Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 21, 2019

A disease-modifying treatment for Alzheimer’s disease: focus on the trans-sulfuration pathway

  • Thomas Berry , Eid Abohamza and Ahmed A. Moustafa EMAIL logo

Abstract

High homocysteine levels in Alzheimer’s disease (AD) result from low activity of the trans-sulfuration pathway. Glutathione levels are also low in AD. L-cysteine is required for the synthesis of glutathione. The synthesis of coenzyme A (CoA) requires L-cysteine, which is synthesized via the trans-sulfuration pathway. CoA is required for the synthesis of acetylcholine and appropriate cholinergic neurotransmission. L-cysteine is required for the synthesis of molybdenum-containing proteins. Sulfite oxidase (SUOX), which is a molybdenum-containing protein, could be dysregulated in AD. SUOX detoxifies the sulfites. Glutaminergic neurotransmission could be dysregulated in AD due to low levels of SUOX and high levels of sulfites. L-cysteine provides sulfur for iron-sulfur clusters. Oxidative phosphorylation (OXPHOS) is heavily dependent on iron-sulfur proteins. The decrease in OXPHOS seen in AD could be due to dysregulations of the trans-sulfuration pathway. There is a decrease in aconitase 1 (ACO1) in AD. ACO1 is an iron-sulfur enzyme in the citric acid cycle that upon loss of an iron-sulfur cluster converts to iron regulatory protein 1 (IRP1). With the dysregulation of iron-sulfur cluster formation ACO1 will convert to IRP1 which will decrease the 2-oxglutarate synthesis dysregulating the citric acid cycle and also dysregulating iron metabolism. Selenomethionine is also metabolized by the trans-sulfuration pathway. With the low activity of the trans-sulfuration pathway in AD selenoproteins will be dysregulated in AD. Dysregulation of selenoproteins could lead to oxidant stress in AD. In this article, we propose a novel treatment for AD that addresses dysregulations resulting from low activity of the trans-sulfuration pathway and low L-cysteine.

References

Abdelazim, I.A., Abu-Faza, M., Shikanova, S., Zhurabekova, G., and Maghrabi, M.M. (2018). Heme-bound iron in treatment of pregnancy-associated iron deficiency anemia. J. Fam. Med. Prim. Care 7, 1434–1438.10.4103/jfmpc.jfmpc_271_18Search in Google Scholar PubMed PubMed Central

Achilli, C., Ciana, A., and Minetti, G. (2018). Brain, immune system and selenium: a starting point for a new diagnostic marker for Alzheimer’s disease? Perspect Public Health 138, 223–226.10.1177/1757913918778707Search in Google Scholar PubMed

Ahn, C.S. (2009). Effect of taurine supplementation on plasma homocysteine levels of the middle-aged Korean women. Adv. Exp. Med. Biol. 643, 415–422.10.1007/978-0-387-75681-3_43Search in Google Scholar PubMed

Akbaraly, T.N., Hininger-Favier, I., Carrière, I., Arnaud, J., Gourlet, V., Roussel, A.M., and Berr, C. (2007). Plasma selenium over time and cognitive decline in the elderly. Epidemiology 18, 52–58.10.1097/01.ede.0000248202.83695.4eSearch in Google Scholar PubMed

Ali, A., Waly, M., Al-Farsi, Y.M., Essa, M.M., Al-Sharbati, M.M., and Deth, R.C. (2011). Hyperhomocysteinemia among Omani autistic children: a case-control study. Acta Biochim. Pol. 58, 547–551.10.18388/abp.2011_2223Search in Google Scholar

Alzheimer’s Association. (2010). 2010 Alzheimer’s disease facts and figures. Alzheimers Dement. 6, 158–194.10.1016/j.jalz.2010.01.009Search in Google Scholar PubMed

Alzheimer’s Association (2016). 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 12, 459–509.10.1016/j.jalz.2016.03.001Search in Google Scholar PubMed

Anderson, S.A., Nizzi, C.P., Chang, Y.I., Deck, K.M., Schmidt, P.J., Galy, B., Damnernsawad, A., Broman, A.T., Kendziorski, C., Hentze, M.W., et al. (2013). The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17, 282–290.10.1016/j.cmet.2013.01.007Search in Google Scholar PubMed PubMed Central

Annerbo, S., Kivipelto, M., and Lokk, J. (2009). A prospective study on the development of Alzheimer’s disease with regard to thyroid-stimulating hormone and homocysteine. Dement. Geriatr. Cogn. Disord. 28, 275–280.10.1159/000242439Search in Google Scholar PubMed

Arimon, M., Takeda, S., Post, K.L., Svirsky, S., Hyman, B.T., and Berezovska, O. (2015). Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol. Dis. 84, 109–119.10.1016/j.nbd.2015.06.013Search in Google Scholar PubMed PubMed Central

Baker, D.H. (2006). Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136, 1670S–1675S.10.1093/jn/136.6.1670SSearch in Google Scholar PubMed

Barger, S.W., DeWall, K.M., Liu, L., Mrak, R.E., and Griffin, W.S. (2008). Relationships between expression of apolipoprotein E and beta-amyloid precursor protein are altered in proximity to Alzheimer beta-amyloid plaques: potential explanations from cell culture studies. J. Neuropathol. Exp. Neurol. 67, 773–783.10.1097/NEN.0b013e318180ec47Search in Google Scholar PubMed PubMed Central

Bermejo, P., Martín-Aragón, S., Benedí, J., Susín, C, Felici, E, Gil, P., Ribera, J.M., Villar, and A.M. (2008). Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from mild cognitive impairment. Free Radic. Res. 42, 162–170.10.1080/10715760701861373Search in Google Scholar PubMed

Berr, C., Arnaud, J., and Akbaraly, T.N. (2012). Selenium and cognitive impairment: a brief-review based on results from the EVA study. Biofactors 38, 139–144.10.1002/biof.1003Search in Google Scholar PubMed

Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., and Tanzi, R.E. (2007). Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 17–23.10.1038/ng1934Search in Google Scholar PubMed

Bianco, A.C. and Kim, BW. (2006). Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116, 2571–2591.10.1172/JCI29812Search in Google Scholar PubMed PubMed Central

Bochtler, M., Kolano, A., and Xu, G.L. (2017). DNA demethylation pathways: additional players and regulators. Bioessays 39, 1–13.10.1002/bies.201600178Search in Google Scholar PubMed

Bridges, R.J., Natale, N.R., and Patel, S.A. (2012). System xc− cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 165, 20–34.10.1111/j.1476-5381.2011.01480.xSearch in Google Scholar PubMed PubMed Central

Brigelius-Flohé, R. and Maiorino, M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303.10.1016/j.bbagen.2012.11.020Search in Google Scholar PubMed

Bubber, P., Haroutunian, V., Fisch, G., Blass, J.P., and Gibson, G.E. (2005). Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann. Neurol. 57, 695–703.10.1002/ana.20474Search in Google Scholar PubMed

Burk, R.F. and Hill, K.E. (2015). Regulation of selenium metabolism and transport. Annu. Rev. Nutr. 35, 109–134.10.1146/annurev-nutr-071714-034250Search in Google Scholar

Butler, J.D. and Zatz, M. (1984). Pantethine and cystamine deplete cystine from cystinotic fibroblasts via efflux of cysteamine-cysteine mixed disulfide. J. Clin. Invest. 74, 411–416.10.1172/JCI111436Search in Google Scholar

Butterfield, D.A. and Pocernich, C.B. (2003). The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 17, 641–652.10.2165/00023210-200317090-00004Search in Google Scholar

Calabrese, V., Sultana, R., Scapagnini, G., Guagliano, E., Sapienza, M., Bella, R., Kanski, J., Pennisi, G., Mancuso, C., Stella, A.M., et al. (2006). Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid. Redox. Signal 8, 1975–1986.10.1089/ars.2006.8.1975Search in Google Scholar

Cardoso, S.M., Proença, M.T., Santos, S., Santana, I., and Oliveira, C.R. (2004). Cytochrome coxidase is decreased in Alzheimer’s disease platelets. Neurobiol. Aging 25, 105–110.10.1016/S0197-4580(03)00033-2Search in Google Scholar

Cardoso, B.R., Ong, T.P., Jacob-Filho, W., Jaluul, O., Freitas, M., and Cozzolino, S.M. (2010). Nutritional status of selenium in Alzheimer’s disease patients. Br. J. Nutr. 103, 803–806.10.1017/S0007114509992832Search in Google Scholar PubMed

Castellano, C., Cestari, V., and Ciamei, A. (2001). NMDA receptors and learning and memory processes. Curr. Drug Targets 2, 273–283.10.2174/1389450013348515Search in Google Scholar PubMed

Chandrasekaran, K., Hatanpää, K., Brady, D.R., and Rapoport, S.I. (1996). Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease. Exp. Neurol. 142, 80–88.10.1006/exnr.1996.0180Search in Google Scholar PubMed

Cho, H.H., Cahill, C.M., Vanderburg, C.R., Scherzer, C.R., Wang, B., Huang, X., and Rogers, J.T. (2010). Selective translational control of the Alzheimer amyloid precursor proteintranscript by iron regulatory protein-1. J. Biol. Chem. 285, 31217.10.1074/jbc.M110.149161Search in Google Scholar PubMed PubMed Central

Chow, V.W., Mattson, M.P., Wong, P.C., and Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromol. Med. 12, 1–12.10.1007/s12017-009-8104-zSearch in Google Scholar PubMed PubMed Central

Clarke, R., Smith, A.D., Jobst, K.A., Refsum, H., Sutton, L., and Ueland, P.M. (1998). Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55, 1449–1455.10.1001/archneur.55.11.1449Search in Google Scholar PubMed

Cousins, R.J. (1983). Metallothionein-aspects related to copper and zinc metabolism. J. Inherit. Metab. Dis. 6, 15–21.10.1007/BF01811318Search in Google Scholar PubMed

Crespo, Â.C., Silva, B., Marques, L., Marcelino, E., Maruta, C., Costa, S., Timóteo, A., Vilares, A., Couto, F.S., Faustino, P., et al. (2014). Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol. Aging 35, 777–785.10.1016/j.neurobiolaging.2013.10.078Search in Google Scholar PubMed

Cummings, J.L., Morstorf, T., and Zhong, K. (2014). Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther. 6, 37.10.1186/alzrt269Search in Google Scholar PubMed PubMed Central

Cummings, J., Ritter, A., and Zhong, K. (2018). Clinical trials for disease-modifying therapies inAlzheimer’s disease: aprimer, lessons learned, and a blueprint for the future. J. Alzheimers Dis. 64, S3–S22.10.3233/JAD-179901Search in Google Scholar PubMed PubMed Central

Cunningham, O., Gore, M.G., and Mantle, T.J. (2000). Initial-rate kinetics of the flavin reductase reaction catalyzed by human biliverdin-IXbeta reductase (BVR-B). Biochem. J. 345, 393–399.10.1042/bj3450393Search in Google Scholar

Di Giacomo, C., Latteri, F., Fichera, C., Sorrenti, V., Campisi, A., Castorina, C., Russo, A., Pinturo, R., and Vanella, A. (1993). Effect of acetyl-L-carnitine on lipid peroxidation and xanthine oxidase activity in rat skeletal muscle. Neurochem. Res. 18, 1157–1162.10.1007/BF00978367Search in Google Scholar PubMed

Di Santo, S.G., Prinelli, F., Adorni, F., Caltagirone, C., and Musicco, M. (2013). A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer’s disease. J. Alzheimers Dis. 35, 349–361.10.3233/JAD-122140Search in Google Scholar PubMed

Doehner, W. and Landmesser, U. (2011). Xanthine oxidase and uric acid in cardiovasculardisease: clinical impact and therapeutic options. Semin. Nephrol. 31, 433–440.10.1016/j.semnephrol.2011.08.007Search in Google Scholar PubMed

Drugs and Lactation Database (LactMed) [Internet]. (2006). Marine Oils. National Library of Medicine (US) (Bethesda, MD).Search in Google Scholar

Du, X., Li, H., Wang, Z., Qiu, S., Liu, Q., and Ni, J. (2013). Selenoprotein P and uric acid levels and Alzheimer’s selenoprotein Mblock Zn2+ -mediated Aβ42 aggregation and toxicity. Metallomics 5, 861–870.10.1039/c3mt20282hSearch in Google Scholar PubMed

Du, X., Wang, C., and Liu, Q. (2016a). Potential roles of selenium and selenoproteins in the prevention of Alzheimer’s disease. Curr. Top. Med. Chem. 16, 835–848.10.2174/1568026615666150827094936Search in Google Scholar

Du, N., Xu, D., Hou, X., Song, X., Liu, C., Chen, Y., Wang, Y., and Li, X. (2016b). Inverse association between serum disease risk. Mol. Neurobiol. 53, 2594–2599.10.1007/s12035-015-9271-6Search in Google Scholar

Eto, K., Asada, T., Arima, K., Makifuchi, T., and Kimura, H. (2002). Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 293, 1485–1488.10.1016/S0006-291X(02)00422-9Search in Google Scholar

Farina, N., Jernerén, F., Turner, C., Hart, K., and Tabet, N. (2017). Homocysteine concentrations in the cognitive progression of Alzheimer’s disease. Exp. Gerontol. 99, 146–150.10.1016/j.exger.2017.10.008Search in Google Scholar PubMed

Ferreira-Vieira, T.H., Guimaraes, I.M., Silva, F.R., and Ribeiro, F.M. (2016). Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol. 14, 101–115.10.2174/1570159X13666150716165726Search in Google Scholar

Finley, E.B. and Cerklewski, F.L. (1983). Influence of ascorbic acid supplementation on copperstatus in young adult men. Am. J. Clin. Nutr. 37, 553–556.10.1093/ajcn/37.4.553Search in Google Scholar PubMed

Frazer, D.M. and Anderson, G.J. (2014). The regulation of iron transport. Biofactors 40, 206–214.10.1002/biof.1148Search in Google Scholar PubMed

Fujii, S. (2004). ATP- and adenosine-mediated signaling in the central nervous system: the role of extracellular ATP in hippocampal long-term potentiation. J. Pharmacol. Sci. 94, 103–106.10.1254/jphs.94.103Search in Google Scholar PubMed

Galimberti, D. and Scarpini, E. (2011). Disease-modifying treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord. 4, 203–216.10.1177/1756285611404470Search in Google Scholar PubMed PubMed Central

Gallucci, M., Zanardo, A., De Valentin, L., and Vianello, A. (2004). Homocysteine in Alzheimer disease and vascular dementia. Arch. Gerontol. Geriatr. Suppl. 9, 195–200.10.1016/j.archger.2004.04.027Search in Google Scholar PubMed

Gao, S., Jin, Y., Hall, K.S., Liang, C., Unverzagt, F.W., Ji, R., Murrell, J.R., Cao, J., Shen, J., Ma, F., et al. (2007). Selenium level and cognitive function in rural elderly Chinese. Am. J. Epidemiol. 165, 955–965.10.1093/aje/kwk073Search in Google Scholar

Giuliani, D., Ottani, A., Zaffe, D., Galantucci, M., Strinati, F., Lodi, R., and Guarini, S. (2013). Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol. Learn. Mem. 104, 82–91.10.1016/j.nlm.2013.05.006Search in Google Scholar

Gnandt, E., Dörner, K., Strampraad, M.F.J., de Vries, S., and Friedrich, T. (2016). The multitude of iron-sulfur clusters in respiratory complex I. Biochim. Biophys. Acta 1857, 1068–1072.10.1016/j.bbabio.2016.02.018Search in Google Scholar

González, S., Huerta, J.M., Alvarez-Uría, J., Fernández, S., Patterson, A.M., and Lasheras, C. (2004). Serum selenium is associated with plasma homocysteine concentrations in elderly humans. J. Nutr. 134, 1736–1740.10.1093/jn/134.7.1736Search in Google Scholar

Grey, V., Mohammed, S.R., Smountas, A.A., Bahlool, R., and Lands, L.C. (2003). Improved glutathione status in young adult patients with cystic fibrosis supplemented with whey protein. J. Cyst. Fibros. 2003 2, 195–198.10.1016/S1569-1993(03)00097-3Search in Google Scholar

Guerreiro, C., Silva, B., Crespo, Â.C., Marques, L., Costa, S., Timóteo, Â., Murrell, J.R., Cao, J., Shen, J., Ma, F., et al. (2015). Decrease in APP and CP mRNA expression supports impairment of iron export in Alzheimer’s disease patients. Biochim. Biophys. Acta 1852, 2116–2122.10.1016/j.bbadis.2015.07.017Search in Google Scholar PubMed

Gwon, A.R., Park, J.S., Arumugam, T.V., Kwon, Y.K., Chan, S.L., Kim, S.H., Baik, S.-H., Yang, S., Yun, Y.-K., Choi, Y, et al. (2012). Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer’s disease. Aging Cell 11, 559–568.10.1111/j.1474-9726.2012.00817.xSearch in Google Scholar PubMed PubMed Central

Haile, D.J., Rouault, T.A., Tang, C.K., Chin, J., Harford, J.B., and Klausner, R.D. (1992). Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Natl Acad. Sci. USA 89, 7536–7540.10.1073/pnas.89.16.7536Search in Google Scholar PubMed PubMed Central

Han, D., Handelman, G., Marcocci, L., Sen, C.K., Roy, S., Kobuchi, H., Tritschler, H.J., Flohé, L., Packer, and L. (1997). Lipoic acidincreases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6, 321–338.10.1002/biof.5520060303Search in Google Scholar PubMed

Horn, D. and Barrientos, A. (2008). Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 60, 421–429.10.1002/iub.50Search in Google Scholar PubMed PubMed Central

Hou, H. and Yu, H. (2010). Structural insights into histone lysine demethylation. Curr. Opin. Struct. Biol. 20, 739–748.10.1016/j.sbi.2010.09.006Search in Google Scholar

Huntington Study Group Pre2CARE Investigators, Hyson, H.C., Kieburtz, K., Shoulson, I., McDermott, M., Ravina, B., de Blieck, E.A., de Blieck, E.A., Cudkowicz, M.E., Ferrante, R.J., Como, P., et al. (2010). Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov. Disord. 25, 1924–1928.10.1002/mds.22408Search in Google Scholar

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. (Washington, DC: National Academies Press).Search in Google Scholar

Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. (Washington, DC: National Academies Press).Search in Google Scholar

Institute of Medicine (US) Panel on Micronutrients. (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. (Washington, DC: National Academies Press).Search in Google Scholar

Iqbal, K., Liu, F., Gong, C.X., and Grundke-Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 7, 656–664.10.2174/156720510793611592Search in Google Scholar

Iwata, S., Lee, J.W., Okada, K., Lee, J.K., Iwata, M., Rasmussen, B., Link, T.A., Ramaswamy, S., Jap, and B.K. (1998). Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64–71.10.1126/science.281.5373.64Search in Google Scholar

Jabłońska, E. and Reszka, E. (2017). Selenium and epigenetics in cancer: focus on DNA methylation. Adv. Cancer. Res. 136, 193–234.10.1016/bs.acr.2017.07.002Search in Google Scholar

Jeandel, C., Nicolas, M.B., Dubois, F., Nabet-Belleville, F., Penin, F., and Cuny, G. (1989). Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 35, 275–282.10.1159/000213037Search in Google Scholar

Jiang, R., Hua, C., Wan, Y., Jiang, B., Hu, H., Zheng, J., Fuqua, B.K., Dunaief, J.L., Anderson, G.J., David, S., et al. (2015). Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain. J. Nutr. 145, 1003–1009.10.3945/jn.114.207316Search in Google Scholar

Johnson, M.K., Morningstar, J.E., Bennett, D.E., Ackrell, B.A., and Kearney, E.B. (1985). Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme. J. Biol. Chem. 260, 7368–7378.10.1016/S0021-9258(17)39618-7Search in Google Scholar

Joosten, E., Lesaffre, E., Riezler, R., Ghekiere, V., Dereymaeker, L., Pelemans, W., and Dejaeger, E. (1997). Is metabolic evidence for vitamin B-12 and folate deficiency more frequent in elderly patients with Alzheimer’s disease? J. Gerontol. A. Biol. Sci. Med. Sci. 52, M76–M79.10.1093/gerona/52A.2.M76Search in Google Scholar

Jope, R.S. and Jenden, D.J. (1980). The utilization of choline and acetyl coenzyme A for the synthesis of acetylcholine. J. Neurochem. 35, 318–325.10.1111/j.1471-4159.1980.tb06267.xSearch in Google Scholar PubMed

Kamat, P.K., Kyles, P., Kalani, A., and Tyagi, N. (2016). Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood-brain barrier disruption, and synaptic disorder. Mol. Neurobiol. 53, 2451–2467.10.1007/s12035-015-9212-4Search in Google Scholar

Kappler, U. and Enemark, J.H. (2015). Sulfite-oxidizing enzymes. J. Biol. Inorg. Chem. 20, 253–264.10.1007/s00775-014-1197-3Search in Google Scholar

Karakas, E., Wilson, H.L., Graf, T.N., Xiang, S., Jaramillo-Busquets, S., Rajagopalan, K.V., and Kisker, C. (2005). Structural insights into sulfite oxidase deficiency. J, Biol. Chem. 280, 33506–33515.10.1074/jbc.M505035200Search in Google Scholar

Karimi, F., Borhani Haghighi, A., and Petramfar, P. (2011). Low levels of triiodothyronine in patients with Alzheimer’s disease. Iran J. Med. Sci. 36, 322–323.Search in Google Scholar

Kelley, E.E., Khoo, N.K., Hundley, N.J., Malik, U.Z., Freeman, B.A., and Tarpey, M.M. (2010). Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic. Biol. Med. 48, 493–498.10.1016/j.freeradbiomed.2009.11.012Search in Google Scholar

Kim, H.Y., LaVaute, T., Iwai, K., Klausner, R.D., and Rouault, T.A. (1996). Identification of a conserved and functional iron-responsive element in the 5′-untranslated region of mammalian mitochondrial aconitase. J. Biol. Chem. 271, 24226–24230.10.1074/jbc.271.39.24226Search in Google Scholar

Kim, S.H., Vlkolinsky, R., Cairns, N., Fountoulakis, M., and Lubec, G. (2001). The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer’s disease. Life Sci. 68, 2741–2750.10.1016/S0024-3205(01)01074-8Search in Google Scholar

Kimura, H. (2011). Hydrogen sulfide: its production and functions. Exp. Physiol. 96, 833–835.10.1113/expphysiol.2011.057455Search in Google Scholar

Kitzlerová, E., Fisar, Z., Jirák, R., Zvĕrová, M., Hroudová, J., Benaková, H., and Raboch, J. (2014). Plasma homocysteine in Alzheimer’s disease with or without co-morbid depressivesymptoms. Neuro. Endocrinol. Lett. 35, 42–49.Search in Google Scholar

Klausner, R.D. and Rouault, T.A. (1993). A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol. Biol. Cell 4, 1–5.10.1091/mbc.4.1.1Search in Google Scholar

Köhrle, J. (1999). Local activation and inactivation of thyroid hormones: the deiodinase family. Mol. Cell Endocrinol. 151, 103–119.10.1016/S0303-7207(99)00040-4Search in Google Scholar

Kumar, A. and Foster, T.C. (2019). Alteration in NMDA receptor mediated glutamatergic neurotransmission in the hippocampus during senescence. Neurochem. Res. 44, 38–48.10.1007/s11064-018-2634-4Search in Google Scholar PubMed PubMed Central

Kweon, O.J., Youn, Y.C., Lim, Y.K., Lee, M.K., and Kim, H.R. (2019). Clinical utility of serum hepcidin and iron profile measurements in Alzheimer’s disease. J. Neurol. Sci. 403, 85–91.10.1016/j.jns.2019.06.008Search in Google Scholar PubMed

Laukka, T., Mariani, C.J., Ihantola, T., Cao, J.Z., Hokkanen, J., Kaelin, W.G. Jr., Godley, L.A., and Koivunen, P. (2016). Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 256–265.10.1074/jbc.M115.688762Search in Google Scholar PubMed PubMed Central

Leonardi, R. and Jackowski, S. (2007). Biosynthesis of pantothenic acid and coenzyme A. Eco. Sal. Plus 2, 2.10.1128/ecosalplus.3.6.3.4Search in Google Scholar PubMed PubMed Central

Li, K., Tong, W.H., Hughes, R.M., and Rouault, T.A. (2006). Roles of the mammalian cytosoliccysteinedesulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J. Biol. Chem. 281, 12344–12351.10.1074/jbc.M600582200Search in Google Scholar PubMed

Liao, Y., Xie, B., Zhang, H., He, Q., Guo, L., Subramaniapillai, M., Fan, B., Lu, C., Mclntyer, and R.S. (2019). Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl. Psychiatr. 9, 190.10.1038/s41398-019-0515-5Search in Google Scholar PubMed PubMed Central

Licking, N., Murchison, C., Cholerton, B., Zabetian, C.P., Hu, S.C., Montine, T.J., Peterson-Hiller, A.L., Chung, K.A., Edwards, K., and Leverenz, J.B. (2017). Homocysteine and cognitive function in Parkinson’s disease. Parkinsonism Relat. Disord. 44, 1–5.10.1016/j.parkreldis.2017.08.005Search in Google Scholar PubMed PubMed Central

Lim, S.C., Tajika, M., Shimura, M., Carey, K.T., Stroud, D.A.,Murayama, K., Ohtake, A., and McKenzie, M. (2018). Loss of the mitochondrial fatty acid β-oxidation protein medium-chain acyl-coenzyme adehydrogenase disrupts oxidative phosphorylation protein complex stability and function. Sci. Rep. 8, 153.10.1038/s41598-017-18530-4Search in Google Scholar PubMed PubMed Central

Liu, X.B., Hill, P., and Haile, D.J. (2002). Role of the ferroportin iron-responsive element in ironandnitric oxide dependent gene regulation. Blood Cells Mol. Dis. 29, 315–326.10.1006/bcmd.2002.0572Search in Google Scholar PubMed

Liu, X.Q., Jiang, P., Huang, H., and Yan, Y. (2008). Plasma levels of endogenous hydrogen sulfide and homocysteine in patients with Alzheimer’s disease and vascular dementia and the significance thereof. Zhonghua Yi Xue Za Zhi 88, 2246–2249.Search in Google Scholar

Lu, S.C. (2013). Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153.10.1016/j.bbagen.2012.09.008Search in Google Scholar PubMed PubMed Central

Lunnon, K., Keohane, A., Pidsley, R., Newhouse, S., Riddoch-Contreras, J., Thubron, E.B., Devall, M., Soininen, H., Kłoszewska, I., Mecocci, P., et al. (2017). Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging 53, 36–47.10.1016/j.neurobiolaging.2016.12.029Search in Google Scholar PubMed

Lyketsos, C.G., Steinberg, M., Tschanz, J.T., Norton, M.C., Steffens, D.C., and Breitner, J.C. (2000). Mental and behavioral disturbances in dementia: findings from the Cache County Study on memory in aging. Am. J. Psychiatr. 157, 708–714.10.1176/appi.ajp.157.5.708Search in Google Scholar

Ma, F., Wu, T., Zhao, J., Ji, L., Song, A., Zhang, M., and Huang, G. (2017). Plasma homocysteine and serum folate and vitamin B12 levels in mild cognitive impairment and Alzheimer’s disease: a case-control study. Nutrients 9, E725.10.3390/nu9070725Search in Google Scholar

MacLeod, R.M., Farkas, W., Fridovich, I., and Handler, P. (1961). Purification and properties of hepatic sulfite oxidase. J. Biol. Chem. 236, 1841–1846.10.1016/S0021-9258(19)63313-2Search in Google Scholar

Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., and Mollace, V. (2016). Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 213, 8–14.10.1016/j.ijcard.2015.08.109Search in Google Scholar

Malenka, R.C. and Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5–21.10.1016/j.neuron.2004.09.012Search in Google Scholar

Manczak, M., Park, B.S., Jung, Y., and Reddy, P.H. (2004). Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med. 5, 147–162.10.1385/NMM:5:2:147Search in Google Scholar

Mandal, P.K., Saharan, S., Tripathi, M., and Murari, G. (2015). Brain glutathione levels--a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol. Psychiatr. 78, 702–710.10.1016/j.biopsych.2015.04.005Search in Google Scholar PubMed

Mangialasche, F., Baglioni, M., Cecchetti, R., Kivipelto, M., Ruggiero, C., Piobbico, D., Kussmaul, L., Monastero, R., Brancorsini, S., and Mecocci, P. (2015). Lymphocytic mitochondrial aconitase activity is reduced in Alzheimer’s disease and mild cognitive impairment. J. Alzheimers Dis. 44, 649–660.10.3233/JAD-142052Search in Google Scholar PubMed

Marelja, Z., Stöcklein, W., Nimtz, M., and Leimkühler, S. (2008). A novel role for human Nfs1 inthecytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J. Biol. Chem. 283, 25178–25185.10.1074/jbc.M804064200Search in Google Scholar PubMed

Marelja, Z., Mullick Chowdhury, M., Dosche, C., Hille, C., Baumann, O., Löhmannsröben, H.G., and Leimkühler, S. (2013). The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS One 8, e60869.10.1371/journal.pone.0060869Search in Google Scholar PubMed PubMed Central

Marshall, J.R., Burk, R.F., Payne Ondracek, R., Hill, K.E., Perloff, M., Davis, W., Pili, R., George, S., Bergan, and R. (2017). Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics inselenium-replete men. Oncotarget 8, 26312–26322.10.18632/oncotarget.15460Search in Google Scholar

Mastrogiacoma, F., Lindsay, J.G., Bettendorff, L., Rice, J., and Kish, S.J. (1996). Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. Ann. Neurol. 39, 592–598.10.1002/ana.410390508Search in Google Scholar

McCaddon, A., Davies, G., Hudson, P., Tandy, S., and Cattell, H. (1998). Total serumhomocysteineinsenile dementia of Alzheimer type. Int. J. Geriatr. Psychiatr. 13, 235–239.10.1002/(SICI)1099-1166(199804)13:4<235::AID-GPS761>3.0.CO;2-8Search in Google Scholar

McCaddon, A., Hudson, P., Davies, G., Hughes, A., Williams, J.H., and Wilkinson, C. (2001). Homocysteine and cognitive decline in healthy elderly. Dement. Geriatr. Cogn. Disord. 12, 309–313.10.1159/000051275Search in Google Scholar

McKinley, M.C. (2000). Nutritional aspects and possible pathological mechanisms of hyperhomocysteinaemia: an independent risk factor for vascular disease. Proc. Nutr. Soc. 59, 221–337.10.1017/S0029665100000252Search in Google Scholar

Medina, D., Thompson, H., Ganther, H., and Ip, C. (2001). Se-methylselenocysteine: a new compound for chemoprevention of breast cancer. Nutr. Cancer 40, 12–17.10.4324/9781410608000-4Search in Google Scholar

Mega, M.S., Cummings, J.L., Fiorello, T., and Gornbein, J. (1996). The spectrum of behavioral changes in Alzheimer’s disease. Neurology 46, 130–135.10.1212/WNL.46.1.130Search in Google Scholar

Mendel, R.R. (2015). The molybdenum cofactor. J. Biol. Chem. 288, 13165–13172.10.1074/jbc.R113.455311Search in Google Scholar

Mkrtchyan, G.V., Graf, A., Trofimova, L., Ksenofontov, A., Baratova, L., and Bunik, V. (2018). Positive correlation between rat brain glutamate concentrations and mitochondrial 2-oxoglutarate dehydrogenase activity. Anal. Biochem. 552, 100–109.10.1016/j.ab.2018.01.003Search in Google Scholar

Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2014). Homocysteinelevelsin schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci. 8, 343.10.3389/fnbeh.2014.00343Search in Google Scholar

Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2015). Homocysteine levels in neurological disorders. Diet and Exercise in Cognitive Function and Neurological Diseases. T. Farooqui and A. Farooqui, eds. (Hoboken, NJ, USA: Wiley-Blackwell).10.1002/9781118840634.ch7Search in Google Scholar

Newcomer, J.W., Farber, N.B., and Olney, J.W. (2000). NMDA receptor function, memory, and brain aging. Dialogues Clin. Neurosci. 2, 219–232.10.31887/DCNS.2000.2.3/jnewcomerSearch in Google Scholar

Niciu, M.J., Kelmendi, B., and Sanacora, G. (2012). Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav. 100, 656–664.10.1016/j.pbb.2011.08.008Search in Google Scholar

Niu, Y., DesMarais, T.L., Tong, Z., Yao, Y., and Costa, M. (2015). Oxidative stress alters global histone modification and DNA methylation. Free. Radic. Biol. Med. 82, 22–28.10.1016/j.freeradbiomed.2015.01.028Search in Google Scholar

Novoselov, S.V., Kim, H.Y., Hua, D., Lee, B.C., Astle, C.M., Harrison, D.E., Friguet, B., Moustafa, M.E., Carlson, B.A., Hatfield, D.L., et al. (2010). Regulation of selenoproteins and methionine sulfoxide reductases A and B1 by age, calorie restriction, and dietary selenium in mice. Antioxid. Redox. Signal. 12, 829–838.10.1089/ars.2009.2895Search in Google Scholar

Ojha, R., Singh, J., Ojha, A., Singh, H., Sharma, S., and Nepali, K. (2017). An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011–2015). Expert Opin. Ther. Pat. 27, 311–345.10.1080/13543776.2017.1261111Search in Google Scholar

Okuno, T., Ueno, H., and Nakamuro, K. (2006). Cystathionine gamma-lyase contributes toselenomethionine detoxification and cytosolic glutathione peroxidase biosynthesis inmouse liver. Biol. Trace Elem. Res. 109, 155–171.10.1385/BTER:109:2:155Search in Google Scholar

Oztürk, O.H., Küçükatay, V., Yönden, Z., Ağar, A., Bağci, H., and Delibaş, N. (2006). Expressions of N-methyl-D-aspartate receptors NR2A and NR2B subunit proteins in normal and sulfite-oxidase deficient rat’s hippocampus: effect of exogenous sulfite ingestion. Arch. Toxicol. 80, 671–679.10.1007/s00204-006-0125-xSearch in Google Scholar PubMed

Padurariu, M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W., and Stefanescu, C. (2010). Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 469, 6–10.10.1016/j.neulet.2009.11.033Search in Google Scholar PubMed

Pajonk, F.G., Kessler, H., Supprian, T., Hamzei, P., Bach, D., Schweickhardt, J., Herrmann, W., Obeid, R., Simons, A., Falkai, P., et al. (2005). Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate Alzheimer’s disease. J. Alzheimers Dis. 8, 23–27.10.3233/JAD-2005-8103Search in Google Scholar PubMed

Pantopoulos, K. and Hentze, M.W. (1995). Rapid responses to oxidative stress mediated by ironregulatory protein. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J. 14, 2917–2924.10.1002/j.1460-2075.1995.tb07291.xSearch in Google Scholar PubMed PubMed Central

Papadia, C., Osowska, S., Cynober, L., and Forbes, A. (2018). Citrulline in health and disease. Review on human studies. Clin. Nutr. 37, 1823–1828.10.1016/j.clnu.2017.10.009Search in Google Scholar PubMed

Parker, W.D. Jr., Filley, C.M., and Parks, J.K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40, 1302–1303.10.1212/WNL.40.8.1302Search in Google Scholar PubMed

Parmeggiani, B., Moura, A.P., Grings, M., Bumbel, A.P., de Moura Alvorcem, L., Tauana Pletsch, J., Fernandes, C.G., Wyse, A.T., Wajner, M., Leipnitz, G., et al. (2015). In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex. Int. J. Dev. Neurosci. 42, 68–75.10.1016/j.ijdevneu.2015.03.005Search in Google Scholar PubMed

Pasiakos, S.M., McLellan, T.M., and Lieberman, H.R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med. 45, 111–131.10.1007/s40279-014-0242-2Search in Google Scholar PubMed

Pourvali, K., Matak, P., Latunde-Dada, G.O., Solomou, S., Mastrogiannaki, M., Peyssonnaux, C., and Sharp, P.A. (2012). Basal expression of copper transporter 1 in intestinal epithelialcells is regulated by hypoxia-inducible factor 2α. FEBS Lett. 586, 2423–2427.10.1016/j.febslet.2012.05.058Search in Google Scholar PubMed

Quinlan, P., Horvath, A., Wallin, A., and Svensson, J. (2019). Low serum concentration of free triiodothyronine (FT3) is associated with increased risk of Alzheimer’s disease. Psychoneuroendocrinology 99, 112–119.10.1016/j.psyneuen.2018.09.002Search in Google Scholar PubMed

Raghuvanshi, R., Chandra, M., Misra, P.C., and Misra, M.K. (2005). Effect of vitamin E on the platelet xanthine oxidase and lipid peroxidation in the patients of myocardial infarction. Indian J. Clin. Biochem. 20, 26–29.10.1007/BF02893037Search in Google Scholar PubMed PubMed Central

Raha, A.A., Vaishnav, R.A., Friedland, R.P., Bomford, A., and Raha-Chowdhury, R. (2013). The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol. Commun. 1, 55.10.1186/2051-5960-1-55Search in Google Scholar PubMed PubMed Central

Rani, P., Krishnan, S., and Rani Cathrine, C. (2017). Study on analysis of peripheral biomarkers for Alzheimer’s disease diagnosis. Front. Neurol. 8, 328.10.3389/fneur.2017.00328Search in Google Scholar PubMed PubMed Central

Rasmussen, K.D. and Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750.10.1101/gad.276568.115Search in Google Scholar

Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L, Brunetti, N., Porcellini, E., and Licastro, F. (2005). Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am. J. Clin. Nutr. 82, 636–643.10.1093/ajcn/82.3.636Search in Google Scholar

Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav. Brain Res. 140, 1–47.10.1016/S0166-4328(02)00272-3Search in Google Scholar

Rinaldi, P., Polidori, M.C., Metastasio, A., Mariani, E., Mattioli, P., Cherubini, A., Catani, M., Cecchetti, R., Senin, U., Mecocci, P., et al. (2003). Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol. Aging 24, 915–919.10.1016/S0197-4580(03)00031-9Search in Google Scholar

Rogers, J.T., Randall, J.D., Cahill, C.M., Eder, P.S., Huang, X., Gunshin, H., Leiter, L., McPhee, J., Sarang, S.S., Utsuki, T., et al. (2002). An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J. Biol. Chem. 277, 45518–45528.10.1074/jbc.M207435200Search in Google Scholar

Rooseboom, M., Vermeulen, N.P., Groot, E.J., and Commandeur, J.N. (2002). Tissue distribution of cytosolic beta-elimination reactions of selenocysteine Se-conjugates in rat and human. Chem. Biol. Interact. 140, 243–264.10.1016/S0009-2797(02)00039-XSearch in Google Scholar

Rouault, T.A. (2006). The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406–414.10.1038/nchembio807Search in Google Scholar PubMed

Rueli, R.H., Torres, D.J., Dewing, A.S., Kiyohara, A.C., Barayuga, S.M., Bellinger, M.T., Uyehara-Lock, J.H., White, L.R., Moreira, P.I., Berry, M.J., et al. (2017). Selenoprotein S reduces endoplasmic reticulum stress-induced phosphorylation of Tau: potential role in selenate mitigation of Tau pathology. J. Alzheimers Dis. 55, 749–762.10.3233/JAD-151208Search in Google Scholar PubMed PubMed Central

Ryan, M.G., Ratnam, K., and Hille, R. (1995). The molybdenum centers of xanthine oxidase and xanthine dehydrogenase. Determination of the spectral change associated withreduction from the Mo(VI) to the Mo(IV) state. J. Biol. Chem. 270, 19209–19212.10.1074/jbc.270.33.19209Search in Google Scholar PubMed

Salagre, E., Vizuete, A.F., Leite, M., Brownstein, D.J., McGuinness, A., Jacka, F., Dodd, S., Stubbs, B., Köhler, C.A., Vieta, E., et al. (2017). Homocysteine as a peripheral biomarker in bipolar disorder: a meta-analysis. Eur. Psychiatr. 43, 81–91.10.1016/j.eurpsy.2017.02.482Search in Google Scholar PubMed

Sanchez, M., Galy, B., Schwanhaeusser, B., Blake, J., Bähr-Ivacevic, T., Benes, V., Benes, V., Selbach, M., Muckenthaler, M.U., and Hentze, M.W. (2011). Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood 118, e168–e179.10.1182/blood-2011-04-343541Search in Google Scholar PubMed

Schirinzi, T., Di Lazzaro, G., Colona, V.L., Imbriani, P., Alwardat, M., Sancesario, G.M., Martorana, A., Pisani, and A. (2017). Assessment of serum uric acid as risk factor for tauopathies. J. Neural. Transm. (Vienna) 124, 1105–1108.10.1007/s00702-017-1743-6Search in Google Scholar PubMed

Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D’Agostino, R.B., Wilson, P.W., and Wolf, P.A. (2002). Plasmahomocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346, 476–483.10.1056/NEJMoa011613Search in Google Scholar PubMed

Shah, Y.M., Matsubara, T., Ito, S., Yim, S.H., and Gonzalez, F.J. (2009). Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9, 152–164.10.1016/j.cmet.2008.12.012Search in Google Scholar PubMed PubMed Central

Shao, A. and Hathcock, J.N. (2008). Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul. Toxicol. Pharmacol. 50, 376–399.10.1016/j.yrtph.2008.01.004Search in Google Scholar PubMed

Sharma, L.K., Lu, J., and Bai, Y. (2009). Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr. Med. Chem. 16, 1266–1277.10.2174/092986709787846578Search in Google Scholar PubMed PubMed Central

Shi, L., Du, J.B., Pu, D.F., Qi, J.G., and Tang, C.S. (2006). Regulation of endogenous cystathionine- gamma-lyase gene expression in high pulmonary flow by nitric oxide precursor. Zhongguo Ying Yong Sheng Li Xue Za Zhi 22, 343–347.Search in Google Scholar

Snaedal, J., Kristinsson, J., Gunnarsdóttir, S., Olafsdóttir Baldvinsson, M., and Jóhannesson, T. (1998). Copper ceruloplasmin and superoxide dismutase in patients with Alzheimer’s disease: a case-control study. Dement. Geriatr. Cogn. Disord. 9, 239–242.10.1159/000017067Search in Google Scholar PubMed

Soda, K., Oikawa, T., and Esaki, N. (1999). Vitamin B6 enzymes participating in selenium aminoacid metabolism. Biofactors 10, 257–262.10.1002/biof.5520100225Search in Google Scholar PubMed

Speckmann, B. and Grune, T. (2015). Epigenetic effects of selenium and their implications for health. Epigenetics 10, 179–189.10.1080/15592294.2015.1013792Search in Google Scholar PubMed PubMed Central

Sun, Q., Wang, B., Li, Y., Sun, F., Li, P., Xia, W., Zhou, X., Li, Q., Wang, X., Chen, J., Zeng, X., et al. (2016). Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension 67, 541–549.10.1161/HYPERTENSIONAHA.115.06624Search in Google Scholar PubMed

Suzuki, K., Iwata, A., and Iwatsubo, T. (2017). The past, present, and future of disease-modifying therapies for Alzheimer’s disease. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 93, 757–771.10.2183/pjab.93.048Search in Google Scholar PubMed PubMed Central

Szutowicz, A., Bielarczyk, H., Jankowska-Kulawy, A., Pawełczyk, T., and Ronowska, A. (2013). Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem. Res. 38, 1523–1542.10.1007/s11064-013-1060-xSearch in Google Scholar PubMed PubMed Central

Szutowicz, A., Bielarczyk, H., Ronowska, A., Gul-Hinc, S., Klimaszewska-Łata, J., Dyś, A., Zyśk, M., and Pawełczyk, T. (2014). Intracellular redistribution of acetyl-CoA, the pivotal point in differential susceptibility of cholinergic neurons and glial cells to neurodegenerative signals. Biochem. Soc. Trans. 42, 1101–1106.10.1042/BST20140078Search in Google Scholar PubMed

Takano, N., Peng, Y.J., Kumar, G.K., Luo, W., Hu, H., Shimoda, L.A., Suematsu, M., Prabhakar, N.R., Semenza, and G.L. (2014). Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochem. J. 458, 203–211.10.1042/BJ20131350Search in Google Scholar PubMed PubMed Central

Tamagno, E., Guglielmotto, M., Monteleone, D., and Tabaton, M. (2012). Amyloid-β production: major link between oxidative stress and BACE1. Neurotox. Res. 22, 208–219.10.1007/s12640-011-9283-6Search in Google Scholar PubMed

Tarhonskaya, H., Nowak, R.P., Johansson, C., Szykowska, A., Tumber, A., Hancock, R.L., Lang, P., Flashman, E., Oppermann, U., Schofield, C.J., et al. (2017). Studies on the interaction of the histone demethylase KDM5B with tricarboxylic acid cycle intermediates. J. Mol. Biol. 429, 2895–2906.10.1016/j.jmb.2017.08.007Search in Google Scholar PubMed PubMed Central

Taylor, M., Qu, A., Anderson, E.R., Matsubara, T., Martin, A., Gonzalez, F.J., and Shah, Y.M. (2011). Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140, 2044–2055.10.1053/j.gastro.2011.03.007Search in Google Scholar PubMed PubMed Central

Thomas, D.R., Hailwood, R., Harris, B., Williams, P.A., Scanlon, M.F., and John, R. (1987). Thyroid status in senile dementia of the Alzheimer type (SDAT). Acta Psychiatr. Scand. 76, 158–163.10.1111/j.1600-0447.1987.tb02879.xSearch in Google Scholar PubMed

Tong, W.H. and Rouault, T.A. (2006). Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab. 3, 199–210.10.1016/j.cmet.2006.02.003Search in Google Scholar PubMed

Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.10.1038/nature04433Search in Google Scholar PubMed

Tung, Y., Hsu, W.M., Wang, B.J., Wu, S.Y., Yen, C.T., Hu, M.K., and Liao, Y.F. (2008). Sodium selenite inhibits gamma-secretase activity through activation of ERK. Neurosci. Lett. 440, 38–43.10.1016/j.neulet.2008.05.048Search in Google Scholar PubMed

van Eersel, J., Ke, Y.D., Liu, X., Delerue, F., Kril, J.J., Götz, J., and Ittner, L.M. (2010). Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl Acad. Sci. USA 107, 13888–13893.10.1073/pnas.1009038107Search in Google Scholar PubMed PubMed Central

Vural, H., Demirin, H., Kara, Y., Eren, I., and Delibas, N. (2010). Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. J. Trace Elem. Med. Biol. 24, 169–173.10.1016/j.jtemb.2010.02.002Search in Google Scholar PubMed

Walsh, D.M. and Teplow, D.B. (2012). Alzheimer’s disease and the amyloid β-protein. Prog. Mol. Biol. Transl. Sci. 107, 101–124.10.1016/B978-0-12-385883-2.00012-6Search in Google Scholar PubMed

Wang, J. and Pantopoulos, K. (2011). Regulation of cellular iron metabolism. Biochem. J. 434, 365–381.10.1042/BJ20101825Search in Google Scholar PubMed PubMed Central

Wang, X., Oberleas, D., Yang, M.T., and Yang, S.P. (1992). Molybdenum requirement of female rats. J. Nutr. 122, 1036–1041.10.1093/jn/122.4.1036Search in Google Scholar PubMed

Wang, Y., Mohsen, A.W., Mihalik, S.J., Goetzman, E.S., and Vockley, J. (2010). Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. J. Biol. Chem. 285, 29834–29841.10.1074/jbc.M110.139493Search in Google Scholar PubMed PubMed Central

Ward, D.M. and Kaplan, J. (2012). Ferroportin-mediated iron transport: expression and regulation. Biochim. Biophys. Acta 1823, 1426–1433.10.1016/j.bbamcr.2012.03.004Search in Google Scholar PubMed PubMed Central

Watmough, N.J. and Frerman, F.E. (2010). The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim. Biophys. Acta 1797, 1910–1916.10.1016/j.bbabio.2010.10.007Search in Google Scholar PubMed

Weuve, J., Hebert, L.E., Scherr, P.A., and Evans, D.A. (2014). Deaths in the United States among persons with Alzheimer’s disease (2010-2050). Alzheimers Dement. 10, e40–e46.10.1016/j.jalz.2014.01.004Search in Google Scholar PubMed PubMed Central

Whillier, S., Raftos, J.E., Chapman, B., and Kuchel, P.W. (2009). Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 14, 115–124.10.1179/135100009X392539Search in Google Scholar

Whitby, F.G., Phillips, J.D., Hill, C.P., McCoubrey, W., and Maines, M.D. (2002). Crystal structure of a biliverdin IX alpha reductase enzyme-cofactor complex. J. Mol. Biol. 319, 199–210.10.1016/S0022-2836(02)00383-2Search in Google Scholar

Willumsen, N., Vaagenes, H., Lie, O., Rustan, A.C, and Berge, R.K. (1999). Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids 34, 951–963.10.1007/s11745-999-0445-xSearch in Google Scholar PubMed

Wolff, N.A., Garrick, M.D., Zhao, L., Garrick, L.M., Ghio, A., and Thévenod, F. (2018). A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci. Rep. 8, 211.10.1038/s41598-017-18584-4Search in Google Scholar PubMed PubMed Central

Wong, B.X., Tsatsanis, A., Lim, L.Q., Adlard, P.A., Bush, A.I., and Duce, J.A. (2014). β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 9, e114174.10.1371/journal.pone.0114174Search in Google Scholar PubMed PubMed Central

Xie, L. and Collins, J.F. (2011). Transcriptional regulation of the Menkes copper ATPase (Atp7a) gene by hypoxia-inducible factor (HIF2{alpha}) in intestinal epithelial cells. Am. J. Physiol. Cell. Physiol. 300, C1298–C1305.10.1152/ajpcell.00023.2011Search in Google Scholar PubMed PubMed Central

Xie, Y., Tan, Y., Zheng, Y., Du, X., and Liu, Q. (2017). Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer’s disease mice. J. Biol. Inorg. Chem. 22, 851–865.10.1007/s00775-017-1463-2Search in Google Scholar PubMed

Xie, Y., Liu, Q., Zheng, L., Wang, B., Qu, X., Ni, J., Zhang, Y., and Du, X. (2018). Se-Methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice. Mol. Nutr. Food Res. 62, e1800107.10.1002/mnfr.201800107Search in Google Scholar PubMed

Xu, J., Church, S.J., Patassini, S., Begley, P., Waldvogel, H.J., Curtis, M.A., Faull, R.L.M., Unwin, R.D., and Cooper, G.J.S. (2017). Evidence for widespread, severe brain copper deficiency in Alzheimer’s dementia. Metallomics 9, 1106–1119.10.1039/C7MT00074JSearch in Google Scholar PubMed

Xuan, A., Long, D., Li, J., Ji, W., Zhang, M., Hong, L., and Liu, J. (2012). Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in β-amyloid rat model of Alzheimer’s disease. J. Neuroinflamm. 9, 202.10.1186/1742-2094-9-202Search in Google Scholar PubMed PubMed Central

Yamori, Y., Liu, L., Mori, M., Sagara, M., Murakami, S., Nara, Y., and Mizushima, S. (2009). Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv. Exp. Med. Biol. 643, 13–25.10.1007/978-0-387-75681-3_2Search in Google Scholar PubMed

Yamori, Y., Taguchi, T., Mori, H., and Mori, M. (2010). Low cardiovascular risks in the middleaged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J. Biomed. Sci. 17, S21.10.1186/1423-0127-17-S1-S21Search in Google Scholar PubMed PubMed Central

Yanfei, W., Lin, S., Junbao, D., and Chaoshu, T. (2006). Impact of L-arginine on hydrogensulfide/cystathionine-gamma-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem. Biophys. Res. Commun. 345, 851–857.10.1016/j.bbrc.2006.04.162Search in Google Scholar PubMed

Zhang, X., Vincent, A.S., Halliwell, B., and Wong, K.P. (2004). A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035–43045.10.1074/jbc.M402759200Search in Google Scholar PubMed

Zhang, C., Wang, R., Zhang, G., and Gong, D. (2016). Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol. 112, 405–412.10.1016/j.ijbiomac.2018.01.190Search in Google Scholar PubMed

Zhao, Q.F., Tan, L., Wang, H.F., Jiang, T., Tan, M.S., Tan, L., Xu, W., Li, J.Q., Wang, J., Lai, T.J., et al. (2016). The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J. Affect. Disord. 190, 264–271.10.1016/j.jad.2015.09.069Search in Google Scholar PubMed

Zylberstein, D.E., Lissner, L., Björkelund, C., Mehlig, K., Thelle, D.S., Gustafson, D., Ostling, S., Waern, M., Guo, X., and Skoog, I. (2011). Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiol. Aging 32, 380–386.10.1016/j.neurobiolaging.2009.02.024Search in Google Scholar PubMed

Received: 2019-08-09
Accepted: 2019-08-31
Published Online: 2019-11-21
Published in Print: 2020-04-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0076/html
Scroll to top button