Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 1, 2021

Endocannabinoid system in trauma and psychosis: distant guardian of mental stability

  • Tomasz Bielawski EMAIL logo , Lucas Albrechet-Souza and Dorota Frydecka


Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.

Corresponding author: Tomasz Bielawski, Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland; and Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA, E-mail: .

  1. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Aas, M., Pizzagalli, D.A., Laskemoen, J.F., Reponen, E.J., Ueland, T., Melle, I., and Andreassen, O.A. (2019). Elevated hair cortisol is associated with childhood maltreatment and cognitive impairment in schizophrenia and in bipolar disorders. Schizophr. Res. 213: 65–71, in Google Scholar PubMed

Addington, J., Cornblatt, B.A., Cadenhead, K.S., Cannon, T.D., McGlashan, T.H., Perkins, D.O., and Heinssen, R. (2011). At clinical high risk for psychosis: outcome for nonconverters. Am. J. Psychiatry 168: 800–805, in Google Scholar PubMed PubMed Central

Adriano, F., Caltagirone, C., and Spalletta, G. (2012). Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist 18: 180–200, in Google Scholar PubMed

Allan, S.M., Hodgekins, J., Beazley, P., and Oduola, S. (2020). Pathways to care in at‐risk mental states: a systematic review. Early Interv. Psychiatry, in Google Scholar PubMed

Althwanay, A., AlZamil, N.A., Almukhadhib, O.Y., Alkhunaizi, S., and Althwanay, R. (2020). Risks and protective factors of the prodromal stage of psychosis: a literature review. Cureus 12.10.7759/cureus.8639Search in Google Scholar PubMed PubMed Central

Appiah-Kusi, E., Wilson, R., Colizzi, M., Foglia, E., Klamerus, E., Caldwell, A., and Bhattacharyya, S. (2019). Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychol. Med. 1–10.10.1017/S0033291719001946Search in Google Scholar PubMed

Arseneault, L., Cannon, M., Witton, J., and Murray, R.M. (2004). Causal association between cannabis and psychosis: examination of the evidence. Br. J. Psychiatry 184: 110–117, in Google Scholar PubMed

Augustin, S.M. and Lovinger, D.M. (2018). Functional relevance of endocannabinoid-dependent synaptic plasticity in the central nervous system. ACS Chem. Neurosci. 9: 2146–2161, in Google Scholar PubMed PubMed Central

Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C.M., and Mondelli, V. (2016). Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21: 642–649, in Google Scholar PubMed PubMed Central

Beyer, C.E., Dwyer, J.M., Piesla, M.J., Platt, B.J., Shen, R., Rahman, Z., and Bingham, B. (2010). Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol. Dis. 39: 148–155, in Google Scholar PubMed

Bioque, M., Cabrera, B., García-Bueno, B., Mac-Dowell, K.S., Torrent, C., Saiz, P.A., and Bernardo, M. (2016). Dysregulated peripheral endocannabinoid system signaling is associated with cognitive deficits in first-episode psychosis. J. Psychiatr. Res. 75: 14–21, in Google Scholar PubMed

Bioque, M., García-Bueno, B., MacDowell, K.S., Meseguer, A., Saiz, P.A., Parellada, M., and Bernardo, M. (2013). Peripheral endocannabinoid system dysregulation in first-episode psychosis. Neuropsychopharmacology 38: 2568–2577, in Google Scholar PubMed PubMed Central

Bloomfield, M.A., Morgan, C.J., Egerton, A., Kapur, S., Curran, H.V., and Howes, O.D. (2014). Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol. Psychiatry 75: 470–478, in Google Scholar PubMed

Borgan, F., Laurikainen, H., Veronese, M., Marques, T.R., Haaparanta-Solin, M., Solin, O., and Di Forti, M. (2019). In vivo availability of cannabinoid 1 receptor levels in patients with first-episode psychosis. JAMA Psychiatry 76: 1074–1084, in Google Scholar PubMed PubMed Central

Breitborde, N.J., Srihari, V.H., and Woods, S.W. (2009). Review of the operational definition for first‐episode psychosis. Early Interv. Psychiatry 3: 259–265, in Google Scholar PubMed PubMed Central

Brewin, C.R., Cloitre, M., Hyland, P., Shevlin, M., Maercker, A., Bryant, R.A., and Somasundaram, D. (2017). A review of current evidence regarding the ICD-11 proposals for diagnosing PTSD and complex PTSD. Clin. Psychol. Rev. 58: 1–15, in Google Scholar PubMed

Cameron, C., Watson, D., and Robinson, J. (2014). Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder–related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. J. Clin. Psychopharmacol. 34: 559, in Google Scholar

Carr, V., Halpin, S., Lau, N., O’Brien, S., Beckmann, J., and Lewin, T. (2000). A risk factor screening and assessment protocol for schizophrenia and related psychosis. Aust. N. Z. J. Psychiatry 34: 170–180, in Google Scholar PubMed

Ceccarini, J., De Hert, M., Van Winkel, R., Peuskens, J., Bormans, G., Kranaster, L., and Van Laere, K. (2013). Increased ventral striatal CB1 receptor binding is related to negative symptoms in drug-free patients with schizophrenia. Neuroimage 79: 304–312, in Google Scholar PubMed

Cerqueira, J.J., Almeida, O.F., and Sousa, N. (2008). The stressed prefrontal cortex. Left? Right! Brain. Behav. Immun. 22: 630–638, in Google Scholar PubMed

Chiang, K.P., Gerber, A.L., Sipe, J.C., and Cravatt, B.F. (2004). Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. Hum. Mol. Genet. 13: 2113–2119, in Google Scholar

Choukèr, A., Kaufmann, I., Kreth, S., Hauer, D., Feuerecker, M., Thieme, D., and Schelling, G. (2010). Motion sickness, stress and the endocannabinoid system. PLoS One 5, in Google Scholar

Cota, D. (2007). CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes Metab. Res. Rev. 23: 507–517, in Google Scholar

Cullen, A.E., Zunszain, P.A., Dickson, H., Roberts, R.E., Fisher, H.L., Pariante, C.M., and Laurens, K.R. (2014). Cortisol awakening response and diurnal cortisol among children at elevated risk for schizophrenia: relationship to psychosocial stress and cognition. Psychoneuroendocrinology 46: 1–13, in Google Scholar

Da Silva, G.E. and Takahashi, R.N. (2002). SR 141716A prevents Δ 9-tetrahydrocannabinol-induced spatial learning deficit in a Morris-type water maze in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26: 321–325, in Google Scholar

De Marchi, N., De Petrocellis, L., Orlando, P., Daniele, F., Fezza, F., and Di Marzo, V. (2003). Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2: 5, in Google Scholar

de Melo Rodrigues, L.C., Conti, C.L., and Nakamura-Palacios, E.M. (2011). Clozapine and SCH 23390 prevent the spatial working memory disruption induced by Δ 9-THC administration into the medial prefrontal cortex. Brain Res. 1382: 230–237, in Google Scholar PubMed

Devane, W.A., Dysarz, F.3., Johnson, M.R., Melvin, L.S., and Howlett, A.C. (1988). Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34: 605–613.Search in Google Scholar

Devane, W.A., Hanus, L., Breuer, A., Pertwee, R.G., Stevenson, L.A., Griffin, G., and Mechoulam, R. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258: 1946–1949, in Google Scholar PubMed

Di Marzo, V., and Després, J.P. (2009). CB1 antagonists for obesity—what lessons have we learned from rimonabant? Nat. Rev. Endocrinol. 5: 633, in Google Scholar PubMed

Dlugos, A., Childs, E., Stuhr, K.L., Hillard, C.J., and De Wit, H. (2012). Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology 37: 2416–2427, in Google Scholar PubMed PubMed Central

Eggan, S.M., Hashimoto, T., and Lewis, D.A. (2008). Reduced cortical cannabinoid1 receptor messenger RNA and protein expression in schizophrenia. Arch. Gen. Psychiatry 65: 772–784, in Google Scholar PubMed PubMed Central

Eggan, S.M., Lazarus, M.S., Stoyak, S.R., Volk, D.W., Glausier, J.R., Huang, Z.J., and Lewis, D.A. (2012). Cortical glutamic acid decarboxylase 67 deficiency results in lower cannabinoid 1 receptor messenger RNA expression: implications for schizophrenia. Biol. Psychiatry 71: 114–119, in Google Scholar PubMed PubMed Central

Elms, L., Shannon, S., Hughes, S., and Lewis, N. (2019). Cannabidiol in the treatment of post-traumatic stress disorder: a case series. J. Altern. Complement. Med. 25: 392–397, in Google Scholar PubMed PubMed Central

Enman, N.M., Arthur, K., Ward, S.J., Perrine, S.A., and Unterwald, E.M. (2015). Anhedonia, reduced cocaine reward, and dopamine dysfunction in a rat model of posttraumatic stress disorder. Biol. Psychiatry 78: 871–879, in Google Scholar PubMed PubMed Central

Ferrarelli, F., and Mathalon, D. (2020). The prodromal phase: time to broaden the scope beyond transition to psychosis? Schizophr. Res. 216: 5–6, in Google Scholar PubMed PubMed Central

Fowler, I.L., Carr, V.J., Carter, N.T., and Lewin, T.J. (1998). Patterns of current and lifetime substance use in schizophrenia. Schizophr. Bull. 24: 443–455, in Google Scholar PubMed

Fusar-Poli, P. (2017). The clinical high-risk state for psychosis (CHR-P), version II. Schizophr. Bull. 43: 44–7, in Google Scholar PubMed PubMed Central

Gaebel, W., and Zielasek, J. (2015). Focus on psychosis. Dialogues Clin. Neurosci. 17: 9.10.31887/DCNS.2015.17.1/wgaebelSearch in Google Scholar

Ganon-Elazar, E. and Akirav, I. (2009). Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J. Neurosci. 29: 11078–11088, in Google Scholar PubMed PubMed Central

Gao, W., Walther, A., Wekenborg, M., Penz, M., and Kirschbaum, C. (2020). Determination of endocannabinoids and N-acylethanolamines in human hair with LC-MS/MS and their relation to symptoms of depression, burnout, and anxiety. Talanta 217: 121006, in Google Scholar PubMed

Gibson, C.L., Nia, A.B., Spriggs, S.A., DeFrancisco, D., Swift, A., Perkel, C., and Kim-Schulze, S. (2020). Cannabinoid use in psychotic patients impacts inflammatory levels and their association with psychosis severity. Psychiatry Res 293: 113380, in Google Scholar PubMed PubMed Central

Gilpin, N.W., Herman, M.A., and Roberto, M. (2015). The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol. Psychiatry 77: 859–869, in Google Scholar PubMed PubMed Central

Giuffrida, A., Leweke, F.M., Gerth, C.W., Schreiber, D., Koethe, D., Faulhaber, J., and Piomelli, D. (2004). Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29: 2108–2114, in Google Scholar PubMed

Glass, M. and Felder, C.C. (1997). Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J. Neurosci. 17: 5327–5333, in Google Scholar

Haller, J., Matyas, F., Soproni, K., Varga, B., Barsy, B., Nemeth, B., and Hajos, N. (2007). Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission. Eur. J. Neurosci. 25: 2445–2456, in Google Scholar PubMed PubMed Central

Herkenham, M., Lynn, A.B., Johnson, M.R., Melvin, L.S., de Costa, B.R., and Rice, K.C. (1991). Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11: 563–583, in Google Scholar

Hill, M.N. and Tasker, J.G. (2012). Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience 204: 5–16, in Google Scholar PubMed PubMed Central

Hill, M.N., Bierer, L.M., Makotkine, I., Golier, J.A., Galea, S., McEwen, B.S., and Yehuda, R. (2013). Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 38: 2952–2961, in Google Scholar PubMed PubMed Central

Hill, M.N., Hillard, C.J., and McEwen, B.S. (2011). Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor–deficient mice parallel the effects of chronic stress. Cereb. Cortex 21: 2056–2064, in Google Scholar PubMed PubMed Central

Hill, M.N., McLaughlin, R.J., Bingham, B., Shrestha, L., Lee, T.T., Gray, J.M., and Viau, V. (2010). Endogenous cannabinoid signaling is essential for stress adaptation. Proc. Natl. Acad. Sci. U. S. A. 107: 9406–9411, in Google Scholar PubMed PubMed Central

Hill, M.N., Miller, G.E., Carrier, E.J., Gorzalka, B.B., and Hillard, C.J. (2009). Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34: 1257–1262, in Google Scholar

Hillard, C.J. (2000). Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostag. Other Lipid Mediat. 61: 3–18, in Google Scholar

Hillard, C.J. (2018). Circulating endocannabinoids: from whence do they come and where are they going? Neuropsychopharmacology 43: 155–172, in Google Scholar PubMed PubMed Central

Hindocha, C., Freeman, T.P., Schafer, G., Gardner, C., Bloomfield, M.A., Bramon, E., and Curran, H.V. (2020). Acute effects of cannabinoids on addiction endophenotypes are moderated by genes encoding the CB1 receptor and FAAH enzyme. Addiction Biol. 25: 12762, in Google Scholar PubMed

Hirvonen, J., Goodwin, R.S., Li, C.T., Terry, G.E., Zoghbi, S.S., Morse, C., and Innis, R.B. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB 1 receptors in chronic daily cannabis smokers. Mol. Psychiatry 17: 642–649, in Google Scholar PubMed PubMed Central

Holman, E.A., Guijarro, A., Lim, J., and Piomelli, D. (2014). Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats. Psychosom. Med. 76: 20, in Google Scholar

Jean‐Gilles, L., Braitch, M., Latif, M.L., Aram, J., Fahey, A.J., Edwards, L.J., and Showe, L.C. (2015). Effects of pro‐inflammatory cytokines on cannabinoid CB 1 and CB 2 receptors in immune cells. Acta Physiol. 214: 63–74, in Google Scholar PubMed PubMed Central

Jiang, B., Xiong, Z., Yang, J., Wang, W., Wang, Y., Hu, Z.L., and Chen, J.G. (2012). Antidepressant‐like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br. J. Pharmacol. 166: 1872–1887, in Google Scholar PubMed PubMed Central

Joëls, M., Sarabdjitsingh, R.A., and Karst, H. (2012). Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol. Rev. 64: 901–938, in Google Scholar PubMed

Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., and Giustino, A. (2003). Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9: 76–81, in Google Scholar PubMed

Keen, L.II, Pereira, D., and Latimer, W. (2014). Self-reported lifetime marijuana use and interleukin-6 levels in middle-aged African Americans. Drug Alcohol Depend. 140: 156–160, in Google Scholar PubMed

Keller, J., Gomez, R., Williams, G., Lembke, A., Lazzeroni, L., Murphy, G.M., and Schatzberg, A.F. (2017). HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 22: 527–536, in Google Scholar PubMed PubMed Central

Knipscheer, J., Sleijpen, M., Frank, L., de Graaf, R., Kleber, R., ten Have, M., and Dückers, M. (2020). Prevalence of potentially traumatic events, other life events and subsequent reactions indicative for posttraumatic stress disorder in The Netherlands: a general population study based on the trauma screening questionnaire. Int. J. Environ. Res. Publ. Health 17: 172, in Google Scholar PubMed PubMed Central

Koethe, D., Giuffrida, A., Schreiber, D., Hellmich, M., Schultze-Lutter, F., Ruhrmann, S., and Leweke, F.M. (2009). Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br. J. Psychiatry 194: 371–372, in Google Scholar PubMed

Koethe, D., Pahlisch, F., Hellmich, M., Rohleder, C., Mueller, J.K., Meyer-Lindenberg, A., and Leweke, F.M. (2019). Familial abnormalities of endocannabinoid signaling in schizophrenia. World J. Psychiatry 20: 117–125, in Google Scholar PubMed

Kühn, S., Musso, F., Mobascher, A., Warbrick, T., Winterer, G., and Gallinat, J. (2012). Hippocampal subfields predict positive symptoms in schizophrenia: first evidence from brain morphometry. Transl. Psychiatry 2: 127, in Google Scholar PubMed PubMed Central

Laprairie, R.B., Bagher, A.M., Kelly, M.E.M., and Denovan‐Wright, E.M. (2015). Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 172: 4790–4805, in Google Scholar PubMed PubMed Central

Leweke, F.M., Piomelli, D., Pahlisch, F., Muhl, D., Gerth, C.W., Hoyer, C., and Koethe, D. (2012). Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2: e94, in Google Scholar PubMed PubMed Central

Lin, C.C., Chen, T.Y., Cheng, P.Y., and Liu, Y.P. (2020). Early life social experience affects adulthood fear extinction deficit and associated dopamine profile abnormalities in a rat model of PTSD. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 109914, in Google Scholar PubMed

Lin, C.C., Tung, C.S., and Liu, Y.P. (2016). Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology 233: 1135–1146, in Google Scholar PubMed

Lisboa, S.F., Resstel, L.B., Aguiar, D.C., and Guimarães, F.S. (2008). Activation of cannabinoid CB1 receptors in the dorsolateral periaqueductal gray induces anxiolytic effects in rats submitted to the Vogel conflict test. Eur. J. Pharmacol. 593: 73–78, in Google Scholar

Lisboa, S.F., Vila-Verde, C., Rosa, J., Uliana, D.L., Stern, C.A.J., Bertoglio, L.J., and Guimaraes, F.S. (2019). Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology 236: 201–226, in Google Scholar

Luchicchi, A., and Pistis, M. (2012). Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol. Neurobiol. 46: 374–392, in Google Scholar

Maccarrone, M., Valverde, O., Barbaccia, M.L., Castañé, A., Maldonado, R., Ledent, C., and Finazzi‐Agrò, A. (2002). Age‐related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur. J. Neurosci. 15: 1178–1186, in Google Scholar

MacLean, K.I., and Littleton, J.M. (1977). Environmental stress as a factor in the response of rat brain catecholamine metabolism to Δ 8-tetrahydrocannabinol. Eur. J. Pharmacol. 41: 171–182, in Google Scholar

Madsen, H.B., Guerin, A.A., and Kim, J.H. (2017). Investigating the role of dopamine receptor-and parvalbumin-expressing cells in extinction of conditioned fear. Neurobiol. Learn. Mem. 145: 7–17, in Google Scholar PubMed

Marsicano, G., Wotjak, C.T., Azad, S.C., Bisogno, T., Rammes, G., Cascio, M.G., and Di Marzo, V. (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature 418: 530–534, in Google Scholar PubMed

Martin, M., Ledent, C., Parmentier, M., Maldonado, R., and Valverde, O. (2002). Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology 159: 379–387, in Google Scholar PubMed

Mathers, D.C. and Ghodse, A.H. (1992). Cannabis and psychotic illness. Br. J. Psychiatry Psychiatry 161: 648–653, in Google Scholar PubMed

Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C., and Bonner, T.I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346: 561–564, in Google Scholar PubMed

McFarlane, A.C., Barton, C.A., Yehuda, R., and Wittert, G. (2011). Cortisol response to acute trauma and risk of posttraumatic stress disorder. Psychoneuroendocrinology 36: 720–727, in Google Scholar PubMed

McGuire, P., Robson, P., Cubala, W.J., Vasile, D., Morrison, P.D., Barron, R., and Wright, S. (2018). Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am. J. Psychiatry 175: 225–231, in Google Scholar PubMed

Mehta, N.D., Stevens, J.S., Li, Z., Gillespie, C.F., Fani, N., Michopoulos, V., and Felger, J.C. (2020). Inflammation, reward circuitry and symptoms of anhedonia and PTSD in trauma-exposed women. Soc. Cognit. Affect Neurosci. 5: 1046–1055, in Google Scholar PubMed PubMed Central

Melis, M., Pistis, M., Perra, S., Muntoni, A.L., Pillolla, G., and Gessa, G.L. (2004). Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci. 24: 53–62, in Google Scholar

Minichino, A., Senior, M., Brondino, N., Zhang, S.H., Godwlewska, B.R., Burnet, P.W., and Lennox, B.R. (2019). Measuring disturbance of the endocannabinoid system in psychosis: a systematic review and meta-analysis. JAMA Psychiatry 76: 914–923, in Google Scholar PubMed PubMed Central

Mishima, K., Egashira, N., Hirosawa, N., Fujii, M., Matsumoto, Y., Iwasaki, K., and Fujiwara, M. (2001). Characteristics of learning and memory impairment induced by⊿ 9-tetrahydrocannabinol in rats. Jpn. J. Pharmacol. 87: 297–308, in Google Scholar PubMed

Misiak, B., Krefft, M., Bielawski, T., Moustafa, A.A., Sąsiadek, M.M., and Frydecka, D. (2017). Toward a unified theory of childhood trauma and psychosis: a comprehensive review of epidemiological, clinical, neuropsychological and biological findings. Neurosci. Biobehav. Rev. 75: 393–406, in Google Scholar PubMed

Mizrahi, R. (2016). Social stress and psychosis risk: common neurochemical substrates? Neuropsychopharmacology 41: 666–674, in Google Scholar PubMed PubMed Central

Mizrahi, R., Kenk, M., Suridjan, I., Boileau, I., George, T.P., McKenzie, K., and Rusjan, P. (2014). Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 39: 1479–1489, in Google Scholar PubMed PubMed Central

Mondelli, V., Pariante, C.M., Navari, S., Aas, M., D’Albenzio, A., Di Forti, M., and Papadopoulos, A.S. (2010). Higher cortisol levels are associated with smaller left hippocampal volume in first-episode psychosis. Schizophr. Res. 119: 75–78, in Google Scholar PubMed PubMed Central

Moreira, F.A., and Wotjak, C.T. (2009). Cannabinoids and anxiety. Behavioral neurobiology of anxiety and its treatment. Curr Top. Behav. Neurosci. 429–450, in Google Scholar PubMed

Murillo-Rodriguez, E., Désarnaud, F., and Prospéro-García, O. (2006). Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat. Life Sci. 79: 30–37, in Google Scholar PubMed

Myin-Germeys, I., Marcelis, M., Krabbendam, L., Delespaul, P., and van Os, J. (2005). Subtle fluctuations in psychotic phenomena as functional states of abnormal dopamine reactivity in individuals at risk. Biol. Psychiatry 58: 105–110, in Google Scholar PubMed

Naderi, N., Haghparast, A., Saber-Tehrani, A., Rezaii, N., Alizadeh, A.M., Khani, A., and Motamedi, F. (2008). Interaction between cannabinoid compounds and diazepam on anxiety-like behaviour of mice. Pharmacol. Biochem. Behav. 89: 64–75, in Google Scholar PubMed

Newell, K.A., Deng, C., and Huang, X.F. (2006). Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp. Brain Res. 172: 556–560, in Google Scholar PubMed

Niederhoffer, N., Hansen, H.H., Fernandez‐Ruiz, J.J., and Szabo, B. (2001). Effects of cannabinoids on adrenaline release from adrenal medullary cells. Br. J. Pharmacol. 134: 1319–1327, in Google Scholar PubMed PubMed Central

Nissen, W., Szabo, A., Somogyi, J., Somogyi, P., and Lamsa, K.P. (2010). Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor. J. Neurosci. 30: 1337–1347, in Google Scholar PubMed PubMed Central

Norman, R.M., and Malla, A.K. (1993). Stressful life events and schizophrenia: I: a review of the research. Br. J. Psychiatry 162: 161–166, in Google Scholar PubMed

Pagotto, U., Marsicano, G., Fezza, F., Theodoropoulou, M., Grubler, Y., Stalla, J., and Lutz, B. (2001). Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: first evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J. Clin. Endocrinol. Metab. 86: 2687–2696, in Google Scholar PubMed

Pan, B., Wang, W., Zhong, P., Blankman, J.L., Cravatt, B.F., and Liu, Q.S. (2011). Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. J. Neurosci. 31: 13420–13430, in Google Scholar PubMed PubMed Central

Parolaro, D., Realini, N., Vigano, D., Guidali, C., and Rubino, T. (2010). The endocannabinoid system and psychiatric disorders. Exp. Neurol. 224: 3–14, in Google Scholar PubMed

Passos, I.C., Vasconcelos-Moreno, M.P., Costa, L.G., Kunz, M., Brietzke, E., Quevedo, J., and Kauer-Sant’Anna, M. (2015). Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2: 1002–1012, in Google Scholar

Pruessner, M., Bechard-Evans, L., Pira, S., Joober, R., Collins, D.L., Pruessner, J.C., and Malla, A.K. (2017). Interplay of hippocampal volume and hypothalamus-pituitary-adrenal axis function as markers of stress vulnerability in men at ultra-high risk for psychosis. Psychol. Med. 47: 471–483, in Google Scholar

Pruessner, M., Lepage, M., Collins, D.L., Pruessner, J.C., Joober, R., and Malla, A.K. (2015). Reduced hippocampal volume and hypothalamus–pituitary–adrenal axis function in first episode psychosis: evidence for sex differences. NeuroImage Clin. 7: 195–202, in Google Scholar

Quinn, H.R., Matsumoto, I., Callaghan, P.D., Long, L.E., Arnold, J.C., Gunasekaran, N., and Matsuda-Matsumoto, H. (2008). Adolescent rats find repeated Δ 9-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33: 1113–1126, in Google Scholar

Radhakrishnan, R., Wilkinson, S.T., and D’Souza, D.C. (2014). Gone to pot–a review of the association between cannabis and psychosis. Front. Psychiatry 5: 54, in Google Scholar

Ranganathan, M., Cortes-Briones, J., Radhakrishnan, R., Thurnauer, H., Planeta, B., Skosnik, P., and Surti, T. (2016). Reduced brain cannabinoid receptor availability in schizophrenia. Biol. Psychiatry 79: 997–1005, in Google Scholar

Raymundi, A.M., da Silva, T.R., Sohn, J.M., Bertoglio, L.J., and Stern, C.A. (2020). Effects of∆ 9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry 20: 1–17, in Google Scholar

Reggio, P.H. and Traore, H. (2000). Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase. Chem. Phys. Lipids 108: 15–35, in Google Scholar

Reuter, A.R., Bumb, J.M., Mueller, J.K., Rohleder, C., Pahlisch, F., Hanke, F., and Schwarz, E. (2017). Association of anandamide with altered binocular depth inversion illusion in schizophrenia. World J. Psychiatry 18: 483–488, in Google Scholar PubMed

Richardson, K.A., Hester, A.K., and McLemore, G.L. (2016). Prenatal cannabis exposure-The “first hit” to the endocannabinoid system. Neurotoxicol. Teratol. 58: 5–14, in Google Scholar PubMed

Rivera, P., del Mar Fernández-Arjona, M., Silva-Peña, D., Blanco, E., Vargas, A., López-Ávalos, M.D., and Suárez, J. (2018). Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure. Biochem. Pharmacol. 157: 244–257, in Google Scholar PubMed

Roitman, P., Mechoulam, R., Cooper-Kazaz, R., and Shalev, A. (2014). Preliminary, open-label, pilot study of add-on oral Δ 9-tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin. Drug Invest. 34: 587–591, in Google Scholar PubMed

Rosen, J.L., Miller, T.J., D’Andrea, J.T., McGlashan, T.H., and Woods, S.W. (2006). Comorbid diagnoses in patients meeting criteria for the schizophrenia prodrome. Schizophr. Res. 85: 124–131, in Google Scholar PubMed

Sapolsky, R.M., Romero, L.M., and Munck, A.U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21: 55–89, in Google Scholar

Sbarski, B. and Akirav, I. (2020). Cannabinoids as therapeutics for PTSD. Pharmacol. Ther. 107551.10.1016/j.pharmthera.2020.107551Search in Google Scholar PubMed

Scheller, A. and Kirchhoff, F. (2016). Endocannabinoids and heterogeneity of glial cells in brain function. Front. Integr. Neurosci. 10: 24, in Google Scholar PubMed PubMed Central

Schoenfeld, T.J., Rhee, D., Martin, L., Smith, J.A., Sonti, A.N., Padmanaban, V., and Cameron, H.A. (2019). New neurons restore structural and behavioral abnormalities in a rat model of PTSD. Hippocampus 29: 848–861, in Google Scholar PubMed PubMed Central

Seeman, P. (2006). Targeting the dopamine D2 receptor in schizophrenia. Expert Opin. Ther. Targets 10: 515–531, in Google Scholar PubMed

Seif, T., Makriyannis, A., Kunos, G., Bonci, A., and Hopf, F.W. (2011). The endocannabinoid 2-arachidonoylglycerol mediates D1 and D2 receptor cooperative enhancement of rat nucleus accumbens core neuron firing. Neuroscience 193: 21–33, in Google Scholar PubMed PubMed Central

Shonesy, B.C., Bluett, R.J., Ramikie, T.S., Báldi, R., Hermanson, D.J., Kingsley, P.J., and Patel, S. (2014). Genetic disruption of 2-arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation. Cell Rep. 9: 1644–1653, in Google Scholar PubMed PubMed Central

Si, P., Liu, S., Tong, D., Cheng, M., Wang, L., and Cheng, X. (2018). Association of polymorphisms of NAPE-PLD and FAAH genes with schizophrenia in Chinese Han population. Zhonghua yi xue yi chuan xue za zhi [Chin. J. Med. Genet.] 35: 215–218, in Google Scholar

Sloan, M.E., Grant, C.W., Gowin, J.L., Ramchandani, V.A., and Le Foll, B. (2019). Endocannabinoid signaling in psychiatric disorders: a review of positron emission tomography studies. Acta Pharmacol. Sin. 40: 342–350, in Google Scholar

Stalder, T. and Kirschbaum, C. (2012). Analysis of cortisol in hair–state of the art and future directions. Brain Behav. Immun. 26: 1019–1029, in Google Scholar

Steiner, M.A. and Wotjak, C.T. (2008). Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog. Brain Res. 170: 397–432, in Google Scholar

Stella, N., Schweitzer, P., and Piomelli, D. (1997). A second endogenous cannabinoid that modulates long-term potentiation. Nature 388: 773–778, in Google Scholar

Steudte-Schmiedgen, S., Stalder, T., Schönfeld, S., Wittchen, H.U., Trautmann, S., Alexander, N., and Kirschbaum, C. (2015). Hair cortisol concentrations and cortisol stress reactivity predict PTSD symptom increase after trauma exposure during military deployment. Psychoneuroendocrinology 59: 123–133, in Google Scholar

Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., and Waku, K. (1995). 2-Arachidonoylgylcerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215: 89–97, in Google Scholar

Szeszko, P.R., Lehrner, A., and Yehuda, R. (2018). Glucocorticoids and hippocampal structure and function in PTSD. Harv. Rev. Psychiatry 26: 142–157, in Google Scholar

Teicher, M.H., Andersen, S.L., Polcari, A., Anderson, C.M., Navalta, C.P., and Kim, D.M. (2003). The neurobiological consequences of early stress and childhood maltreatment Neurosci. Biobehav. Rev. 27: 33–44, in Google Scholar

Thornicroft, G. (1990). Cannabis and psychosis. Br. J. Psychiatry 157: 25–33, in Google Scholar PubMed

Torrisi, S.A., Leggio, G.M., Drago, F., and Salomone, S. (2019). Therapeutic challenges of post-traumatic stress disorder: focus on the dopaminergic system. Front. Pharmacol. 10: 404, in Google Scholar

Urigüen, L., Pérez-Rial, S., Ledent, C., Palomo, T., and Manzanares, J. (2004). Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46: 966–973, in Google Scholar

van Os, J. and Guloksuz, S. (2017). A critique of the “ultra‐high risk” and “transition” paradigm. World Psychiatry 16: 200–206, in Google Scholar

Varvel, S.A., Cravatt, B.F., Engram, A.E., and Lichtman, A.H. (2006). Fatty acid amide hydrolase (–/–) mice exhibit an increased sensitivity to the disruptive effects of anandamide or oleamide in a working memory water maze task. J. Pharmacol. Exp. Ther. 317: 251–257, in Google Scholar

Varvel, S., Hamm, R., Martin, B., and Lichtman, A. (2001). Differential effects of Δ 9-THC on spatial reference and working memory in mice. Psychopharmacology 157: 142–150, in Google Scholar

Velakoulis, D., Pantelis, C., McGorry, P.D., Dudgeon, P., Brewer, W., Cook, M., and Singh, B. (1999). Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Arch. Gen. Psychiatry 56: 133–141, in Google Scholar

Vigano, D., Guidali, C., Petrosino, S., Realini, N., Rubino, T., Di Marzo, V., and Parolaro, D. (2009). Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia. Int. J. Neuropsychopharmacol. 12: 599–614, in Google Scholar

Walder, D.J., Walker, E.F., and Lewine, R.J. (2000). Cognitive functioning, cortisol release, and symptom severity in patients with schizophrenia. Biol. Psychiatry 48: 1121–1132, in Google Scholar

Walker, E.F., Trotman, H.D., Pearce, B.D., Addington, J., Cadenhead, K.S., Cornblatt, B.A., and Tsuang, M.T. (2013). Cortisol levels and risk for psychosis: initial findings from the North American prodrome longitudinal study. Biol. Psychiatry 74: 410–417, in Google Scholar PubMed PubMed Central

Wamsteeker, J.I., Kuzmiski, J.B., and Bains, J.S. (2010). Repeated stress impairs endocannabinoid signaling in the paraventricular nucleus of the hypothalamus. J. Neurosci. 30: 11188–11196, in Google Scholar PubMed PubMed Central

Watts, J.J., Jacobson, M.R., Lalang, N., Boileau, I., Tyndale, R.F., Kiang, M., and Mizrahi, R. (2020). Imaging brain fatty acid amide hydrolase in untreated patients with psychosis. Biol. Psychiatry.10.1016/j.biopsych.2020.03.003Search in Google Scholar PubMed PubMed Central

Wilker, S., Pfeiffer, A., Elbert, T., Ovuga, E., Karabatsiakis, A., Krumbholz, A., and Kolassa, I.T. (2016). Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 67: 198–206, in Google Scholar PubMed

Wise, L.E., Thorpe, A.J., and Lichtman, A.H. (2009). Hippocampal CB 1 receptors mediate the memory impairing effects of Δ 9-tetrahydrocannabinol. Neuropsychopharmacology 34: 2072–2080, in Google Scholar PubMed PubMed Central

Wiskerke, J., Irimia, C., Cravatt, B.F., De Vries, T.J., Schoffelmeer, A.N., Pattij, T., and Parsons, L.H. (2012). Characterization of the effects of reuptake and hydrolysis inhibition on interstitial endocannabinoid levels in the brain: an in vivo microdialysis study. ACS Chem. Neurosci. 3: 407–417, in Google Scholar PubMed PubMed Central

Wittmann, G., Deli, L., Kalló, I., Hrabovszky, E., Watanabe, M., Liposits, Z., and Fekete, C. (2007). Distribution of type 1 cannabinoid receptor (CB1)‐immunoreactive axons in the mouse hypothalamus. J. Comp. Neurol. 503: 270–279, in Google Scholar PubMed

Wolkowitz, O.M., Burke, H., Epel, E.S., and Reus, V.I. (2009). Mood, memory, and mechanisms. Ann. NY Acad. Sci. 1179: 19–40, in Google Scholar PubMed

Wong, D.F., Kuwabara, H., Horti, A.G., Raymont, V., Brasic, J., Guevara, M., and Rahmim, A. (2010). Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C] OMAR. Neuroimage 52: 1505–1513, in Google Scholar PubMed PubMed Central

Xu, H., Perez, S., Cornil, A., Detraux, B., Prokin, I., Cui, Y., and Venance, L. (2018). Dopamine–endocannabinoid interactions mediate spike-timing-dependent potentiation in the striatum. Nat. Commun. 9: 1–18, in Google Scholar PubMed PubMed Central

Yung, A.R., Killackey, E., Hetrick, S.E., Parker, A.G., Schultze-Lutter, F., Klosterkoetter, J., and McGorry, P.D. (2007). The prevention of schizophrenia. Int. Rev. Psychiatry 19: 633–646, in Google Scholar PubMed

Zanettini, C., Panlilio, L.V., Alicki, M., Goldberg, S.R., Haller, J., and Yasar, S. (2011). Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front. Behav. Neurosci. 5: 57, in Google Scholar PubMed PubMed Central

Zavitsanou, K., Garrick, T., and Huang, X.F. (2004). Selective antagonist [3H] SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 28: 355–360, in Google Scholar PubMed

Zhuang, J., Yang, D.P., Nikas, S.P., Zhao, J., Guo, J., and Makriyannis, A. (2013). The interaction of fatty acid amide hydrolase (FAAH) inhibitors with an anandamide carrier protein using 19F-NMR. AAPS J. 15: 477–482, in Google Scholar PubMed PubMed Central

Ziegler, C.G., Mohn, C., Lamounier-Zepter, V., Rettori, V., Bornstein, S.R., Krug, A.W., and Ehrhart-Bornstein, M. (2010). Expression and function of endocannabinoid receptors in the human adrenal cortex. Horm. Metab. Res. 42: 88–92, in Google Scholar PubMed

Received: 2020-09-06
Accepted: 2021-01-08
Published Online: 2021-03-01
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.6.2023 from
Scroll to top button