stroke – bridging the gap between animals and humans. Nat. Rev. Neurol. 13, 244–255.10.1038/nrneurol.2017.34Search in Google Scholar PubMed

Ward, N.S. and Frackowiak, R.S. (2006). The functional anatomy of cerebral reorganisation after focal brain injury. J. Physiol. Paris 99, 425–436.10.1016/j.jphysparis.2006.03.002Search in Google Scholar PubMed

Westlake, K.P., Hinkley, L.B., Bucci, M., Guggisberg, A.G., Byl, N., Findlay, A.M., Henry, R.G., and Nagarajan, S.S. (2012). Resting state alpha-band functional connectivity and recovery after stroke. Exp. Neurol. 237, 160–169.10.1016/j.expneurol.2012.06.020Search in Google Scholar PubMed PubMed Central

Wolf, S.L., Thompson, P.A., Winstein, C.J., Miller, J.P., Blanton, S.R., Nichols-Larsen, D.S., Morris, D.M., Uswatte, G., Taub, E., Light, K.E., et al. (2010). The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke 41, 2309–2315.10.1161/STROKEAHA.110.588723Search in Google Scholar PubMed PubMed Central

Wu, J., Quinlan, E.B., Dodakian, L., McKenzie, A., Kathuria, N., Zhou, R.J., Augsburger, R., See, J., Le, V.H., Srinivasan, R., et al. (2015). Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 138, 2359–2369.10.1093/brain/awv156Search in Google Scholar PubMed PubMed Central

Xu, H., Qin, W., Chen, H., Jiang, L., Li, K., and Yu, C. (2014). Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke. PLoS One 9, e84729.10.1371/journal.pone.0084729Search in Google Scholar PubMed PubMed Central

Yourganov, G., Schmah, T., Small, S.L., Rasmussen, P.M., and Strother, S.C. (2010). Functional connectivity metrics during stroke recovery. Arch. Ital. Biol. 148, 259–270.Search in Google Scholar

Zhang, J., Meng, L., Qin, W., Liu, N., Shi, F.D., and Yu, C. (2014). Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke. Stroke. 45, 788–793.10.1161/STROKEAHA.113.003425Search in Google Scholar PubMed

Zhang, Y., Liu, H., Wang, L., Yang, J., Yan, R., Zhang, J., Sang, L., Li, P., Wang, J., and Qiu, M. (2016). Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study. Neuroradiology. 58, 503–511.10.1007/s00234-016-1646-5Search in Google Scholar PubMed

Zheng, X., Sun, L., Yin, D., Jia, J., Zhao, Z., Jiang, Y., Wang, X., Wu, J., Gong, J., and Fan, M. (2016). The plasticity of intrinsic functional connectivity patterns associated with rehabilitation intervention in chronic stroke patients. Neuroradiology 58, 417–427.10.1007/s00234-016-1647-4Search in Google Scholar PubMed

Received: 2018-08-06
Accepted: 2018-11-18
Published Online: 2019-02-15
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston