Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 12, 2019

Treatment-resistant schizophrenia: focus on the transsulfuration pathway

Thomas Berry , Eid Abohamza and Ahmed A. Moustafa EMAIL logo

Abstract

Treatment-resistant schizophrenia (TRS) is a severe form of schizophrenia. The severity of illness is positively related to homocysteine levels, with high homocysteine levels due to the low activity of the transsulfuration pathway, which metabolizes homocysteine in synthesizing L-cysteine. Glutathione levels are low in schizophrenia, which indicates shortages of L-cysteine and low activity of the transsulfuration pathway. Hydrogen sulfide (H2S) levels are low in schizophrenia. H2S is synthesized by cystathionine β-synthase and cystathionine γ-lyase, which are the two enzymes in the transsulfuration pathway. Iron-sulfur proteins obtain sulfur from L-cysteine. The oxidative phosphorylation (OXPHOS) pathway has various iron-sulfur proteins. With low levels of L-cysteine, iron-sulfur cluster formation will be dysregulated leading to deficits in OXPHOS in schizophrenia. Molybdenum cofactor (MoCo) synthesis requires sulfur, which is obtained from L-cysteine. With low levels of MoCo synthesis, molybdenum-dependent sulfite oxidase (SUOX) will not be synthesized at appropriate levels. SUOX detoxifies sulfite from sulfur-containing amino acids. If sulfites are not detoxified, there can be sulfite toxicity. The transsulfuration pathway metabolizes selenomethionine, whereby selenium from selenomethionine can be used for selenoprotein synthesis. The low activity of the transsulfuration pathway decreases selenoprotein synthesis. Glutathione peroxidase (GPX), with various GPXs being selenoprotein, is low in schizophrenia. The dysregulations of selenoproteins would lead to oxidant stress, which would increase the methylation of genes and histones leading to epigenetic changes in TRS. An add-on treatment to mainline antipsychotics is proposed for TRS that targets the dysregulations of the transsulfuration pathway and the dysregulations of other pathways stemming from the transsulfuration pathway being dysregulated.

References

Ali, A., Waly, M., Al-Farsi, Y.M., Essa, M.M., Al-Sharbati, M.M., and Deth, R.C. (2011). Hyperhomocysteinemia among Omani autistic children: a case-control study. Acta Biochim. Pol. 58, 547–551.10.18388/abp.2011_2223Search in Google Scholar

Altaany, Z., Yang, G., and Wang, R. (2013). Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J. Cell. Mol. Med. 17, 879–888.10.1111/jcmm.12077Search in Google Scholar PubMed PubMed Central

Anderson, S.A., Nizzi, C.P., Chang, Y.I., Deck, K.M., Schmidt, P.J., Galy, B., Damnernsawad, A., Broman, A.T., Kendziorski, C., Hentze, M.W., et al. (2013). The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17, 282–290.10.1016/j.cmet.2013.01.007Search in Google Scholar PubMed PubMed Central

Baker, D.H. (2006). Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136, 1670S–1675S.10.1093/jn/136.6.1670SSearch in Google Scholar PubMed

Ben-Shachar, D. (2017). Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr. Res. 187, 3–10.10.1016/j.schres.2016.10.022Search in Google Scholar PubMed

Bergman, O. and Ben-Shachar, D. (2016). Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can. J. Psychiatry 61, 457–469.10.1177/0706743716648290Search in Google Scholar PubMed PubMed Central

Bochtler, M., Kolano, A., and Xu, G.L. (2017). DNA demethylation pathways: additional players and regulators. Bioessays 39, 1–13.10.1002/bies.201600178Search in Google Scholar PubMed

Bouaziz, N., Ayedi, I., Sidhom, O., Kallel, A., Rafrafi, R., Jomaa, R., Melki, W., Feki, M., Kaabechi, N., and El Hechmi, Z. (2010). Plasma homocysteine in schizophrenia: determinants and clinical correlations in Tunisian patients free from antipsychotics. Psychiatry Res. 179, 24–29.10.1016/j.psychres.2010.04.008Search in Google Scholar PubMed

Bridges, R.J., Natale, N.R., and Patel, S.A. (2012). System xc cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 165, 20–34.10.1111/j.1476-5381.2011.01480.xSearch in Google Scholar PubMed PubMed Central

Brigelius-Flohé, R. and Maiorino, M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303.10.1016/j.bbagen.2012.11.020Search in Google Scholar PubMed

Bubber, P., Hartounian, V., Gibson, G.E., and Blass, J.P. (2011). Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur. Neuropsychopharmacol. 21, 254–260.10.1016/j.euroneuro.2010.10.007Search in Google Scholar PubMed PubMed Central

Buckley, P.F. and Stahl, S.M. (2007). Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or cul-de-sac? Acta Psychiatr. Scand. 115, 93–100.10.1111/j.1600-0447.2007.00992.xSearch in Google Scholar PubMed

Burk, R.F. and Hill, K.E. (2015). Regulation of selenium metabolism and transport. Annu. Rev. Nutr. 35, 109–134.10.1146/annurev-nutr-071714-034250Search in Google Scholar PubMed

Cai, L., Chen, T., Yang, J., Zhou, K., Yan, X., Chen, W., Sun, L., Li, L., Qin, S., and Wang, P. (2015). Serum trace element differences between schizophrenia patients and controls in the Han Chinese population. Sci. Rep. 5, 15013.10.1038/srep15013Search in Google Scholar PubMed PubMed Central

Cao, B., Yan, L., Ma, J., Jin, M., Park, C., Nozari, Y., Kazmierczak, O.P., Zuckerman, H., Lee, Y., Pan, Z., et al. (2019). Comparison of serum essential trace metals between patients with schizophrenia and healthy controls. J. Trace Elem. Med. Biol. 51, 79–85.10.1016/j.jtemb.2018.10.009Search in Google Scholar PubMed

Cardoso, B.R., Roberts, B.R., Bush, A.I., and Hare, D.J. (2015). Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7, 1213–1228.10.1039/C5MT00075KSearch in Google Scholar

Cavelier, L., Jazin, E.E., Eriksson, I., Prince, J., Båve, U., Oreland, L., and Gyllensten, U. (1995). Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 29, 217–224.10.1006/geno.1995.1234Search in Google Scholar PubMed

Chen, O.S., Schalinske, K.L., and Eisenstein, R.S. (1997). Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver. J. Nutr. 127, 238–248.10.1093/jn/127.2.238Search in Google Scholar PubMed

Claerhout, H., Witters, P., Régal, L., Jansen, K., Van Hoestenberghe, M.R., Breckpot, J., and Vermeersch, P. (2018). Isolated sulfite oxidase deficiency. J. Inherit. Metab. Dis. 41, 101–108.10.1007/s10545-017-0089-4Search in Google Scholar PubMed

Clay, H.B., Sillivan, S., and Konradi, C. (2011). Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int. J. Dev. Neurosci. 29, 311–324.10.1016/j.ijdevneu.2010.08.007Search in Google Scholar PubMed PubMed Central

Cousins, R.J. (1983). Metallothionein – aspects related to copper and zinc metabolism. J. Inherit. Metab. Dis. 6, 15–21.10.1007/BF01811318Search in Google Scholar

Cunningham, O., Gore, M.G., and Mantle, T.J. (2000). Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXβ reductase (BVR-B). Biochem. J. 345, 393–399.10.1042/bj3450393Search in Google Scholar

Dietrich-Muszalska, A. and Kwiatkowska, A. (2014). Generation of superoxide anion radicals and platelet glutathione peroxidase activity in patients with schizophrenia. Neuropsychiatr. Dis. Treat. 10, 703–709.10.2147/NDT.S60034Search in Google Scholar

Do, K.Q., Trabesinger, A.H., Kirsten-Krüger, M., Lauer, C.J., Dydak, U., Hell, D., Holsboer, F., Boesiger, P., and Cuénod, M. (2000). Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 12, 3721–3728.10.1046/j.1460-9568.2000.00229.xSearch in Google Scholar

Dupuy, J., Volbeda, A., Carpentier, P., Darnault, C., Moulis, J.M., and Fontecilla-Camps, J.C. (2006). Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 14, 129–139.10.1016/j.str.2005.09.009Search in Google Scholar

Elovson, J. and Vagelos, P.R. (1968). Acyl carrier protein. X. Acyl carrier protein synthetase. J. Biol. Chem. 243, 3603–3611.10.1016/S0021-9258(19)34183-3Search in Google Scholar

Eren, E., Yeğin, A., Yilmaz, N., and Herken, H. (2010). Serum total homocysteine, folate and vitamin B12 levels and their correlation with antipsychotic drug doses in adult male patients with chronic schizophrenia. Clin. Lab. 56, 513–518.Search in Google Scholar

Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., et al. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13, 397–406.10.1074/mcp.M113.035600Search in Google Scholar PubMed PubMed Central

Farina, N., Jernerén, F., Turner, C., Hart, K., and Tabet, N. (2017). Homocysteine concentrations in the cognitive progression of Alzheimer’s disease. Exp. Gerontol. 99, 146–150.10.1016/j.exger.2017.10.008Search in Google Scholar PubMed

Frazer, D.M. and Anderson, G.J. (2014). The regulation of iron transport. Biofactors 40, 206–214.10.1002/biof.1148Search in Google Scholar PubMed

Gnandt, E., Dörner, K., Strampraad, M.F.J., de Vries, S., and Friedrich, T. (2016). The multitude of iron-sulfur clusters in respiratory complex I. Biochim. Biophys. Acta 1857, 1068–1072.10.1016/j.bbabio.2016.02.018Search in Google Scholar PubMed

González, S., Huerta, J.M., Alvarez-Uría, J., Fernández, S., Patterson, A.M., and Lasheras, C. (2004). Serum selenium is associated with plasma homocysteine concentrations in elderly humans. J. Nutr. 134, 1736–1740.10.1093/jn/134.7.1736Search in Google Scholar

Grey, V., Mohammed, S.R., Smountas, A.A., Bahlool, R., and Lands, L.C. (2003). Improved glutathione status in young adult patients with cystic fibrosis supplemented with whey protein. J. Cyst. Fibros. 2, 195–198.10.1016/S1569-1993(03)00097-3Search in Google Scholar

Gubert, C., Stertz, L., Pfaffenseller, B., Panizzutti, B.S., Rezin, G.T., Massuda, R., Streck, E.L., Gama, C.S., Kapczinski, F., and Kunz, M. (2013). Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J. Psychiatr Res. 47, 1396–1402.10.1016/j.jpsychires.2013.06.018Search in Google Scholar PubMed

Haidemenos, A., Kontis, D., Gazi, A., Kallai, E., Allin, M., and Lucia, B. (2007). Plasma homocysteine, folate and B12 in chronic schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1289–1296.10.1016/j.pnpbp.2007.05.011Search in Google Scholar PubMed

Haile, D.J., Rouault, T.A., Tang, C.K., Chin, J., Harford, J.B., and Klausner, R.D. (1992). Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc. Natl. Acad. Sci. U. S. A. 89, 7536–7540.10.1073/pnas.89.16.7536Search in Google Scholar PubMed PubMed Central

Han, D., Handelman, G., Marcocci, L., Sen, C.K., Roy, S., Kobuchi, H., Tritschler, H.J., Flohé, L., and Packer, L. (1997). Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6, 321–338.10.1002/biof.5520060303Search in Google Scholar PubMed

Hoppel, C.L. (1982). Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis. Fed. Proc. 41, 2853–2857.Search in Google Scholar

Huntington Study Group Pre2CARE Investigators, Hyson, H.C., Kieburtz, K., Shoulson, I., McDermott, M., Ravina, B., de Blieck, E.A., Cudkowicz, M.E., Ferrante, R.J., and Como, P. (2010). Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov. Disord. 25, 1924–8.10.1002/mds.22408Search in Google Scholar PubMed

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (Washington, DC: National Academies Press (US)).Search in Google Scholar

Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (Washington, DC: National Academies Press (US)).Search in Google Scholar

Institute of Medicine (US) Panel on Micronutrients. (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (Washington, DC: National Academies Press (US)).Search in Google Scholar

Jabłońska, E. and Reszka, E. (2017). Selenium and epigenetics in cancer: focus on DNA methylation. Adv. Cancer Res. 136, 193–234.10.1016/bs.acr.2017.07.002Search in Google Scholar PubMed

Jayakumar, P.N., Gangadhar, B.N., Venkatasubramanian, G., Desai, S., Velayudhan, L., Subbakrishna, D., and Keshavan, M.S. (2010). High energy phosphate abnormalities normalize after antipsychotic treatment in schizophrenia: a longitudinal 31P MRS study of basal ganglia. Psychiatry Res. 181, 237–240.10.1016/j.pscychresns.2009.10.010Search in Google Scholar PubMed

Jiang, R., Hua, C., Wan, Y., Jiang, B., Hu, H., Zheng, J., Fuqua, B.K., Dunaief, J.L., Anderson, G.J., and David, S. (2015). Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain. J. Nutr. 145, 1003–1009.10.3945/jn.114.207316Search in Google Scholar PubMed

Jiang, B., Liu, G., Zheng, J., Chen, M., Maimaitiming, Z., Chen, M., Liu, S., Jiang, R., Fuqua, B.K., and Dunaief, J.L. (2016). Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Sci. Rep. 6, 39470.10.1038/srep39470Search in Google Scholar

Johnson, M.K., Morningstar, J.E., Bennett, D.E., Ackrell, B.A., and Kearney, E.B. (1985). Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme. J. Biol. Chem. 260, 7368–7378.10.1016/S0021-9258(17)39618-7Search in Google Scholar

Kale, A., Naphade, N., Sapkale, S., Kamaraju, M., Pillai, A., Joshi, S., and Mahadik, S. (2010). Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res. 30, 47–53.10.1016/j.psychres.2009.01.013Search in Google Scholar PubMed

Kennedy, J.L., Altar, C.A., Taylor, D.L., Degtiar, I., and Hornberger, J.C. (2014). The social and economic burden of treatment-resistant schizophrenia: a systematic literature review. Int. Clin. Psychopharmacol. 29, 63–76.10.1097/YIC.0b013e32836508e6Search in Google Scholar PubMed

Kimura, H. (2011). Hydrogen sulfide: its production and functions. Exp. Physiol. 96, 833–835.10.1113/expphysiol.2011.057455Search in Google Scholar PubMed

Klausner, R.D. and Rouault, T.A. (1993). A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol. Biol. Cell 4, 1–5.10.1091/mbc.4.1.1Search in Google Scholar PubMed PubMed Central

Koegel, P., Burnam, M.A., and Farr, R.K. (1988). The prevalence of specific psychiatric disorders among homeless individuals in the inner city of Los Angeles. Arch. Gen. Psychiatry 45, 1085–1092.10.1001/archpsyc.1988.01800360033005Search in Google Scholar PubMed

Lall, M.M., Ferrell, J., Nagar, S., Fleisher, L.N., and McGahan, M.C. (2008). Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase. Invest. Ophthalmol. Vis. Sci. 249, 310–319.10.1167/iovs.07-1041Search in Google Scholar PubMed

Laukka, T., Mariani, C.J., Ihantola, T., Cao, J.Z., Hokkanen, J., Kaelin, W.G. Jr., Godley, L.A., and Koivunen, P. (2016). Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 256–265.10.1074/jbc.M115.688762Search in Google Scholar PubMed PubMed Central

Leonardi, R. and Jackowski, S. (2007). Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus 2. doi: 10.1128/ecosalplus.3.6.3.4.Search in Google Scholar PubMed PubMed Central

Levine, J., Stahl, Z., Sela, B.A., Gavendo, S., Ruderman, V., and Belmaker, R.H. (2002). Elevated homocysteine levels in young male patients with schizophrenia. Am. J. Psychiatry 159, 1790–1792.10.1176/appi.ajp.159.10.1790Search in Google Scholar

Li, K., Tong, W.H., Hughes, R.M., and Rouault, T.A. (2006). Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J. Biol. Chem. 281, 12344–12351.10.1074/jbc.M600582200Search in Google Scholar

Li, J.J., Li, Q., Du, H.P., Wang, Y.L., You, S.J., Wang, F., Xu, X.S., Cheng, J., Cao, Y.J., Liu, C.F., et al. (2015). Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. Int. J. Mol. Sci. 16, 12560–12577.10.3390/ijms160612560Search in Google Scholar

Licking, N., Murchison, C., Cholerton, B., Zabetian, C.P., Hu, S.C., Montine, T.J., Peterson-Hiller, A.L., Chung, K.A., Edwards, K., Leverenz, J.B., et al. (2017). Homocysteine and cognitive function in Parkinson’s disease. Parkinsonism Relat. Disord. 44, 1–5.10.1016/j.parkreldis.2017.08.005Search in Google Scholar

Lin, C.H., Lin, P.P., Lin, C.Y., Lin, C.H., Huang, C.H., Huang, Y.J., and Lane, H.Y. (2016). Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J. Psychiatr. Res. 72, 58–63.10.1016/j.jpsychires.2015.10.007Search in Google Scholar

Lindstedt, G. and Lindstedt, S. (1970). Cofactor requirements of γ-butyrobetaine hydroxylase from rat liver. J. Biol. Chem. 245, 4178–4186.10.1016/S0021-9258(18)62901-1Search in Google Scholar

Liu, Y., Tao, H., Yang, X., Huang, K., Zhang, X., and Li, C. (2019). Decreased serum oxytocin and increased homocysteine in first-episode schizophrenia patients. Front. Psychiatry 10, 217.10.3389/fpsyt.2019.00217Search in Google Scholar

Lu, S.C. (2013). Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153.10.1016/j.bbagen.2012.09.008Search in Google Scholar

Malla, A.K., Norman, R.M., Williamson, P., Cortese, L., and Diaz, F. (1993). Three syndrome concept of schizophrenia. A factor analytic study. Schizophr. Res. 10, 143–150.10.1016/0920-9964(93)90049-OSearch in Google Scholar

Marelja, Z., Stöcklein, W., Nimtz, M., and Leimkühler, S. (2008). A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J. Biol. Chem. 283, 25178–25185.10.1074/jbc.M804064200Search in Google Scholar PubMed

Marelja, Z., Mullick Chowdhury, M., Dosche, C., Hille, C., Baumann, O., Löhmannsröben, H.G., and Leimkühler, S. (2013). The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS One 8, e60869.10.1371/journal.pone.0060869Search in Google Scholar

Marshall, J.R., Burk, R.F., Payne Ondracek, R., Hill, K.E., Perloff, M., and Davis, W., Pili, R., George, S., and Bergan, R. (2017). Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics in selenium-replete men. Oncotarget 8, 26312–26322.10.18632/oncotarget.15460Search in Google Scholar

Massie, A., Boillée, S., Hewett, S., Knackstedt, L., and Lewerenz, J. (2015). Main path and byways: non-vesicular glutamate release by system xc as an important modifier of glutamatergic neurotransmission. Neurochemistry 135, 1062–1079.10.1111/jnc.13348Search in Google Scholar

Matsuzawa, D., Obata, T., Shirayama, Y., Nonaka, H., Kanazawa, Y., Yoshitome, E., Takanashi, J., Matsuda, T., Shimizu, E., Ikehira, H., et al. (2008). Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One 3, e1944.10.1371/journal.pone.0001944Search in Google Scholar

Maurer, I., Zierz, S., and Möller, H. (2001). Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr. Res. 48, 125–136.10.1016/S0920-9964(00)00075-XSearch in Google Scholar

McGahan, M.C., Harned, J., Mukunnemkeril, M., Goralska, M., Fleisher, L., and Ferrell, J.B. (2005). Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am. J. Physiol. Cell. Physiol. 288, C1117–C1124.10.1152/ajpcell.00444.2004Search in Google Scholar PubMed

McKinley, M.C. (2000). Nutritional aspects and possible pathological mechanisms of hyperhomocysteinaemia: an independent risk factor for vascular disease. Proc. Nutr. Soc. 59, 221–237.10.1017/S0029665100000252Search in Google Scholar PubMed

Medina, D., Thompson, H., Ganther, H., and Ip, C. (2001).Se-methylselenocysteine: a new compound for chemoprevention of breast cancer. Nutr. Cancer 40, 12–17.10.4324/9781410608000-4Search in Google Scholar

Meltzer, H.Y. (1997). Treatment-resistant schizophrenia – the role of clozapine. Curr. Med. Res. Opin. 14, 1–20.10.1159/000319812Search in Google Scholar

Mendel, R.R. (2013). The molybdenum cofactor. J. Biol. Chem. 288, 3165–3172.10.1074/jbc.R113.455311Search in Google Scholar PubMed PubMed Central

Michel, T.M., Sheldrick, A.J., Camara, S., Grünblatt, E., Schneider, F., and Riederer, P. (2011). Alteration of the pro-oxidant xanthine oxidase (XO) in the thalamus and occipital cortex of patients with schizophrenia. World J. Biol. Psychiatry. 12, 588–597.10.3109/15622975.2010.526146Search in Google Scholar PubMed

Misiak, B., Frydecka, D., Slezak, R., Piotrowski, P., and Kiejna, A. (2014). Elevated homocysteine level in first-episode schizophrenia patients – the relevance of family history of schizophrenia and lifetime diagnosis of cannabis abuse. Metab. Brain Dis. 29, 661–670.10.1007/s11011-014-9534-3Search in Google Scholar PubMed PubMed Central

Möller, H.J. and Czobor, P. (2015). Pharmacological treatment of negative symptoms in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 265, 567–578.10.1007/s00406-015-0596-ySearch in Google Scholar PubMed

Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2014). Homocysteine levels in schizophrenia and affective disorders – focus on cognition. Front. Behav. Neurosci. 8, 343.10.3389/fnbeh.2015.00081Search in Google Scholar PubMed PubMed Central

Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2015). Homocysteine levels in neurological disorders. Diet and Exercise in Cognitive Function and Neurological Diseases. T. Farooqui and A. Farooqui, eds. (Hoboken, NJ, USA: Wiley-Blackwell).10.1002/9781118840634.ch7Search in Google Scholar

Muntjewerff, J.W., Kahn, R.S., Blom, H.J., and den Heijer, M. (2006). Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol. Psychiatry 11, 143–149.10.1038/sj.mp.4001746Search in Google Scholar PubMed

Narayan, S.K., Verman, A., Kattimani, S., Ananthanarayanan, P.H., and Adithan, C. (2014). Plasma homocysteine levels in depression and schizophrenia in South Indian Tamilian population. Ind. J. Psychiatry 56, 46–53.10.4103/0019-5545.124746Search in Google Scholar PubMed PubMed Central

Niu, Y., DesMarais, T.L., Tong, Z., Yao, Y., and Costa, M. (2015). Oxidative stress alters global histone modification and DNA methylation. Free Radic. Biol. Med. 82, 22–28.10.1016/j.freeradbiomed.2015.01.028Search in Google Scholar PubMed PubMed Central

Nucifora, L.G., Tanaka, T., Hayes, L.N., Kim, M., Lee, B.J., Matsuda, T., Nucifora, F.C. Jr., Sedlak, T., Mojtabai, R., Eaton, W., et al. (2017). Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl. Psychiatry 7, e1215.10.1038/tp.2017.178Search in Google Scholar PubMed PubMed Central

Numata, S., Kinoshita, M., Tajima, A., Nishi, A., Imoto, I., and Ohmori, T. (2015). Evaluation of an association between plasma total homocysteine and schizophrenia by a Mendelian randomization analysis. BMC Med. Genet. 16, 54.10.1186/s12881-015-0197-7Search in Google Scholar PubMed PubMed Central

O’Donnell, C.P., Allott, K.A., Murphy, B.P., Yuen, H.P., Proffitt, T.M., Papas, A., Moral, J., Pham, T., O’Regan, M.K., Phassouliotis, C., et al. (2016). Adjunctive taurine in first-episode psychosis: a phase 2, double-blind, randomized, placebo-controlled study. J. Clin. Psychiatry 77, e1610–e1617.10.4088/JCP.15m10185Search in Google Scholar PubMed

Ohnishi, T., Ohnishi, S.T., and Salerno, J.C. (2018). Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol. Chem. 399, 1249–1264.10.1515/hsz-2018-0164Search in Google Scholar PubMed

Olfson, M., Mechanic, D., Hansell, S., Boyer, C.A., and Walkup, J. (1999). Prediction of homelessness within three months of discharge among inpatients with schizophrenia. Psychiatr. Serv. 50, 667–673.10.1176/ps.50.5.667Search in Google Scholar PubMed

Oztürk, O.H., Küçükatay, V., Yönden, Z., Ağar, A., Bağci, H., and Delibaş, N. (2006). Expressions of N-methyl-D-aspartate receptors NR2A and NR2B subunit proteins in normal and sulfite-oxidase deficient rat’s hippocampus: effect of exogenous sulfite ingestion. Arch. Toxicol. 80, 671–679.10.1007/s00204-006-0125-xSearch in Google Scholar PubMed

Parmeggiani, B., Moura, A.P., Grings, M., Bumbel, A.P., de Moura Alvorcem, L., Tauana Pletsch, J., Fernandes, C.G., Wyse, A.T.S., Wajner, M., and Leipnitz, G. (2015). In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex. Int. J. Dev. Neurosci. 42, 68–75.10.1016/j.ijdevneu.2015.03.005Search in Google Scholar PubMed

Pasiakos, S.M., McLellan, T.M., and Lieberman, H.R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med. 45, 111–131.10.1007/s40279-014-0242-2Search in Google Scholar PubMed

Paul, B.D. and Snyder, S.H. (2017). Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 149, 101–109.10.1016/j.bcp.2017.11.019Search in Google Scholar PubMed PubMed Central

Petronijević, N.D., Radonjić, N.V., Ivković, M.D., Marinković, D., Piperski, V.D., Duricić, B.M., and Paunović, V.R. (2008). Plasma homocysteine levels in young male patients in the exacerbation and remission phase of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1921–1926.10.1016/j.pnpbp.2008.09.009Search in Google Scholar PubMed

Pillai, R., Uyehara-Lock, J.H., and Bellinger, F.P. (2014). Selenium and selenoprotein function in brain disorders. IUBMB Life 66, 229–239.10.1002/iub.1262Search in Google Scholar PubMed

Prabakaran, S., Swatton, J.E., Ryan, M.M., Huffaker, S.J., Huang, J.T., Griffin, J.L., Wayland, M., Freeman, T., Dudbridge, F., Lilley, K.S., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 9, 684–697, 643.10.1038/sj.mp.4001511Search in Google Scholar PubMed

Raffa, M., Mechri, A., Othman, L.B., Fendri, C., Gaha, L., and Kerkeni, A. (2009). Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1178–1183.10.1016/j.pnpbp.2009.06.018Search in Google Scholar

Raffa, M., Atig, F., Mhalla, A., Kerkeni, A., and Mechri, A. (2011). Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 11, 124.10.1186/1471-244X-11-124Search in Google Scholar

Raghuvanshi, R., Chandra, M., Misra, P.C., and Misra, M.K. (2005). Effect of vitamin E on the platelet xanthine oxidase and lipid peroxidation in the patients of myocardial infarction. Ind. J. Clin. Biochem. 20, 26–29.10.1007/BF02893037Search in Google Scholar

Rasmussen, K.D. and Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750.10.1101/gad.276568.115Search in Google Scholar

Reddy, R., Keshavan, M., and Yao, J.K. (2003). Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr. Res. 62, 205–212.10.1016/S0920-9964(02)00407-3Search in Google Scholar

Romero, M.J., Platt, D.H., Caldwell, R.B., and Caldwell, R.W. (2006). Therapeutic use of citrulline in cardiovascular disease. Cardiovasc. Drug Rev. 24, 275–290.10.1111/j.1527-3466.2006.00275.xSearch in Google Scholar

Rooseboom, M., Vermeulen, N.P., Groot, E.J., and Commandeur, J.N. (2002). Tissue distribution of cytosolic β-elimination reactions of selenocysteine Se-conjugates in rat and human. Chem. Biol. Interact. 140, 243–264.10.1016/S0009-2797(02)00039-XSearch in Google Scholar

Ryan, M.G., Ratnam, K., and Hille, R. (1995). The molybdenum centers of xanthine oxidase and xanthine dehydrogenase. Determination of the spectral change associated with reduction from the Mo(VI) to the Mo(IV) state. J. Biol. Chem. 270, 19209–19212.10.1074/jbc.270.33.19209Search in Google Scholar PubMed

Salagre, E., Vizuete, A.F., Leite, M., Brownstein, D.J., McGuinness, A., Jacka, F., Dodd, S., Stubbs, B., Köhler, C.A., Vieta, E., et al. (2017). Homocysteine as a peripheral biomarker in bipolar disorder: a meta-analysis. Eur. Psychiatry 43, 81–91.10.1016/j.eurpsy.2017.02.482Search in Google Scholar PubMed

Samara, M.T., Dold, M., Gianatsi, M., Nikolakopoulou, A., Helfer, B., Salanti, G., and Leucht, S. (2016). Efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia: a network meta-analysis. JAMA Psychiatry 73, 199–210.10.1001/jamapsychiatry.2015.2955Search in Google Scholar PubMed

Santiago, P. (2012). Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci. World J. 2012, 846824.10.1100/2012/846824Search in Google Scholar PubMed PubMed Central

Saraste, M. (1999). Oxidative phosphorylation at the fin de siècle. Science. 283, 1488–1493.10.1126/science.283.5407.1488Search in Google Scholar PubMed

Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.10.1038/nature13595Search in Google Scholar PubMed PubMed Central

Shao, A. and Hathcock, J.N. (2008). Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul. Toxicol. Pharmacol. 50, 376–399.10.1016/j.yrtph.2008.01.004Search in Google Scholar PubMed

Shi, L., Du, J.B., Pu, D.F., Qi, J.G., and Tang, C.S. (2006). Regulation of endogenous cystathionine-γ-lyase gene expression in high pulmonary flow by nitric oxide precursor. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 22, 343–347.Search in Google Scholar

Soda, K., Oikawa, T., and Esaki, N. (1999). Vitamin B6 enzymes participating in selenium amino acid metabolism. Biofactors 10, 257–262.10.1002/biof.5520100225Search in Google Scholar PubMed

Souza, J.S., Kayo, M., Tassell, I., Martins, C.B., and Elkis, H. (2013). Efficacy of olanzapine in comparison with clozapine for treatment-resistant schizophrenia: evidence from a systematic review and meta-analyses. CNS Spectr. 18, 82–89.10.1017/S1092852912000806Search in Google Scholar PubMed

Speckmann, B. and Grune, T. (2015). Epigenetic effects of selenium and their implications for health. Epigenetics 10, 179–179.10.1080/15592294.2015.1013792Search in Google Scholar PubMed PubMed Central

Steinbrenner, H. and Sies, H. (2013). Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch. Biochem. Biophys. 536, 152–157.10.1016/j.abb.2013.02.021Search in Google Scholar PubMed

Sun, Q., Wang, B., Li, Y., Sun, F., Li, P., Xia, W., Zhou, X., Li, Q., Wang, X., Chen, J., et al. (2016). Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension 67, 541–954.10.1161/HYPERTENSIONAHA.115.06624Search in Google Scholar PubMed

Takano, N., Peng, Y.J., Kumar, G.K., Luo, W., Hu, H., Shimoda, L.A., Suematsu, M., Prabhakar, N.R., and Semenza, G.L. (2014). Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochem. J. 458, 203–211.10.1042/BJ20131350Search in Google Scholar PubMed PubMed Central

Tarhonskaya, H., Nowak, R.P., Johansson, C., Szykowska, A., Tumber, A., Hancock, R.L., Lang, P., Flashman, E., Oppermann, U., and Schofield, C.J. (2017). Studies on the interaction of the histone demethylase KDM5B with tricarboxylic acid cycle intermediates. J. Mol. Biol. 429, 2895–2906.10.1016/j.jmb.2017.08.007Search in Google Scholar

Thai, L., Carta, A., Clarke, W.R., Ferris, S.H., Friedland, R.P., Petersen, R.C., Pettegrew, J.W., Pfeiffer, E., Raskind, M.A., Sano, M., et al. (1996). A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer’s disease. Neurology 47, 705–711.10.1212/WNL.47.3.705Search in Google Scholar

Tsugawa, S., Noda, Y., Tarumi, R., Mimura, Y., Yoshida, K., Iwata, Y., Elsalhy, M., Kuromiya, M., Kurose, S., Masuda, F., et al. (2019). Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: a systematic review and meta-analysis. J. Psychopharmacol. 33, 1199–1214.10.1177/0269881119845820Search in Google Scholar

Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.10.1038/nature04433Search in Google Scholar

Uno, Y. and Coyle, J.T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73, 204–215.10.1111/pcn.12823Search in Google Scholar

Van Vranken, J.G., Jeong, M.Y., Wei, P., Chen, Y.C., Gygi, S.P., Winge, D., and Rutter, J. (2016). The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife 5, pii e17828.10.7554/eLife.17828.019Search in Google Scholar

Vaz, F.M., Ofman, R., Westinga, K., Back, J.W., and Wanders, R.J. (2001). Molecular and biochemical characterization of rat ε-N-trimethyllysine hydroxylase, the first enzyme of carnitine biosynthesis. J. Biol. Chem. 276, 33512–33517.10.1074/jbc.M105929200Search in Google Scholar

Volz, H.R., Riehemann, S., Maurer, I., Smesny, S., Sommer, M., Rzanny, R., Holstein, W., Czekalla, J., and Sauer, H. (2000). Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol. Psychiatry. 47, 954–961.10.1016/S0006-3223(00)00235-3Search in Google Scholar

Wang, X., Oberleas, D., Yang, M.T., and Yang, S.P. (1992). Molybdenum requirement of female rats. J. Nutr. 122, 1036–1041.10.1093/jn/122.4.1036Search in Google Scholar PubMed

Watmough, N.J. and Frerman, F.E. (2010). The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim. Biophys. Acta 1797, 1910–1916.10.1016/j.bbabio.2010.10.007Search in Google Scholar PubMed

Whillier, S., Raftos, J.E., Chapman, B., and Kuchel, P.W. (2009). Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 14, 115–124.10.1179/135100009X392539Search in Google Scholar

Whitby, F.G., Phillips, J.D., Hill, C.P., McCoubrey, W., and Maines, M.D. (2002). Crystal structure of a biliverdin IXα reductase enzyme-cofactor complex. J. Mol. Biol. 319, 199–210.10.1016/S0022-2836(02)00383-2Search in Google Scholar

Wolff, N.A., Garrick, M.D., Zhao, L., Garrick, L.M., Ghio, A., and Thévenod, F. (2018). A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci. Rep. 8, 211.10.1038/s41598-017-18584-4Search in Google Scholar

Xiong, J.W., Wei, B., Li, Y.K., Zhan, J.Q., Jiang, S.Z., Chen, H.B., Yan, K., Yu, B., and Yang, Y. (2018). Decreased plasma levels of gasotransmitter hydrogen sulfide in patients with schizophrenia: correlation with psychopathology and cognition. Psychopharmacology (Berl.) 235, 2267–2274.10.1007/s00213-018-4923-7Search in Google Scholar

Yamori, Y., Liu, L., Mori, M., Sagara, M., Murakami, S., Nara, Y., and Mizushima, S. (2009). Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv. Exp. Med. Biol. 643, 13–25.10.1007/978-0-387-75681-3_2Search in Google Scholar

Yamori, Y., Taguchi, T., Mori, H., and Mori, M. (2010). Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J. Biomed. Sci. 17, S21.10.1186/1423-0127-17-S1-S21Search in Google Scholar

Yanfei, W., Lin, S., Junbao, D., and Chaoshu, T. (2006). Impact of L-arginine on hydrogen sulfide/cystathionine-γ-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem. Biophys. Res. Commun. 345, 851–857.10.1016/j.bbrc.2006.04.162Search in Google Scholar

Yao, J.K., Reddy, R., and van Kammen, D.P. (1998). Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res. 80, 29–39.10.1016/S0165-1781(98)00051-1Search in Google Scholar

Yao, J.K., Dougherty, G.G. Jr., Reddy, R.D., Keshavan, M.S., Montrose, D.M., Matson, W.R., McEvoy, J., and Kaddurah-Daouk, R. (2010). Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with schizophrenia. PLoS One 5, e9508.10.1371/journal.pone.0009508Search in Google Scholar PubMed PubMed Central

Yusufi, B., Mukherjee, S., Flanagan, R., Paton, C., Dunn, G., Page, E., and Barnes, T.R. (2007). Prevalence and nature of side effects during clozapine maintenance treatment and the relationship with clozapine dose and plasma concentration. Int. Clin. Psychopharmacol. 22, 238–243.10.1097/YIC.0b013e32819f8f17Search in Google Scholar PubMed

Zhang, X., Vincent, A.S., Halliwell, B., and Wong, K.P. (2004). A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035–43045.10.1074/jbc.M402759200Search in Google Scholar PubMed

Zhang, C., Wang, R., Zhang, G., and Gong, D. (2016). Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol. 112, 405–412.10.1016/j.ijbiomac.2018.01.190Search in Google Scholar PubMed

Received: 2019-06-05
Accepted: 2019-07-19
Published Online: 2019-11-12
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/revneuro-2019-0057/html
Scroll Up Arrow