Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 12, 2021

Virtual Morris water maze: opportunities and challenges

  • Conor Thornberry EMAIL logo , Jose M. Cimadevilla and Sean Commins


The ability to accurately recall locations and navigate our environment relies on multiple cognitive mechanisms. The behavioural and neural correlates of spatial navigation have been repeatedly examined using different types of mazes and tasks with animals. Accurate performances of many of these tasks have proven to depend on specific circuits and brain structures and some have become the standard test of memory in many disease models. With the introduction of virtual reality (VR) to neuroscience research, VR tasks have become a popular method of examining human spatial memory and navigation. However, the types of VR tasks used to examine navigation across laboratories appears to greatly differ, from open arena mazes and virtual towns to driving simulators. Here, we examined over 200 VR navigation papers, and found that the most popular task used is the virtual analogue of the Morris water maze (VWM). Although we highlight the many advantages of using the VWM task, there are also some major difficulties related to the widespread use of this behavioural method. Despite the task’s popularity, we demonstrate an inconsistency of use – particularly with respect to the environmental setup and procedures. Using different versions of the virtual water maze makes replication of findings and comparison of results across researchers very difficult. We suggest the need for protocol and design standardisation, alongside other difficulties that need to be addressed, if the virtual water maze is to become the ‘gold standard’ for human spatial research similar to its animal counterpart.

Corresponding author: Conor Thornberry, Department of Psychology, Maynooth University, John Hume Building, North Campus, Maynooth, Co Kildare W23 F2H6, Ireland, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Aadland, J., Beatty, W.W., and Maki, R.H. (1985). Spatial memory of children and adults assessed in the radial maze. Dev. Psychobiol. 18: 163–172, in Google Scholar

Aida, J., Chau, B., and Dunn, J. (2018). Immersive virtual reality in traumatic brain injury rehabilitation: a literature review. NeuroRehabilitation 42: 441–448, in Google Scholar

Antonova, E., Parslow, D., Brammer, M., Simmons, A., Williams, S., Dawson, G.R., and Morris, R. (2011). Scopolamine disrupts hippocampal activity during allocentric spatial memory in humans: an fMRI study using a virtual reality analogue of the Morris water maze. J. Psychopharmacol. 25: 1256–1265, in Google Scholar

Aronov, D., and Tank, D.W. (2014). Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84: 442–456, in Google Scholar

Astur, R.S., Taylor, L.B., Mamelak, A.N., Philpott, L., and Sutherland, R.J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132: 77–84, in Google Scholar

Astur, R.S., Tropp, J., Sava, S., Constable, R.T., and Markus, E.J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behav. Brain Res. 151: 103–115, in Google Scholar

Barnes, C.A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioural study in the rat. J. Comp. Physiol. Psychol. 93: 74–104, in Google Scholar

Barnhart, C.D., Yang, D., and Lein, P.J. (2015). Using the Morris water maze to assess spatial learning and memory in weanling mice. PloS One 10: e0124521, in Google Scholar

Barrash, J., Damasio, H., Adolphs, R., and Tranel, D. (2000). The neuroanatomical correlates of route learning impairment. Neuropsychologia 38: 820–836, in Google Scholar

Barry, D.N., and Commins, S. (2019). A novel control condition for spatial learning in the Morris water maze. J. Neurosci. Methods 318: 1–5, in Google Scholar PubMed

Bécu, M., Sheynikhovich, D., Tatur, G., Agathos, C.P., Bologna, L.L., Sahel, J.-A., and Arleo, A. (2020). Age-related preference for geometric spatial cues during real-world navigation. Nat. Hum. Behav. 4: 88–99, in Google Scholar

Bianchini, F., Incoccia, C., Palermo, L., Piccardi, L., Zompanti, L., Sabatini, U., Peran, P., and Guariglia, C. (2010). Developmental topographical disorientation in a healthy subject. Neuropsychologia 48: 1563–1573, in Google Scholar

Bingman, V.P., Ioalé, P., Casini, G., and Bagnoli, P. (1988). Unimpaired acquisition of spatial reference memory, but impaired homing performance in hippocampal-ablated pigeons. Behav. Brain Res. 27: 179–187, in Google Scholar

Bingman, V.P., Ioale, P., Casini, G., and Bagnoli, P. (1990). The avian hippocampus: evidence for a role in the development of the homing pigeon navigational map. Behav. Neurosci. 104: 906, in Google Scholar

Bischof, W.F., and Boulanger, P. (2003). Spatial navigation in virtual reality environments: an EEG analysis. Cyberpsychol. Behav. 6: 487–495, in Google Scholar

Bohbot, V.D.R., Ruzicka, E., Nadel, L., Kalina, M., Stepánková, K., and Bures, J. (2002). Rat spatial memory tasks adapted for humans: characterization in subjects with intact brain and subjects with selective medial temporal lobe thermal lesions. Physiol. Res. 52: 49–65.Search in Google Scholar

Bohil, C.J., Alicea, B., and Biocca, F.A. (2011). Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12: 752–762, in Google Scholar

Bolhuis, J.J., Bijlsma, S., and Ansmink, P. (1986). Exponential decay of spatial memory of rats in a radial maze. Behav. Neural. Biol. 46: 115–122, in Google Scholar

Boulanger, P., Torres, D., and Bischof, W.F. (2004). MANDALA: a reconfigurable VR environment for studying spatial navigation in humans using EEG. EGVE EGVE04: 61–70, in Google Scholar

Bures, J., Fenton, A.A., Kaminsky, Yu., and Ziniuk, L. (1997). Place cells and place navigation. Proc. Natl. Acad. Sci. USA 94: 343–350, in Google Scholar PubMed PubMed Central

Bures, J., and Fenton, A.A. (2000). Neurophysiology of spatial cognition. News Physiol. Sci. 15: 233–240, in Google Scholar PubMed

Cánovas, R., Espínola, M., Iribarne, L., and Cimadevilla, J.M. (2008). A new virtual task to evaluate human place learning. Behav. Brain Res. 190: 112–118, in Google Scholar PubMed

Cimadevilla, J.M., Cánovas, R., Iribarne, L., Soria, A., and López, L. (2011). A virtual-based task to assess place avoidance in humans. J. Neurosci. Methods 196: 45–50, in Google Scholar PubMed

Cimadevilla, J.M., Conejo Jiménez, N.M., Miranda García, R., and Arias Pérez, J.L. (2004). Sex differences in the Morris water maze in young rats: temporal dimensions. Psicothema 16: 611–614.Search in Google Scholar

Cimadevilla, J.M., Roldán, M.D., Paris, M., Arnedo, M., and Roldán, S. (2014). Spatial learning in a virtual reality-based task is altered in very preterm children. J. Clin. Exp. Neuropsychol. 36: 1002–8, in Google Scholar PubMed

Cogné, M., Taillade, M., N’Kaoua, B., Tarruella, A., Klinger, E., Larrue, F., Sauzéon, H., Joseph, P.-A., and Sorita, E. (2017). The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: a systematic literature review. Ann. Phys. Rehabil. Med. 60: 164–176, in Google Scholar PubMed

Commins, S. (2018). Behavioural neuroscience. Cambridge, UK: Cambridge University Press.10.1017/9781316221655Search in Google Scholar

Commins, S., Duffin, J., Chaves, K., Leahy, D., Corcoran, K., and Caffrey, M., et al. (2020). NavWell: a simplified virtual-reality platform for spatial navigation and memory experiments. Behav. Res. Methods 52: 1189–1207, in Google Scholar PubMed

Commins, S., and Kirby, B.P. (2019). The complexities of behavioural assessment in neurodegenerative disorders: a focus on Alzheimer’s disease. Pharmacol. Res. 147: 104363, in Google Scholar PubMed

Commins, S., McCormack, K., Callinan, E., Fitzgerald, H., Molloy, E., and Young, K. (2013). Manipulation of visual information does not change the accuracy of distance estimation during a blindfolded walking task. Hum. Mov. Sci. 32: 794–807, in Google Scholar PubMed

Cornwell, B.R., Salvadore, G., Colon-Rosario, V., Latov, D.R., Holroyd, T., Carver, F.W., Coppola, R., Manji, H.K., Zarate, C.A.Jr., and Grillon, C. (2010). Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: evidence from whole-head magnetoencephalography. Am. J. Psychiatry 167: 836–844, in Google Scholar PubMed PubMed Central

Coutrot, A., Schmidt, S., Coutrot, L., Pittman, J., Hong, L., Wiener, J.M., Hölscher, C., Dalton, R.C., Hornberger, M., and Spiers, H.J. (2019). Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PloS One 14: e0213272, in Google Scholar PubMed PubMed Central

Crusio, W.E., Schwegler, H., and Lipp, H.P. (1987). Radial-maze performance and structural variation of the hippocampus in mice: a correlation with mossy fibre distribution. Brain Res. 425: 182–185, in Google Scholar

Devan, B.D., Parente, R., Coppola, J.M., Hendricks, M.A., and Johnson, C. (2018). Reproducibility of incentive motivation effects on standard place task performance of the virtual Morris water maze in humans: neuropsychological implications. JASNH 15: 14–22.Search in Google Scholar

D’Hooge, R., and De Deyn, P.P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Res. Rev. 36: 60–90, in Google Scholar

Daugherty, A.M., Bender, A.R., Yuan, P., and Raz, N. (2016). Changes in search path complexity and length during learning of a virtual water maze: age differences and differential associations with hippocampal subfield volumes. Cereb. Cortex 26: 2391–2401, in Google Scholar PubMed PubMed Central

Daugherty, A.M., and Raz, N. (2017). A virtual water maze revisited: two-year changes in navigation performance and their neural correlates in healthy adults. NeuroImage 146: 492–506, in Google Scholar PubMed PubMed Central

Daugherty, A.M., Yuan, P., Dahle, C.L., Bender, A.R., Yang, Y., and Raz, N. (2015). Path complexity in virtual water maze navigation: differential associations with age, sex, and regional brain volume. Cereb. Cortex 25: 3122–3131, in Google Scholar PubMed PubMed Central

Deacon, R.M., Bannerman, D.M., and Rawlins, N.P. (2001). Conditional discriminations based on external and internal cues in rats with cytotoxic hippocampal lesions. Behav. Neurosci. 115: 43–57, in Google Scholar PubMed

Deacon, R.M.J., and Rawlins, J.N.P. (2006). T-maze alternation in the rodent. Nat. Protoc. 1: 7–12, in Google Scholar PubMed

Diersch, N., and Wolbers, T. (2019). The potential of virtual reality for spatial navigation research across the adult lifespan. J. Exp. Biol. 222: jeb187252, in Google Scholar PubMed

Driscoll, I., Hamilton, D.A., Yeo, R.A., Brooks, W.M., and Sutherland, R.J. (2005). Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Horm. Behav. 47: 326–335, in Google Scholar PubMed

Duff, S.J., and Hampson, E. (2001). A sex difference on a novel spatial working memory task in humans. Brain Cognit. 47: 470–493, in Google Scholar PubMed

Ehinger, B.V., Fischer, P., Gert, A.L., Kaufhold, L., Weber, F., Pipa, G., and König, P. (2014). Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study. Front. Hum. Neurosci. 8: 71, in Google Scholar

Eichenbaum, H., Stewart, C., and Morris, R.G. (1990). Hippocampal representation in place learning. J. Neurosci. 10: 3531–3542, in Google Scholar

Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., and Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature 425: 184–188, in Google Scholar

Epstein, R., Patai, E., Julian, J., and Spiers, H.J. (2017). The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20: 1504–1513, in Google Scholar

Ferrara, M., Iaria, G., Tempesta, D., Curcio, G., Moroni, F., Marzano, C., De Gennaro, L., and Pacitti, C. (2008). Sleep to find your way: the role of sleep in the consolidation of memory for navigation in humans. Hippocampus 18: 844–851, in Google Scholar

Folley, B.S., Astur, R., Jagannathan, K., Calhoun, V.D., and Pearlson, G.D. (2010). Anomalous neural circuit function in schizophrenia during a virtual Morris water task. NeuroImage 49: 3373–3384, in Google Scholar

Fornasari, L., Chittaro, L., Ieronutti, L., Cottini, L., Dassi, S., Cremaschi, S., Molteni, M., Fabbro, F., and Brambilla, P. (2013). Navigation and exploration of an urban virtual environment by children with autism spectrum disorder compared to children with typical development. Res. Autism Spectr. Disord. 7: 956–965, in Google Scholar

Frick, K.M., Baxter, M.G., Markowska, A.L., Olton, D.S., and Price, D.L. (1995). Age-related spatial reference and working memory deficits assessed in the water maze. Neurobiol. Aging 16: 149–160, in Google Scholar

Goodrich-Hunsaker, N.J., Livingstone, S.A., Skelton, R.W., and Hopkins, R.O. (2010). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus 20: 481–491, in Google Scholar

Hamilton, D.A., Driscoll, I., and Sutherland, R.J. (2002). Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behav. Brain Res. 129: 159–170, in Google Scholar

Hamilton, D.A., Johnson, T.E., Redhead, E.S., and Verney, S.P. (2009). Control of rodent and human spatial navigation by room and apparatus cues. Behav. Process. 81: 154–169, in Google Scholar

Hamilton, D.A., Kodituwakku, P., Sutherland, R.J., and Savage, D.D. (2003). Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behav. Brain Res. 143: 85–94, in Google Scholar

Hamilton, D.A. and Sutherland, R.J. (1999). Blocking in human place learning: evidence from virtual navigation. Psychobiology 27: 453–461.10.3758/BF03332140Search in Google Scholar

Herting, M.M., and Nagel, B.J. (2012). Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents. Behav. Brain Res. 233: 517–525, in Google Scholar PubMed PubMed Central

Hüfner, K., Barresi, D., Glaser, M., Linn, J., Adrion, C., Mansmann, U., Brandt, T., and Strupp, M. (2008). Vestibular paroxysmia: diagnostic features and medical treatment. Neurology 71: 1006–1014, in Google Scholar PubMed

Iaria, G., and Barton, J.J. (2010). Developmental topographical disorientation: a newly discovered cognitive disorder. Exp. Brain Res. 206: 189–196, in Google Scholar PubMed

Jacobs, J., Weidemann, C.T., Miller, J.F., Solway, A., Burke, J.F., Wei, X.-X., Suthana, N., Sperling, M.R., Sharan, A.D., and Fried, I., et al. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 16: 1188–1190, in Google Scholar PubMed PubMed Central

Jones, C.M., Braithwaite, V.A., and Healy, S.D. (2003). The evolution of sex differences in spatial ability. Behav. Neurosci. 117: 403–411, in Google Scholar PubMed

Kallai, J., Makany, T., Karadi, K., and Jacobs, W.J. (2005). Spatial orientation strategies in Morris-type virtual water task for humans. Behav. Brain Res. 159: 187–196, in Google Scholar PubMed

Kalová, E., Vlček, K., Jarolímová, E., and Bureš, J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav. Brain Res. 159: 175–186, in Google Scholar PubMed

Kimura, K., Reichert, J.F., Olson, A., Pouya, O.R., Wang, X., Moussavi, Z., and Kelly, D.M. (2017). Orientation in virtual reality does not fully measure up to the real-world. Sci. Rep. 7: 18109, in Google Scholar PubMed PubMed Central

Kober, S.E., and Neuper, C. (2011). Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. Int. J. Psychophysiol. 79: 347–355, in Google Scholar PubMed

Korthauer, L.E., Nowak, N.T., Moffat, S.D., An, Y., Rowland, L.M., Barker, P.B., Resnick, S.M., and Driscoll, I. (2016). Correlates of virtual navigation performance in older adults. Neurobiol. Aging 39: 118–127, in Google Scholar PubMed PubMed Central

Kunz, L., Wang, L., Lachner-Piza, D., Zhang, H., Brandt, A., Dümpelmann, M., Reinacher, P.C., Coenen, V.A., Chen, D., and Wang, W.-X., et al. (2019). Hippocampal theta phases organize the reactivation of large-scale electrophysiological representations during goal-directed navigation. Sci. Adv. 5: eaav8192, in Google Scholar PubMed PubMed Central

Laczó, J., Andel, R., Vyhnalek, M., Vlcek, K., Magerova, H., Varjassyova, A., Tolar, M., and Hort, J. (2010). Human analogue of the Morris water maze for testing subjects at risk of Alzheimer’s disease. Neurodegener. Dis. 7: 148–152, in Google Scholar PubMed

Ladouce, S., Donaldson, D.I., Dudchenko, P.A., and Ietswaart, M. (2016). Understanding minds in real-world environments: toward a mobile cognition approach. Front. Hum. Neurosci. 10: 694, in Google Scholar PubMed PubMed Central

Lee, J.Y., Kho, S., Yoo, H.B., Park, S., Choi, J.S., and Kwon, J.S., et al. (2014). Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatr. Dis. Treat. 10: 653, in Google Scholar

Lee, S.A., Miller, J.F., Watrous, A.J., Sperling, M.R., Sharan, A., Worrell, G.A., and Lega, B. (2018). Electrophysiological signatures of spatial boundaries in the human subiculum. J. Neurosci. 38: 3265–3272, in Google Scholar

León, I., Tascón, L., and Cimadevilla, J.M. (2016). Age and gender-related differences in a spatial memory task in humans. Behav. Brain Res. 306: 8–12, in Google Scholar PubMed

Levy, L.J., Astur, R.S., and Frick, K.M. (2005). Men and women differ in object memory but not performance of a virtual radial maze. Behav. Neurosci. 119: 853–862, in Google Scholar PubMed

Livingstone, S.A., and Skelton, R.W. (2007). Virtual environment navigation tasks and the assessment of cognitive deficits in individuals with brain injury. Behav. Brain Res. 185: 21–31, in Google Scholar

Livingstone-Lee, S.A., Murchison, S., Zeman, P.M., Gandhi, M., van Gerven, D., Stewart, L., Livingston, N.J., and Skelton, R.W. (2011). Simple gaze analysis and special design of a virtual Morris water maze provides a new method for differentiating egocentric and allocentric navigational strategy choice. Behav. Brain Res. 225: 117–125, in Google Scholar

Lloyd, J., Persaud, N.V., and Powell, T.E. (2009). Equivalence of real-world and virtual-reality route learning: a pilot study. Cyberpsychol. Behav. 12: 423–427, in Google Scholar

Machado, M.L., Lefèvre, N., Philoxene, B., Le Gall, A., Madeleine, S., Fleury, P., Smith, P.F., and Besnard, S. (2019). New software dedicated to virtual mazes for human cognitive investigations. J. Neurosci. Methods 327: 108388, in Google Scholar

Maguire, E.A., Frackowiak, R.S., and Frith, C.D. (1997). Recalling routes around London: activation of the right hippocampus in taxi drivers. J. Neurosci. 17: 7103–7110, in Google Scholar

Maguire, E.A., Nannery, R., and Spiers, H.J. (2006). Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129: 2894–2907, in Google Scholar

Maguire, E.A., Woollett, K., and Spiers, H.J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16: 1091–1101, in Google Scholar

McDonald, R.J., and White, N.M. (1994). Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav. Neural. Biol. 61: 260–270, in Google Scholar

Meade, M.E., Meade, J.G., Sauzeon, H., and Fernandes, M.A. (2019). Active navigation in virtual environments benefits spatial memory in older adults. Brain Sci. 9: 47, in Google Scholar PubMed PubMed Central

Moffat, S.D. (2009). Aging and spatial navigation: what do we know and where do we go? Neuropsychol. Rev. 19: 478, in Google Scholar PubMed

Moffat, S.D., and Resnick, S.M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behav. Neurosci. 116: 851–859, in Google Scholar

Monacelli, A.M., Cushman, L.A., Kavcic, V., and Duffy, C.J. (2003). Spatial disorientation in Alzheimer’s disease: the remembrance of things passed. Neurology 61: 1491–1497, in Google Scholar

Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11: 47–60, in Google Scholar

Morris, R.G., Garrud, P., Rawlins, J.N., and O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 297: 681–683, in Google Scholar

Morris, R.G.M. (1981). Spatial localization does not require the presence of local cues. Learn. Motiv. 12: 239–260, in Google Scholar

Morris, R.G.M., Schenk, F., Tweedie, F., and Jarrard, L.E. (1990). Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur. J. Neurosci. 2: 1016–1028, in Google Scholar PubMed

Mueller, S.C., Jackson, C.P.T., and Skelton, R.W. (2008). Sex differences in a virtual water maze: an eye tracking and pupillometry study. Behav. Brain Res. 193: 209–215, in Google Scholar PubMed

Muffatto, V., Meneghetti, C., and De Beni, R. (2016). Not all is lost in older adults’ route learning: the role of visuo-spatial abilities and type of task. J. Environ. Psychol. 47: 230–241, in Google Scholar

Newhouse, P., Newhouse, C., and Astur, R.S. (2007). Sex differences in visual-spatial learning using a virtual water maze in pre-pubertal children. Behav. Brain Res. 183: 1–7, in Google Scholar PubMed

Newman, E.L., Caplan, J.B., Kirschen, M.P., Korolev, I.O., Sekuler, R., and Kahana, M.J. (2007). Learning your way around town: how virtual taxicab drivers learn to use both layout and landmark information. Cognition 104: 231–253, in Google Scholar PubMed

Nunez, J. (2008). Morris water maze experiment. JoVE 19: 897, in Google Scholar

O’Keefe, J., Nadel, L., Keighley, S., and Kill, D. (1975). Fornix lesions selectively abolish place learning in the rat. Exp. Neurol. 48: 152–166.10.1016/0014-4886(75)90230-7Search in Google Scholar

Olton, D.S., and Samuelson, R.J. (1976). Remembrance of places passed: spatial memory in rats. J. Exp. Psychol. Anim. Behav. Process. 2: 97, in Google Scholar

Olton, D.S. (1979). Mazes, maps, and memory. Am. Psychol. 34: 583–596, in Google Scholar

Overman, W.H., Pate, B.J., Moore, K., and Peuster, A. (1996). Ontogeny of place learning in children as measured in the radial arm maze, Morris search task and open field task. Behav. Neurosci. 110: 1205–1228, in Google Scholar

Packard, M.G., and McGaugh, J.L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol. Learn. Mem. 65: 65–72, in Google Scholar PubMed

Park, J.L., Dudchenko, P.A., and Donaldson, D.I. (2018). Navigation in real-world environments: new opportunities afforded by advances in mobile brain imaging. Front. Hum. Neurosci. 12: 361, in Google Scholar PubMed PubMed Central

Piper, B.J., Acevedo, S.F., Craytor, M.J., Murray, P.W., and Raber, J. (2010). The use and validation of the spatial navigation Memory Island test in primary school children. Behav. Brain Res. 210: 257–262, in Google Scholar PubMed PubMed Central

Possin, K.L., Sanchez, P.E., Anderson-Bergman, C., Fernandez, R., Kerchner, G.A., Johnson, E.T., Davis, A., Lo, I., Bott, N.T., and Kiely, T., et al. (2016). Cross-species translation of the Morris maze for Alzheimer’s disease. J. Clin. Invest. 126: 779–783, in Google Scholar

Redhead, E.S., and Hamilton, D.A. (2009). Evidence of blocking with geometric cues in a virtual watermaze. Learn. Motiv. 40: 15–34, in Google Scholar

Redhead, E.S., Hamilton, D.A., Parker, M.O., Chan, W., and Allison, C. (2013). Overshadowing of geometric cues by a beacon in a spatial navigation task. Learn. Behav. 41: 179–191, in Google Scholar PubMed

Reisel, W.D., and Banai, M. (2002). Comparison of a multidimensional and a global measure of job insecurity: predicting job attitudes and work behaviors. Psychol. Rep. 90: 913–922, in Google Scholar PubMed

Ribeiro, N., Sagnier, C., Quaglino, V., Gounden, Y., and Loup-Escande, E. (2020). Effect of a short rest period on associative and relational memory performance: a virtual reality study. Int. J. Virtual Real. 20: 21–32, in Google Scholar

Richardson, A.E., Montello, D.R., and Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem. Cognit. 27: 741–750, in Google Scholar PubMed

Rodgers, M.K., Sindone, J.A., and Moffat, S.D. (2012). Effects of age on navigation strategy. Neurobiol. Aging 33: 202.e15-e22, in Google Scholar PubMed PubMed Central

Rodriguez-Andres, D., Mendez-Lopez, M., Juan, M., and Perez-Hernandez, E. (2018). A virtual object-location task for children: gender and videogame experience influence navigation; age impacts memory and completion time. Front. Psychol. 9: 451, in Google Scholar PubMed PubMed Central

Rogers, N., San Martín, C., Ponce, D., Henriquez, M., Valdes, J.L., and Behrens, M.I. (2017). Virtual spatial navigation correlates with the Moca score in amnestic mild cognitive impairment patients. J. Neurol. Sci. 381: 116–117, in Google Scholar

Rose, F.D., Brooks, B.M., and Rizzo, A.A. (2005). Virtual reality in brain damage rehabilitation: review. Cyberpsychol. Behav. 8: 241–262, in Google Scholar PubMed

Ruddle, R.A., Payne, S.J., and Jones, D.M. (1997). Navigating buildings in “desk-top” virtual environments: experimental investigations using extended navigational experience. J. Exp. Psychol. Appl. 3: 143, in Google Scholar

Salgado-Pineda, P., Landin-Romero, R., Portillo, F., Bosque, C., Pomes, A., Spanlang, B., Franquelo, J.C., Teixido, C., Sarró, S., and Salvador, R., et al. (2016). Examining hippocampal function in schizophrenia using a virtual reality spatial navigation task. Schizophr. Res. 172: 86–93, in Google Scholar PubMed

Schmidt-Hieber, C., and Häusser, M. (2013). Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat. Neurosci. 16: 325–331, in Google Scholar

Schoenfeld, R., Moenich, N., Mueller, F.-J., Lehmann, W., and Leplow, B. (2010). Search strategies in a human water maze analogue analyzed with automatic classification methods. Behav. Brain Res. 208: 169–177, in Google Scholar

Schoenfeld, R., Schiffelholz, T., Beyer, C., Leplow, B., and Foreman, N. (2017). Variants of the Morris water maze task to comparatively assess human and rodent place navigation. Neurobiol. Learn. Mem. 139: 117–127, in Google Scholar

Sharma, G., Kaushal, Y., Chandra, S., Singh, V., Mittal, A.P., and Dutt, V. (2017). Influence of landmarks on way finding and brain connectivity in immersive virtual reality environment. Front. Psychol. 8: 1220, in Google Scholar

Shipman, S.L., and Astur, R.S. (2008). Factors affecting the hippocampal BOLD response during spatial memory. Behav. Brain Res. 187: 433–441, in Google Scholar

Skelton, R.W., Bukach, C.M., Laurance, H.E., Thomas, K.G., and Jacobs, J.W. (2000). Humans with traumatic brain injuries show place-learning deficits in computer-generated virtual space. J. Clin. Exp. Neuropsychol. 22: 157–175,;1-1;ft157.10.1076/1380-3395(200004)22:2;1-1;FT157Search in Google Scholar

Skelton, R.W., Ross, S.P., Nerad, L., and Livingstone, S.A. (2006). Human spatial navigation deficits after traumatic brain injury shown in the arena maze, a virtual Morris water maze. Brain Inj. 20: 189–203, in Google Scholar

Slobounov, S.M., Ray, W., Johnson, B., Slobounov, E., and Newell, K.M. (2015). Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Int. J. Psychophysiol. 95: 254–260, in Google Scholar

Small, W.S. (1901). Experimental study of the mental processes of the rat. II. Am. J. Psychol. 12: 206–239, in Google Scholar

Sousa Santos, B., Dias, P., Pimentel, A., Baggerman, J.-W., Ferreira, C., Silva, S., and Madeira, J. (2008). Head-mounted display versus desktop for 3D navigation in virtual reality: a user study. Multimed. Tool. Appl. 41: 161, in Google Scholar

Spiers, H.J., and Maguire, E.A. (2006). Spontaneous mentalizing during an interactive real world task: an fMRI study. Neuropsychologia 44: 1674–1682, in Google Scholar

Spiers, H.J., and Maguire, E.A. (2008). The dynamic nature of cognition during wayfinding. J. Environ. Psychol. 28: 232–249, in Google Scholar

Sutherland, R.J. and Rudy, J.W. (1988). Place learning in the Morris place navigation task is impaired by damage to the hippocampal formation even if the temporal demands are reduced. Psychobiology 16: 157–163.10.3758/BF03333120Search in Google Scholar

Thorndyke, P.W., and Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognit. Psychol. 14: 560–589, in Google Scholar

Tolman, E.C. (1949). There is more than one kind of learning. Psychol. Rev. 56: 144, in Google Scholar PubMed

Tu, S., Spiers, H.J., Hodges, J.R., Piguet, O., and Hornberger, M. (2017). Egocentric versus allocentric spatial memory in behavioural variant frontotemporal dementia and Alzheimer’s disease. J. Alzheim. Dis. 59: 883–892, in Google Scholar

van der Ham, I.J.M., and Claessen, M.H.G. (2020). How age relates to spatial navigation performance: functional and methodological considerations. Ageing Res. Rev. 58: 101020, in Google Scholar PubMed

van der Ham, I.J.M., Faber, A.M.E., Venselaar, M., van Kreveld, M.J., and Löffler, M. (2015). Ecological validity of virtual environments to assess human navigation ability. Front. Psychol. 6: 637, in Google Scholar PubMed PubMed Central

van der Ham, I.J.M., van Zandvoort, M.J.E., Meilinger, T., Bosch, S.E., Kant, N., and Postma, A. (2010). Spatial and temporal aspects of navigation in two neurological patients. Neuroreport 21: 685–689, in Google Scholar PubMed

Veling, W., Moritz, S., and van der Gaag, M. (2014). Brave new worlds—review and update on virtual reality assessment and treatment in psychosis. Schizophr. Bull. 40: 1194–1197, in Google Scholar PubMed PubMed Central

Vinson, N.G. (1999). Design guidelines for landmarks to support navigation in virtual environments. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 278–285.10.1145/302979.303062Search in Google Scholar

Vorhees, C.V., and Williams, M.T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1: 848–858, in Google Scholar

Vorhees, C.V., and Williams, M.T. (2014). Assessing spatial learning and memory in rodents. ILAR J. 55: 310–332, in Google Scholar

Watanabe, S., and Bischof, H.J. (2004). Effects of hippocampal lesions on acquisition and retention of spatial learning in zebra finches. Behav. Brain Res. 155: 147–152, in Google Scholar

Weniger, G., and Irle, E. (2008). Allocentric memory impaired and egocentric memory intact as assessed by virtual reality in recent-onset schizophrenia. Schizophr. Res. 101: 201–209, in Google Scholar

Weniger, G., Ruhleder, M., Lange, C., Wolf, S., and Irle, E. (2011). Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49: 518–527, in Google Scholar

Whishaw, I.Q. (1985). Formation of a place learning-set by the rat: a new paradigm for neurobehavioral studies. Physiol. Behav. 35: 139–143, in Google Scholar

Wiener, J.M., Carroll, D., Moeller, S., Bibi, I., Ivanova, D., Allen, P., and Wolbers, T. (2020). A novel virtual-reality-based route-learning test suite: assessing the effects of cognitive aging on navigation. Behav. Res. Methods 52: 630–640, in Google Scholar PubMed PubMed Central

Williams, M.T., Morford, L.L., Wood, S.L., Wallace, T.L., Fukumura, M., Broening, H.W., and Vorhees, C.V. (2003). Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory. Synapse 48: 138–148, in Google Scholar PubMed

Woollett, K., Spiers, H.J., and Maguire, E.A. (2009). Talent in the taxi: a model system for exploring expertise. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364: 1407–1416, in Google Scholar PubMed PubMed Central

Woolley, D.G., Laeremans, A., Gantois, I., Mantini, D., Vermaercke, B., Op de Beeck, H.P., Swinnen, S.P., Wenderoth, N., Arckens, L., and D’Hooge, R. (2013). Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc. Natl. Acad. Sci. USA 110: 3131–3136, in Google Scholar

Woolley, D.G., Vermaercke, B., Op de Beeck, H., Wagemans, J., Gantois, I., D’Hooge, R., Swinnen, S.P., and Wenderoth, N. (2010). Sex differences in human virtual water maze performance: novel measures reveal the relative contribution of directional responding and spatial knowledge. Behav. Brain Res. 208: 408–414, in Google Scholar

Worsley, C.L., Recce, M., Spiers, H.J., Marley, J., Polkey, C.E., and Morris, R.G. (2001). Path integration following temporal lobectomy in humans. Neuropsychologia 39: 452–464, in Google Scholar

Yip, C.K., and Man, D.W.K. (2009). Validation of a computerized cognitive assessment system for persons with stroke: a pilot study. Int. J. Rehabil. Res. 32: 270–278, in Google Scholar PubMed

Zhong, J.Y., Magnusson, K.R., Swarts, M.E., Clendinen, C.A., Reynolds, N.C., and Moffat, S.D. (2017). The application of a rodent-based Morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning. Behav. Neurosci. 131: 470–482, in Google Scholar PubMed PubMed Central

Received: 2020-12-15
Accepted: 2021-02-20
Published Online: 2021-04-12
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.10.2023 from
Scroll to top button