Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 16, 2019

Modification of the gut microbiome to combat neurodegeneration

  • Andrew Octavian Sasmita ORCID logo EMAIL logo


The gut microbiome was extensively researched for its biological variety and its potential role in propagating diseases outside of the gastrointestinal (GI) tract. Recently, a lot of effort was focused on comprehending the gut-brain axis and the bizarre communication between the GI system and the nervous system. Ample amount of studies being carried out also revealed the involvement of the gut microbiome in enhancing the degree of many neurological disorders, including neurodegenerative diseases. It was widely observed that there were distinct microbiome profiles and dysbiosis within patients suffering from Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Various approaches to re-establish the balance of the gut microbiome, from antibiotic therapy, fecal microbiota transplant, or ingestion of psychobiotics, are discussed within this review within the specific context of combating neurodegenerative diseases. Present studies and clinical trials indicate that although there is an immense potential of gut microbiome modification to be preventive or therapeutic, there are still many intercalated components of the gut-brain axis at play and thus, more research needs to be carried out to delineate microbiome factors that may potentially alleviate symptoms of neurodegeneration.

  1. Conflict of interest statement: The author declares no conflict of interest. The publication of this manuscript is not linked to any funding or funding bodies.


Abdollahpour, I., Nedjat, S., Mansournia, M.A., Eckert, S., and Weinstock-Guttman, B. (2018). Infectious exposure, antibiotic use, and multiple sclerosis: a population-based incident case-control study. Acta Neurol. Scand. 138, 308–314.10.1111/ane.12958Search in Google Scholar PubMed

Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O.R., Hamidi, G.A., and Salami, M. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8, 256.10.3389/fnagi.2016.00256Search in Google Scholar PubMed

Allen, A.P., Dinan, T.G., Clarke, G., and Cryan, J.F. (2017). A psychology of the human brain-gut-microbiome axis. Soc. Personal. Psychol. Compass. 11, e12309.10.1111/spc3.12309Search in Google Scholar PubMed

Alonso, R., Fernández-Fernández, A.M., Pisa, D., and Carrasco, L. (2018). Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiol. Dis. 117, 42–61.10.1016/j.nbd.2018.05.022Search in Google Scholar PubMed

Ananthaswamy, A. (2011). Faecal transplant eases symptoms of Parkinson’s disease. New Sci. 209, 8–9.10.1016/S0262-4079(11)60124-3Search in Google Scholar

Bailey, M.T., Dowd, S.E., Galley, J.D., Hufnagle, A.R., Allen, R.G., and Lyte, M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407.10.1016/j.bbi.2010.10.023Search in Google Scholar PubMed PubMed Central

Bedarf, J.R., Hildebrand, F., Coelho, L.P., Sunagawa, S., Bahram, M., Goeser, F., Bork, P., and Wüllner, U. (2017). Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 9, 39.10.1186/s13073-017-0428-ySearch in Google Scholar PubMed PubMed Central

Bellono, N.W., Bayrer, J.R., Leitch, D.B., Castro, J., Zhang, C., O’Donnell, T.A., Brierley, S.M., Ingraham, H.A., and Julius, D. (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16.10.1016/j.cell.2017.05.034Search in Google Scholar PubMed PubMed Central

Bercik, P., Park, A.J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P.A., Fahnestock, M., Moine, D., et al. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139.10.1111/j.1365-2982.2011.01796.xSearch in Google Scholar PubMed PubMed Central

Boeckxstaens, G. (2013). The clinical importance of the anti-inflammatory vagovagal reflex. Handb. Clin. Neurol. 117, 119–134.10.1016/B978-0-444-53491-0.00011-0Search in Google Scholar PubMed

Borody, T., Leis, S., Campbell, J., Torres, M., and Nowak, A. (2011). Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am. J. Gastroenterol. 106, S352.10.14309/00000434-201110002-00942Search in Google Scholar

Boylan, K. (2015). Familial amyotrophic lateral sclerosis. Neurol. Clin. 33, 807–830.10.1016/j.ncl.2015.07.001Search in Google Scholar PubMed

Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108, 16050–16055.10.1073/pnas.1102999108Search in Google Scholar

Brenner, D., Hiergeist, A., Adis, C., Mayer, B., Gessner, A., Ludolph, A.C., and Weishaupt, J.H. (2018). The fecal microbiome of ALS patients. Neurobiol. Aging 61, 132–137.10.1016/j.neurobiolaging.2017.09.023Search in Google Scholar PubMed

Cantarel, B.L., Waubant, E., Chehoud, C., Kuczynski, J., DeSantis, T.Z., Warrington, J., Venkatesan, A., Fraser, C.M., and Mowry, E.M. (2015). Gut microbiota in multiple sclerosis. J. Invest. Med. 63, 729–734.10.1097/JIM.0000000000000192Search in Google Scholar

Cersosimo, M.G., Raina, G.B., Pecci, C., Pellene, A., Calandra, C.R., Gutiérrez, C., Micheli, F.E., and Benarroch, E.E. (2013). Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J. Neurol. 260, 1332–1338.10.1007/s00415-012-6801-2Search in Google Scholar PubMed

Cruz, M.P. (2018). Edaravone (Radicava): a novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis. P&T. 43, 25–28.Search in Google Scholar

Cudkowicz, M.E., Titus, S., Kearney, M., Yu, H., Sherman, A., Schoenfeld, D., Hayden, D., Shui, A., Brooks, B., Conwit, R., et al. (2014). Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 13, 1083–1091.10.1016/S1474-4422(14)70222-4Search in Google Scholar PubMed

Dash, S., Clarke, G., Berk, M., and Jacka, F.N. (2015). The gut microbiome and diet in psychiatry. Curr. Opin. Psychiatry 28, 1–6.10.1097/YCO.0000000000000117Search in Google Scholar PubMed

Daulatzai, M.A. (2015). Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia. CNS Neurol. Disord. Drug Targets 14, 110–131.10.2174/1871527314666150202152436Search in Google Scholar PubMed

Dharmadasa, T., and Kiernan, M.C. (2018). Riluzole, disease stage and survival in ALS. Lancet Neurol. 17, 385–386.10.1016/S1474-4422(18)30091-7Search in Google Scholar PubMed

Dickerson, F., Severance, E., and Yolken, R. (2017). The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav. Immun. 62, 46–52.10.1016/j.bbi.2016.12.010Search in Google Scholar PubMed

Dutkiewicz, J., Szlufik, S., Nieciecki, M., Charzyńska, I., Królicki, L., Smektała, P., and Friedman, A. (2015). Small intestine dysfunction in Parkinson’s disease. J. Neural Transm. 122, 1659–1661.10.1007/s00702-015-1442-0Search in Google Scholar

Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., Guiot, Y., Derrien, M., Muccioli, G.G., Delzenne, N.M., et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071.10.1073/pnas.1219451110Search in Google Scholar

Fang, X., Wang, X., Yang, S., Meng, F., Wang, X., Wei, H., and Chen, T. (2016). Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 7, 1479.10.3389/fmicb.2016.01479Search in Google Scholar PubMed

Friedman, S. (2018). Fecal microbiota transplantation (FMT) of FMP30 in relapsing-remitting multiple sclerosis (MS-BIOME). in Google Scholar

Fröhlich, E.E., Farzi, A., Mayerhofer, R., Reichmann, F., Jačan, A., Wagner, B., Zinser, E., Bordag, N., Magnes, C., Fröhlich, E., et al. (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav. Immun. 56, 140–155.10.1016/j.bbi.2016.02.020Search in Google Scholar PubMed

Fung, T.C., Olson, C.A., and Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155.10.1038/nn.4476Search in Google Scholar PubMed

González-Lizárraga, F., Socías, S.B., Ávila, C.L., Torres-Bugeau, C.M., Barbosa, L.R.S., Binolfi, A., Sepúlveda-Díaz, J.E., Del-Bel, E., Fernandez, C.O., Papy-Garcia, D., et al. (2017). Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel β-sheet structured species. Sci. Rep. 7, 41755.10.1038/srep41755Search in Google Scholar PubMed

Gordon, P.H., Moore, D.H., Miller, R.G., Florence, J.M., Verheijde, J.L., Doorish, C., Hilton, J.F., Spitalny, G.M., MacArthur, R.B., Mitsumoto, H., et al. (2007). Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 6, 1045–1053.10.1016/S1474-4422(07)70270-3Search in Google Scholar PubMed

Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., Hammer, A., Lee, D.-H., May, C., Wilck, N., et al. (2015). Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829.10.1016/j.immuni.2015.09.007Search in Google Scholar PubMed

Hashim, H., Azmin, S., Razlan, H., Yahya, N.W., Tan, H.J., Manaf, M.R.A., and Ibrahim, N.M. (2014). Eradication of Helicobacter pylori Infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One 9, e112330.10.1371/journal.pone.0112330Search in Google Scholar PubMed PubMed Central

Hefendehl, J.K., LeDue, J., Ko, R.W.Y., Mahler, J., Murphy, T.H., and MacVicar, B.A. (2016). Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding A$β$ plaques by iGluSnFR two-photon imaging. Nat. Commun. 7, 13441.10.1038/ncomms13441Search in Google Scholar PubMed PubMed Central

Heintz-Buschart, A., Pandey, U., Wicke, T., Sixel-Döring, F., Janzen, A., Sittig-Wiegand, E., Trenkwalder, C., Oertel, W.H., Mollenhauer, B., and Wilmes, P. (2018). The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98.10.1002/mds.27105Search in Google Scholar PubMed PubMed Central

Houser, M.C., and Tansey, M.G. (2017). The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinson Dis. 3, 3.10.1038/s41531-016-0002-0Search in Google Scholar PubMed PubMed Central

Jahangiri, S., Rahmani, A.R., Rakhshani, M.H., Tajabadi, A., and Tadayonfar, M. (2017). The effects of synbiotic supplementation on constipation and reducing flatulence in stroke patients admitted to the ICU.J. Probiotics Heal. 5, 167.10.4172/2329-8901.1000167Search in Google Scholar

Jangi, S., Gandhi, R., Cox, L.M., Li, N., von Glehn, F., Yan, R., Patel, B., Mazzola, M.A., Liu, S., Glanz, B.L., et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015.10.1038/ncomms12015Search in Google Scholar PubMed PubMed Central

Jia, S., Lu, Z., Gao, Z., An, J., Wu, X., Li, X., Dai, X., Zheng, Q., and Sun, Y. (2016). Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1–42-induced rat model of Alzheimer’s disease. Int. J. Biol. Macromol. 83, 416–425.10.1016/j.ijbiomac.2015.11.011Search in Google Scholar PubMed

Kanji, S., Fonseka, T.M., Marshe, V.S., Sriretnakumar, V., Hahn, M.K., and Müller, D.J. (2017). The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur. Arch. Psychiatry Clin. Neurosci. 268, 3–15.10.1007/s00406-017-0820-zSearch in Google Scholar PubMed

Kelly, L.P., Carvey, P.M., Keshavarzian, A., Shannon, K.M., Shaikh, M., Bakay, R.A.E., and Kordower, J.H. (2014). Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov. Disord. 29, 999–1009.10.1002/mds.25736Search in Google Scholar PubMed PubMed Central

Kouchaki, E., Tamtaji, O.R., Salami, M., Bahmani, F., Daneshvar Kakhaki, R., Akbari, E., Tajabadi-Ebrahimi, M., Jafari, P., and Asemi, Z. (2017). Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 36, 1245–1249.10.1016/j.clnu.2016.08.015Search in Google Scholar PubMed

Kremenchutzky, M. (2017). Fecal microbial transplantation in relapsing multiple sclerosis patients. in Google Scholar

Kuruvilla, J., Sasmita, A.O., and Ling, A.P.K. (2018). Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases. Neurol. Sci. 39, 1827–1835.10.1007/s10072-018-3521-0Search in Google Scholar PubMed

Lawrence, K., and Hyde, J. (2017). Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing. PLoS One 12, e0179017.10.1371/journal.pone.0179017Search in Google Scholar PubMed PubMed Central

Lebouvier, T., Neunlist, M., Bruley des Varannes, S., Coron, E., Drouard, A., N’Guyen, J.-M., Chaumette, T., Tasselli, M., Paillusson, S., Flamand, M., et al. (2010). Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 5, e12728.10.1371/journal.pone.0012728Search in Google Scholar PubMed PubMed Central

Leclercq, S., Mian, F.M., Stanisz, A.M., Bindels, L.B., Cambier, E., Ben-Amram, H., Koren, O., Forsythe, P., and Bienenstock, J. (2017). Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8, 15062.10.1038/ncomms15062Search in Google Scholar PubMed PubMed Central

Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y., and Jin, F. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310, 561–577.10.1016/j.neuroscience.2015.09.033Search in Google Scholar PubMed

Liu, F.-C., Lin, H.-T., Kuo, C.-F., Hsieh, M.-Y., See, L.-C., and Yu, H.-P. (2018). Familial aggregation of Parkinson’s disease and coaggregation with neuropsychiatric diseases: a population-based cohort study. Clin. Epidemiol. 10, 631–641.10.2147/CLEP.S164330Search in Google Scholar PubMed PubMed Central

Liu, Q., Duan, Z.P., Ha, D.K., Bengmark, S., Kurtovic, J., and Riordan, S.M. (2004). Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 39, 1441–1449.10.1002/hep.20194Search in Google Scholar PubMed

Makkawi, S., Camara-Lemarroy, C., and Metz, L. (2018). Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 5, e459.10.1212/NXI.0000000000000459Search in Google Scholar PubMed PubMed Central

Malan-Muller, S., Valles-Colomer, M., Raes, J., Lowry, C.A., Seedat, S., and Hemmings, S.M.J. (2017). The gut microbiome and mental health: implications for anxiety- and trauma-related disorders. OMICS 22, 90–107.10.1089/omi.2017.0077Search in Google Scholar PubMed

Martín-Montañez, E., Millon, C., Boraldi, F., Garcia-Guirado, F., Pedraza, C., Lara, E., Santin, L.J., Pavia, J., and Garcia-Fernandez, M. (2017). IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol. 13, 69–81.10.1016/j.redox.2017.05.012Search in Google Scholar PubMed PubMed Central

Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.-F., Rougeot, C., Pichelin, M., Cazaubiel, M., et al. (2011a). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755–764.10.1017/S0007114510004319Search in Google Scholar PubMed

Messaoudi, M., Violle, N., Bisson, J.-F., Desor, D., Javelot, H., and Rougeot, C. (2011b). Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2, 256–261.10.4161/gmic.2.4.16108Search in Google Scholar PubMed

Mez, J., Daneshvar, D.H., Kiernan, P.T., Abdolmohammadi, B., Alvarez, V.E., Huber, B.R., Alosco, M.L., Solomon, T.M., Nowinski, C.J., McHale, L., et al. (2017). Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. J. Am. Med. Assoc. 318, 360–370.10.1001/jama.2017.8334Search in Google Scholar PubMed PubMed Central

Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X., Oyler-Castrillo, P., Musch, M.W., Liao, F., Ward, J.F., Holtzman, D.M., et al. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028.10.1038/srep30028Search in Google Scholar PubMed PubMed Central

Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., Chihara, N., Tomita, A., Sato, W., Kim, S.-W., et al. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 10, e0137429.10.1371/journal.pone.0137429Search in Google Scholar PubMed PubMed Central

Möhle, L., Mattei, D., Heimesaat, M.M., Bereswill, S., Fischer, A., Alutis, M., French, T., Hambardzumyan, D., Matzinger, P., Dunay, I.R., et al. (2016). Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956.10.1016/j.celrep.2016.04.074Search in Google Scholar PubMed

Moos, W.H., Faller, D. V, Harpp, D.N., Kanara, I., Pernokas, J.,Powers, W.R., and Steliou, K. (2016). Microbiota and neurological disorders: a gut feeling. Biores. Open Access 5, 137–145.10.1089/biores.2016.0010Search in Google Scholar PubMed PubMed Central

Niehues, M., and Hensel, A. (2009). In-vitro interaction of L-dopa with bacterial adhesins of Helicobacter pylori: an explanation for clinical differences in bioavailability? J. Pharm. Pharmacol. 61, 1303–1307.10.1211/jpp/61.10.0005Search in Google Scholar PubMed

Nikolaev, A., McLaughlin, T., O’Leary, D.D.M., and Tessier-Lavigne, M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989.10.1038/nature07767Search in Google Scholar PubMed PubMed Central

Nimgampalle, M., and Yellama, K. (2017). Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J. Clin. Diagn. Res. 11, KC01–KC05.10.7860/JCDR/2017/26106.10428Search in Google Scholar PubMed PubMed Central

Pansarasa, O., Bordoni, M., Diamanti, L., Sproviero, D., Gagliardi, S., and Cereda, C. (2018). SOD1 in amyotrophic lateral sclerosis: “ambivalent” behavior connected to the disease. Int. J. Mol. Sci. 19, 1345.10.3390/ijms19051345Search in Google Scholar PubMed PubMed Central

Patra, S. (2016). Psychobiotics: a paradigm shift in psychopharmacology. Indian J. Pharmacol. 48, 469.10.4103/0253-7613.186194Search in Google Scholar PubMed PubMed Central

Perni, M., Galvagnion, C., Maltsev, A., Meisl, G., Müller, M.B.D., Challa, P.K., Kirkegaard, J.B., Flagmeier, P., Cohen, S.I.A., Cascella, R., et al. (2017). A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA 114, E1009–E1017.10.1073/pnas.1610586114Search in Google Scholar PubMed PubMed Central

Petrov, D., Mansfield, C., Moussy, A., and Hermine, O. (2017). ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment?. Front. Aging Neurosci. 9, 68.10.3389/fnagi.2017.00068Search in Google Scholar PubMed PubMed Central

Pierantozzi, M., Pietroiusti, A., Galante, A., Sancesario, G., Lunardi, G., Fedele, E., Giacomini, P., and Stanzione, P. (2001). Helicobacter pylori-induced reduction of acute levodopa absorption in Parkinson’s disease patients. Ann. Neurol. 50, 686–687.10.1002/ana.1267Search in Google Scholar PubMed

Printy, B.P., Verma, N., Cowperthwaite, M.C., and Markey, M.K. (2014). Effects of genetic variation on the dynamics of neurodegeneration in Alzheimer’s disease. 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE. Piscataway, New Jersey, USA. 2464–2467.10.1109/EMBC.2014.6944121Search in Google Scholar PubMed

Ratzinger, F., Haslacher, H., Poeppl, W., Hoermann, G., Kovarik, J.J., Jutz, S., Steinberger, P., Burgmann, H., Pickl, W.F., and Schmetterer, K.G. (2015). Azithromycin suppresses CD4+ T-cell activation by direct modulation of mTOR activity. Sci. Rep. 4, 7438.10.1038/srep07438Search in Google Scholar PubMed PubMed Central

Reigstad, C.S., Salmonson, C.E., Rainey, J.F., Szurszewski, J.H., Linden, D.R., Sonnenburg, J.L., Farrugia, G., and Kashyap, P.C. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403.10.1096/fj.14-259598Search in Google Scholar PubMed PubMed Central

Rivière, A., Selak, M., Lantin, D., Leroy, F., and De Vuyst, L. (2016). Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979.10.3389/fmicb.2016.00979Search in Google Scholar PubMed PubMed Central

Rogers, G.B., Keating, D.J., Young, R.L., Wong, M.-L., Licinio, J., and Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry 21, 738–748.10.1038/mp.2016.50Search in Google Scholar PubMed PubMed Central

Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12.10.1016/j.cell.2016.11.018Search in Google Scholar PubMed PubMed Central

Sasmita, A.O. (2018). Current viral-mediated gene transfer research for treatment of Alzheimer’s disease. Biotechnol. Genet. Eng. Rev. 1–20. [Epub ahead of print].10.1080/02648725.2018.1523521Search in Google Scholar

Sasmita, A.O., Methi, A., and Kislai, P. (2018). Emerging links between herpes viruses and Alzheimer’s disease pathology. J. Mol. Genet. Med. 12, 388.Search in Google Scholar

Savignac, H.M., Corona, G., Mills, H., Chen, L., Spencer, J.P.E., Tzortzis, G., and Burnet, P.W.J. (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem. Int. 63, 756–764.10.1016/j.neuint.2013.10.006Search in Google Scholar PubMed

Scheer, S., Medina, T.S., Murison, A., Taves, M.D., Antignano, F., Chenery, A., Soma, K.K., Perona-Wright, G., Lupien, M., Arrowsmith, C.H., et al. (2017). Early-life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation. J. Leukoc. Biol. 101, 893–900.10.1189/jlb.3MA0716-334RRSearch in Google Scholar PubMed

Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.-H., Hung, S.-T., Hendricks, E., Linares, G.R., Wang, Y., Son, E.Y., et al. (2018). Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24, 313–325.10.1038/nm.4490Search in Google Scholar PubMed

Siddiqui, M.F., Rast, S., Lynn, M.J., Auchus, A.P., and Pfeiffer, R.F. (2002). Autonomic dysfunction in Parkinson’s disease: a comprehensive symptom survey. Parkinsonism Relat. Disord. 8, 277–284.10.1016/S1353-8020(01)00052-9Search in Google Scholar PubMed

Šimić, G., Babić Leko, M., Wray, S., Harrington, C., Delalle, I., Jovanov-Milošević, N., Bažadona, D., Buée, L., de Silva, R., Di Giovanni, G., et al. (2016). Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6, 6.10.3390/biom6010006Search in Google Scholar PubMed PubMed Central

Skene, N.G., and Grant, S.G.N. (2016). Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 10, 16.10.3389/fnins.2016.00016Search in Google Scholar PubMed PubMed Central

Stoker, T.B., Torsney, K.M., and Barker, R.A. (2018). Pathological mechanisms and clinical aspects of GBA1 mutation-associated Parkinson’s disease. Park. Dis. Pathog. Clin. Asp. Chapter 3 (Brisbane (AU): Codon Publications).10.15586/codonpublications.parkinsonsdisease.2018.ch3Search in Google Scholar PubMed

Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., Jousson, O., Leoncini, S., Renzi, D., Calabrò, A., et al. (2017). New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5, 24.10.1186/s40168-017-0242-1Search in Google Scholar PubMed PubMed Central

Surwase, S.N., and Jadhav, J.P. (2011). Bioconversion of l-tyrosine to l-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids 41, 495–506.10.1007/s00726-010-0768-zSearch in Google Scholar PubMed

Tan, E.K., Srivastava, A.K., Arnold, W.D., Singh, M.P., and Zhang, Y. (2015). Neurodegeneration: etiologies and new therapies. Biomed. Res. Int. 2015, 1–2.10.1155/2015/272630Search in Google Scholar PubMed PubMed Central

Tankou, S.K., Regev, K., Healy, B.C., Cox, L.M., Tjon, E., Kivisakk, P., Vanande, I.P., Cook, S., Gandhi, R., Glanz, B., et al. (2018a). Investigation of probiotics in multiple sclerosis. Mult. Scler. J. 24, 58–63.10.1177/1352458517737390Search in Google Scholar PubMed

Tankou, S.K., Regev, K., Healy, B.C., Tjon, E., Laghi, L., Cox, L.M., Kivisäkk, P., Pierre, I.V., Hrishikesh, L., Gandhi, R., et al. (2018b). A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann. Neurol. 83, 1147–1161.10.1002/ana.25244Search in Google Scholar PubMed PubMed Central

Theunis, C., Crespo-Biel, N., Gafner, V., Pihlgren, M., López-Deber, M.P., Reis, P., Hickman, D.T., Adolfsson, O., Chuard, N., Ndao, D.M., et al. (2013). Efficacy and safety of liposome-based vaccine against protein Tau, assessed in Tau.P301L mice that model tauopathy. PLoS One 8, e72301.10.1371/journal.pone.0072301Search in Google Scholar PubMed PubMed Central

Van Cauwenberghe, C., Van Broeckhoven, C., and Sleegers, K. (2016). The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18, 421–430.10.1038/gim.2015.117Search in Google Scholar PubMed PubMed Central

Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537.10.1038/s41598-017-13601-ySearch in Google Scholar PubMed PubMed Central

Wildsmith, K.R., Holley, M., Savage, J.C., Skerrett, R., and Landreth, G.E. (2013). Evidence for impaired amyloid β clearance in Alzheimer’s disease. Alzheimers. Res. Ther. 5, 33.10.1186/alzrt187Search in Google Scholar PubMed PubMed Central

Wing, A.C., and Kremenchutzky, M. (2018). Fecal microbial transplantation in multiple sclerosis: trial design. Neurology 90, P2.356.Search in Google Scholar

Wu, S., Yi, J., Zhang, Y., Zhou, J., and Sun, J. (2015). Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep. 3, e12356.10.14814/phy2.12356Search in Google Scholar PubMed PubMed Central

Wu, J., Zhang, Y., Yang, H., Rao, Y., Miao, J., and Lu, X. (2016). Intestinal microbiota as an alternative therapeutic target for epilepsy. Can. J. Infect. Dis. Med. Microbiol. 2016, 1–6.10.1155/2016/9032809Search in Google Scholar PubMed PubMed Central

Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276.10.1016/j.cell.2015.02.047Search in Google Scholar PubMed PubMed Central

Zhang, J., Ke, K.-F., Liu, Z., Qiu, Y.-H., and Peng, Y.-P. (2013). Th17 cell-mediated neuroinflammation is involved in neurodegeneration of Aβ1-42-induced Alzheimer’s disease model rats. PLoS One 8, e75786.10.1371/journal.pone.0075786Search in Google Scholar PubMed PubMed Central

Zhang, Y., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., and Sun, J. (2017). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Ther. 39, 322–336.10.1016/j.clinthera.2016.12.014Search in Google Scholar PubMed PubMed Central

Zhao, Y., and Lukiw, W.J. (2013). TREM2 signaling, miRNA-34a and the extinction of phagocytosis. Front. Cell. Neurosci. 7, 131.10.3389/fncel.2013.00131Search in Google Scholar PubMed PubMed Central

Zhao, Y., and Lukiw, W.J. (2015). Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J. Nat. Sci. 1, e138.Search in Google Scholar PubMed

Zhu, D., Xiao, S., Yu, J., Ai, Q., He, Y., Cheng, C., Zhang, Y., and Pan, Y. (2017). Effects of one-week empirical antibiotic therapy on the early development of gut microbiota and metabolites in preterm infants. Sci. Rep. 7, 8025.10.1038/s41598-017-08530-9Search in Google Scholar PubMed PubMed Central

Received: 2019-01-09
Accepted: 2019-02-16
Published Online: 2019-05-16
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.2.2023 from
Scroll Up Arrow