Abstract
Huntington’s disease (HD), a neurodegenerative disorder caused by an expansion of the huntingtin triplet (Htt), is clinically characterized by cognitive and neuropsychiatric alterations. Although these alterations appear to be related to mutant Htt (mHtt)-induced neurotoxicity, several other factors are involved. The gut microbiota is a known modulator of brain-gut communication and when altered (dysbiosis), several complaints can be developed including gastrointestinal dysfunction which may have a negative impact on cognition, behavior, and other mental functions in HD through several mechanisms, including increased levels of lipopolysaccharide, proinflammatory cytokines and immune cell response, as well as alterations in Ca2+ signaling, resulting in both increased intestinal and blood-brain barrier (BBB) permeability. Recently, the presence of dysbiosis has been described in both transgenic mouse models and HD patients. A bidirectional influence between host brain tissues and the gut microbiota has been observed. On the one hand, the host diet influences the composition and function of microbiota; and on the other hand, microbiota products can affect BBB permeability, synaptogenesis, and the regulation of neurotransmitters and neurotrophic factors, which has a direct effect on host metabolism and brain function. This review summarizes the available evidence on the pathogenic synergism of dysbiosis and homocysteine, and their role in the transgression of BBB integrity and their potential neurotoxicity of HD.
-
Author contribution: · Study concept and design: Cárdenas G, González-Guevara E, Boll C, Martínez-Lazcano JC· Data acquisition: Cárdenas G, González-Guevara E, Boll C, Martínez-Lazcano JC· Data analysis and interpretation: Cárdenas G, González-Guevara E, Boll C, Martínez-Lazcano JC.· Manuscript drafting: Cárdenas G, González-Guevara E, Boll C, Martínez-Lazcano JC· Critical revision of the manuscript for important intellectual content: Cárdenas G.
-
Research funding: This research received no specific grant from any funding agency in the public, commercial, nor not-for-profit sectors.
-
Conflict of interest statement: The authors declare that no conflict of interest exists.
References
Abeti, R. and Abramov, A.Y. (2015). Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol. Res. 99: 377–381, https://doi.org/10.1016/j.phrs.2015.05.007.Search in Google Scholar PubMed
Aldaz, T., Nigro, P., Sánchez-Gomez, A., Painous, C., Planella, L., Santacruz, P., Cámara, A., Compta, Y., Valldeoriola, F., Marti, M.J., et al.. (2019). Non-motor symptoms in Huntington’s disease: a comparative study with Parkinson’s disease. J. Neurol. 266: 1340–1350, https://doi.org/10.1007/s00415-019-09263-7.Search in Google Scholar PubMed
Andrich, J., Saft, C., Arz, A., Schneider, B., Agelink, M.W., Kraus, P.H., Kuhn, W., and Müller, T. (2004). Hyperhomocysteinaemia in treated patients with Huntington’s disease homocysteine in HD. Mov. Disord. 19: 226–228, https://doi.org/10.1002/mds.10629.Search in Google Scholar PubMed
Andrich, J.E., Wobben, M., Klotz, P., Goetze, O., and Saft, C. (2009). Upper gastrointestinal findings in Huntington’s disease: patients suffer but do not complain. J. Neural Transm. (Vienna) 116: 1607–1611, https://doi.org/10.1007/s00702-009-0310-1.Search in Google Scholar PubMed
Aziz, N.A., Anguelova, G.V., Marinus, J., van Dijk, J.G., and Roos, R.A. (2010). Autonomic symptoms in patients and pre-manifest mutation carriers of Huntington’s disease. Eur. J. Neurol. 17: 1068–1074, https://doi.org/10.1111/j.1468-1331.2010.02973.x.Search in Google Scholar PubMed
Bezprozvanny, I. (2009). Calcium signaling and neurodegenerative diseases. Trends Mol. Med. 15: 89–100, https://doi.org/10.1016/j.molmed.2009.01.001.Search in Google Scholar PubMed PubMed Central
Bhatia, P. and Singh, N. (2015). Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam. Clin. Pharmacol. 29: 522–528, https://doi.org/10.1111/fcp.12145.Search in Google Scholar PubMed
Björkqvist, M., Wild, E.J., Thiele, J., Silvestroni, A., Andre, R., Lahiri, N., Raibon, E., Lee, R.V., Benn, C.L., Soulet, D., et al.. (2008). A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med. 205: 1869–1877, https://doi.org/10.1084/jem.20080178.Search in Google Scholar PubMed PubMed Central
Boldyrev, A.A., Bryushkova, E.A., Mashkina, A., and Vladychenskaya, E. (2013). Why is homocysteine toxic for the nervous and immune systems? Curr. Aging. Sci. 6: 29–36, https://doi.org/10.1134/s0006297912020022.Search in Google Scholar PubMed
Boutell, J.M., Wood, J.D., Harper, P.S., and Lones, A.L. (1998). Huntingtin interacts with cystathionine beta-synthase. Hum. Mol. Genet. 7: 371–378, https://doi.org/10.1093/hmg/7.3.371.Search in Google Scholar PubMed
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Morecka, A., Bakocevic, N., Ng, L.G., Kundu, P., et al.. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6: 263ra158, https://doi.org/10.1126/scitranslmed.3009759.Search in Google Scholar PubMed PubMed Central
Chakaroun, R.M., Massier, L., and Kovacs, P. (2020). Gut Microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients 12: 1082, https://doi.org/10.3390/nu12041082.Search in Google Scholar PubMed PubMed Central
Chen, H., Fitzgerald, R., Brown, A.T., Qureshi, I., Breckenridge, J., Kazi, R., Wang, Y., Wu, Y., Zhang, X., Mukunyadzi, P., et al.. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J. Vasc. Surg. 41: 853–860, https://doi.org/10.1016/j.jvs.2005.02.021.Search in Google Scholar PubMed
Chen, J.Y., Ye, Z.X., Wang, X.F., Chang, J., Yang, M.W., Zhong, H.H., Hong, F.F., and Yang, S.L. (2018). Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed. Pharmacother. 97: 423–428, https://doi.org/10.1016/j.biopha.2017.10.122.Search in Google Scholar PubMed
Christine, C.W., Auinger, P., Joslin, A., Yelpaala, Y., Green, R., and Parkinson Study Group-DATATOP investigators (2018). Vitamin B12 and homocysteine levels predict different outcomes in early Parkinson’s disease. Mov. Disord. 33: 762–770, https://doi.org/10.1002/mds.27301.Search in Google Scholar PubMed
Craufurd, D., Thompson, J.C., and Snowden, J.S. (2001). Behavioral changes in Huntington disease. Cognit. Behav. Neurol. 14: 219–226.Search in Google Scholar
Czeredys, M., Vigont, V.A., Boeva, V.A., Mikoshiba, K., Kaznacheyeva, E.V., and Kuznicki, J. (2018). Huntingtin associated protein 1A regulates store-operated calcium entry un medium spiny neurons from transgenic YAC128 mice, a model of Huntington’s disease. Front. Cell. Neurosci. 12: 381, https://doi.org/10.3389/fncel.2018.00381.Search in Google Scholar PubMed PubMed Central
Di Pardo, A. and Maglione, V. (2018). The S1P Axis: new exciting route for treating Huntington’s disease. Trends Pharmacol. Sci. 39: 468–480.10.1016/j.tips.2018.02.009Search in Google Scholar PubMed
Djoussé, L., Knowlton, B., Cupples, L.A., Marder, K., Shoulson, I., and Myers, R.H. (2002). Weight loss in early stage of Huntington’s disease. Neurology 59: 1325–1330, https://doi.org/10.1212/01.wnl.0000031791.10922.cf.Search in Google Scholar PubMed
Dong, B. and Wu, R. (2020). Plasma homocysteine, folate and vitamin B12 levels in Parkinson’s disease in China: a meta-analysis. Clin Neurol Neurosurg. 188: 105587, https://doi.org/10.1016/j.clineuro.2019.1055878.Search in Google Scholar
Drouin-Ouellet, J., Sawiak, S.J., Cisbani, G., Lagacé, M., Kuan, W.L., Saint-Pierre, M., Dury, R.J., Alata, W., St-Amour, I., Mason, S.L., et al.. (2015). Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann. Neurol. 78: 160–177, https://doi.org/10.1002/ana.24406.Search in Google Scholar PubMed
Du, G., Dong, W., Yang, Q., Yu, X., Ma, J., Gu, W., and Huang, Y. (2021). Altered gut microbiota related to inflammatory responses in patients with Huntington’s disease. Front. Immunol. 11: 603594, https://doi.org/10.3389/fimmu.2020.603594.Search in Google Scholar PubMed PubMed Central
Duran-Vilaregut, J., del Valle, J., Camins, A., Pallàs, M., Pelegrí, C., and Vilaplana, J. (2009). Blood-brain barrier disruption in the striatum of rats treated with 3-nitropropionic acid. Neurotoxicology 30: 136–143, https://doi.org/10.1016/j.neuro.2008.10.007.Search in Google Scholar PubMed
Fitzgerald, E., Murphy, S., and Martinson, H.A. (2019). Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease. Front. Neurosci. 13: 369, https://doi.org/10.3389/fnins.2019.00369.Search in Google Scholar PubMed PubMed Central
Geng, Y.J. and Libby, P. (1995). Evidence for apoptosis in advanced human atheroma. Co-localization with interleukin-1β-converting enzyme. Am. J. Pathol. 147: 251–266.Search in Google Scholar
Gerhardt, S. and Mohajeri, M.H. (2018). Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients 10: 708, https://doi.org/10.3390/nu10060708.Search in Google Scholar PubMed PubMed Central
Giacomello, M., Oliveros, J.C., Naranjo, J.R., and Carafoli, E. (2013). Neuronal Ca2+ dyshomeostasis in Huntington disease. Prion 7: 76–84, https://doi.org/10.4161/pri.23581.Search in Google Scholar PubMed PubMed Central
Gubert, C., Kong, G., Renoir, T., and Hannan, A.J. (2020). Exercise, diet and stress as modulators of gut microbiota: implications for neurodegenerative diseases. Neurobiol. Dis. 134: 103621, https://doi.org/10.1016/j.nbd.2019.104621.Search in Google Scholar PubMed
Hasegawa, T., Ukai, W., Jo, D.G., Xu, X., Mattson, M.P., Nakagawa, M., Araki, W., Saito, T., and Yamada, T. (2005). Homocysteic acid induces intraneuronal accumulation of neurotoxic Abeta42-implications for pathogenesis of Alzheimer’s disease. J. Neurosci. Res. 80: 869–876, https://doi.org/10.1002/jnr.20514.Search in Google Scholar PubMed
Hoffmann, A., Kann, O., Ohlemeyer, C., Hanisch, U.K., and Kettenmann, H. (2003). Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J. Neurosci. 23: 4410–4419, https://doi.org/10.1523/jneurosci.23-11-04410.2003.Search in Google Scholar
Hirschberg, S., Gisevius, B., Duscha, A., and Haghikia, A. (2019). Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int. J. Mol. Sci. 20: 3109, https://doi.org/10.3390/ijms20123109.Search in Google Scholar PubMed PubMed Central
Hogan, P.G. and Rao, A. (2015). Store-operated calcium entry: mechanisms and modulation. Biochem. Biophys. Res. Commun. 460: 40–49, https://doi.org/10.1016/j.bbrc.2015.02.110.Search in Google Scholar PubMed PubMed Central
Hogan, P.G., Lewis, R.S., and Rao, A. (2010). Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28: 491–533, https://doi.org/10.1146/annurev.immunol.021908.132550.Search in Google Scholar PubMed PubMed Central
Hsiao, H.Y., Chen, Y.C., Huang, C.H., Chen, C.C., Hsu, Y.H., Chen, H.M., Chiu, F.L., Kuo, H.C., Chang, C., and Chern, Y. (2015). Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann. Neurol. 78: 178–192, https://doi.org/10.1002/ana.24428.Search in Google Scholar PubMed
Isobe, C., Murata, T., Sato, C., and Terayama, Y. (2005). Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer‘s disease and Parkinson‘s disease. Life Sci. 77: 1836–1843, https://doi.org/10.1016/j.lfs.2005.02.014.Search in Google Scholar PubMed
Joseph, R., Nath, G., and Joseraj, M.G. (2011). Elevated plasma homocysteine levels in chronic periodontitis: a hospital-based case-control study. J. Periodontol. 82: 439–444, https://doi.org/10.1902/jop.2010.100271.Search in Google Scholar PubMed
Kettenmann, H., Hanisch, U.K., Noda, M., and Verkhratsky, A. (2011). Physiology of microglia. Physiol. Rev. 91: 461–553, https://doi.org/10.1152/physrev.00011.2010.Search in Google Scholar PubMed
Kim, G.W., Gasche, Y., Grzeschik, S., Copin, J.C., Maier, C.M., and Chan, P.H. (2003). Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood-brain barrier disruption? J. Neurosci. 23: 8733–8742, https://doi.org/10.1523/jneurosci.23-25-08733.2003.Search in Google Scholar
Kobal, J., Melik, Z., Cankar, K., Bajrovic, F.F., Meglic, B., Peterlin, B., and Zaletel, M. (2010). Autonomic dysfunction in presymptomatic and early symptomatic Huntington’s disease. Acta Neurol. Scand. 121: 392–399, https://doi.org/10.1111/j.1600-0404.2009.01251.x.Search in Google Scholar PubMed
Kolobkova, Y.A., Vigont, V.A., Shalygin, A.V., and Kaznacheyeva, E.V. (2017). Huntington’s disease: calcium dyshomeostasis and pathology models. Acta Naturae 9: 34–46, https://doi.org/10.32607/20758251-2017-9-2-34-46.Search in Google Scholar
Kong, G., Le Cao, K.A., Judd, L.M., Li, S., Renoir, T., and Hannan, A.J. (2020). Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis. 135: 104268, https://doi.org/10.1016/j.nbd.2018.09.001.Search in Google Scholar PubMed
Kong, G., Ellul, S., Narayana, V.N., Kanojia, K., Ha, H.T.T., Li, S., Renoir, T., Le Cao, C.A., and Hannan, A.J. (2021). An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington’s disease. Neurobiol. Dis. 148: 105199, https://doi.org/10.1016/j.nbd.2020.105199.Search in Google Scholar PubMed
Kunisawa, K., Nakashima, N., Nagao, M., Nomura, T., Kinoshita, S., and Hiramatsu, M. (2015). Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex. Behav. Brain Res. 292: 36–43, https://doi.org/10.1016/j.bbr.2015.06.004.Search in Google Scholar
Lanska, D.J., Lavine, L., Lanska, M.J., and Schoenberg, B.S. (1988). Huntington’s disease mortality in the United States. Neurology 38: 769–772, https://doi.org/10.1212/wnl.38.5.769.Search in Google Scholar
Levine, J., Stahl, Z., Sela, B.A., Gavendo, S., Ruderman, V., and Belmaker, R.H. (2002). Elevated homocysteine levels in young male patients with schizophrenia. Am. J. Psychiatry 159: 1790–1792, https://doi.org/10.1176/appi.ajp.159.10.1790.Search in Google Scholar
Lin, C.Y., Hsu, Y.H., Lin, M.H., Yang, T.H., Chen, H.M., Chen, Y.C., Hsiao, H.Y., Chen, C.C., Chern, Y., and Chang, C. (2013). Neurovascular abnormalities in humans and mice with Huntington’s disease. Exp. Neurol. 250: 20–30, https://doi.org/10.1016/j.expneurol.2013.08.019.Search in Google Scholar
Luckhoff, A. and Busse, R. (1990). Calcium influx into endothelial cells and formation of endothelium-relaxing factor is controlled by the membrane potential. Pflüger’s Arch. 416: 305–317, https://doi.org/10.1007/BF00392067.Search in Google Scholar
Lurz, E., Horne, R.G., Määttänen, P., Wu, R.Y., Botts, S.R., Rossi, L., Johnson-Henry, K.C., Pierro, A., Surette, M.G., and Sherman, P.M. (2020). Vitamin B12 deficiency alters the gut microbiota in a murine model of colitis. Front. Nutr. 7: 83, https://doi.org/10.3389/fnut.2020.00083.Search in Google Scholar
Macharia, M., Hassan, M.S., Blackhurst, D., Erasmus, R.T., and Matsha, T.E. (2012). The growing importance of PON in cardiovascular health: review. J. Cardiovasc. Med. 13: 443–453, https://doi.org/10.2459/jcm.0b013e328354e3ac.Search in Google Scholar
Maes, M. (2008). The cytokine hypothesis of depression: inflammation, oxidative and nitrosative stress (IO & NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro. Endocrinol. Lett. 29: 287–291.Search in Google Scholar
Majewski, L. and Kuznicki, J. (2015). SOCE in neurons: signaling or just refilling. Biochim. Biophys. Acta 1853: 1940–1952, https://doi.org/10.1016/j.bbamcr.2015.01.019.Search in Google Scholar
Makhro, A.V., Bulygina, E.R., and Boldyrev, A.A. (2007). Effects of homocysteine and homocysteic acid in cerebellar granule cells. Neurochem. J. 1: 127–132, https://doi.org/10.1134/s1819712407020031.Search in Google Scholar
May, P.C. and Gray, P.N. (1985). L-Homocysteic acid as an alternative cytotoxin for studying glutamate-induced cellular degeneration of Huntington’s disease and normal skin fibroblasts. Life Sci. 37: 1483–1489, https://doi.org/10.1016/0024-3205(85)90179-1.Search in Google Scholar
McLarnon, J.G. (2020). Microglial store-operated calcium signaling in health and in Alzheimer’s disease. Curr. Alzheimer Res. 17: 1057–1106, https://doi.org/10.2174/1567205018666210119143817.Search in Google Scholar PubMed
Morris, M.S., Jacques, P.F., Rosenberg, I.H., and Selhub, J. (2001). Hyperhomocysteinemia associated with poor recall in the third national health and nutrition examination survey. Am. J. Clin. Nutr. 73: 927–933, https://doi.org/10.1093/ajcn/73.5.927.Search in Google Scholar PubMed
Pacheco-Quinto, J., Rodriguez de Turco, E.B., DeRosa, S., Howard, A., Cruz-Sanchez, F., Sambamurti, K., Refolo, L., Petanceska, S., and Pappolla, M.A. (2006). Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid beta peptide levels. Neurobiol. Dis. 22: 651–656, https://doi.org/10.1016/j.nbd.2006.01.005.Search in Google Scholar PubMed
Papatheodorou, L. and Weiss, N. (2007). Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid. Redox Signal. 9: 1941–1958, https://doi.org/10.1089/ars.2007.1750.Search in Google Scholar PubMed
Parker, A., Fonseca, S., and Carding, S.R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microb. 11: 135–137, https://doi.org/10.1080/19490976.2019.1638722.Search in Google Scholar PubMed PubMed Central
Persidsky, Y., Ramirez, S.H., Haorah, J., and Kanmogne, G.D. (2006). Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol. 1: 223–236, https://doi.org/10.1007/s11481-006-9025-3.Search in Google Scholar PubMed
Perla-Kaján, J. and Jakubowski, H. (2012). Paraoxonase 1 and homocysteine metabolism. Amino Acids 43: 1405–1417, https://doi.org/10.1007/s00726-012-1321-z.Search in Google Scholar PubMed
Pi, T., Liu, B., and Shi, J. (2020). Abnormal homocysteine metabolism: an insight of Alzheimer’s disease from DNA methylation. Behav. Neurol. 2020: 8438602, https://doi.org/10.1155/2020/8438602.Search in Google Scholar PubMed PubMed Central
Poddar, R. and Paul, S. (2009). Homocysteine-NMDA receptor.mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. Neurochemistry 110: 1095–1106, https://doi.org/10.1111/j.1471-4159.2009.06207.x.Search in Google Scholar PubMed PubMed Central
Qureshi, I., Chen, H., Brown, A.T., Fitzgerald, R., Zhang, X., Breckenridge, J., Kazi, R., Crocker, A.J., Stuhlinger, M.C., Lin, K., et al.. (2005). Homocysteine induced vascular dysregulation is mediated by the NMDA receptor. Vasc. Med. 10: 215–223, https://doi.org/10.1191/1358863x05vm626oa.Search in Google Scholar PubMed
Radulescu, C.I., Garcia-Miralles, M., Sidik, H., Bardile, C.F., Yusof, N., Lee, H.U., Xo, E.X.P., Chu, C.W., Layton, E., Low, D., et al.. (2019). Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiol. Dis. 127: 65–75, https://doi.org/10.1016/j.nbd.2019.02.011.Search in Google Scholar
Robbins, A., Ho, A., and Barker, R. (2006). Weight changes in Huntington’s disease. Eur. J. Neurol. 13: e7, https://doi.org/10.1111/j.1468-1331.2006.01319.x.Search in Google Scholar
Ross, C.A. and Tabrizi, S.J. (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10: 83–98, https://doi.org/10.1016/s1474-4422(10)70245-3.Search in Google Scholar
Roy, S.S. and Banerjee, S. (2019). Gut microbiota in neurodegenerative disorders. J. Neuroimmunol. 328: 98–104, https://doi.org/10.1016/j.jneuroim.2019.01.004.Search in Google Scholar PubMed
Russo, C., Morabito, F., Luise, F., Piromalli, A., Battaglia, L., Vinci, A., Trapani, Lombardo, V., de Marco, V., Morabito, P., Condino, F., et al.. (2008). Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. J. Neurol. 255: 64–69, https://doi.org/10.1007/s00415-007-0668-7.Search in Google Scholar PubMed
Rybakova, Y., Akkuratov, E., Kulebyakin, K., Brodskaya, O., Dizhevskaya, A., and Boldyrev, A. (2012). Receptor-mediated oxidative stress in murine cerebellar neurons is accompanied by phosphorylation of MAP (ERK1/2) kinase. Curr. Aging Sci. 5: 225–230, https://doi.org/10.2174/1874609811205030009.Search in Google Scholar PubMed
Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al.. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167: 1469–1480, https://doi.org/10.1016/j.cell.2016.11.018.Search in Google Scholar PubMed PubMed Central
Scheperjans, F., Aho, V., Pereira, P.A., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Rautio, J.E., Pohja, M, et al.. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30: 350–358, https://doi.org/10.1002/mds.26069.Search in Google Scholar PubMed
Sciacca, G. and Cicchetti, F. (2017). Mutant huntingtin protein expression and blood–spinal cord barrier dysfunction in Huntington disease. Ann. Neurol. 82: 981–994, https://doi.org/10.1002/ana.25107.Search in Google Scholar PubMed
Shaw, P.J. and Feske, S. (2012). Physiological and pathophysiological functions of SOCE in the immune system. Front. Biosci. (Elite Ed.) 4: 2253–2268, https://doi.org/10.2741/540.Search in Google Scholar
Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D’Agostino, R.B., Wilson, P.W., and Wolf, P.A. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346: 476–483, https://doi.org/10.1056/nejmoa011613.Search in Google Scholar PubMed
Signorello, M.G., Pascale, R., and aLeoncini, G. (2002). Effect of homocysteine on arachidonic acid release in human platelets. Eur. J. Clin. Invest. 32: 279–284, https://doi.org/10.1046/j.1365-2362.2002.00971.x.Search in Google Scholar PubMed
Sorensen, S.A. and Fenger, K. (1992). Causes of death in patients with Huntington’s disease and in unaffected first-degree relatives. J. Med. Genet. 29: 911–914, https://doi.org/10.1136/jmg.29.12.911.Search in Google Scholar PubMed PubMed Central
Stan, T.L., Soylu-Kucharz, R., Burleigh, S., Prykhodko, O., Cao, L., Franke, N., Sjögren, M., Haikal, C., Hallenius, F., and Björkqvist, M. (2020). Increased intestinal permeability and gut dysbiosis in R6/2 mouse model of Huntington’s disease. Sci. Rep. 10: 18270, https://doi.org/10.1038/s41598-020-75229-9.Search in Google Scholar PubMed PubMed Central
Tian, L., Shihua, L., Xiaozhong, G., Qiang, C., and Xiao-Jiang, L. (2019). Expression, and localization of Huntingtin-associated protein 1(HAP1) in the human digestive system. Dig. Dis. Sci. 64: 1486–1492, https://doi.org/10.1007/s10620-018-5425-5.Search in Google Scholar PubMed PubMed Central
Tang, Y. and Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53: 1181–1194, https://doi.org/10.1007/s12035-014-9070-5.Search in Google Scholar PubMed
Thaler, R., Agsten, M., Spitzer, S., Paschalis, E.P., Karlic, H., Klaushofer, K., and Varga, F. (2011). Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J. Biol. Chem. 286: 5578–5588, https://doi.org/10.1074/jbc.m110.166181.Search in Google Scholar
Tomas-Barberan, F.A., Garcia-Villalba, R., Gonzalez-Sarrias, A., Selma, M.V., and Espin, J.C. (2014). Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J. Agric. Food Chem. 62: 6535–6653, https://doi.org/10.1021/jf5024615.Search in Google Scholar PubMed
Trager, U., Andre, R., Lahiri, N., Magnusson-Lind, A., Weiss, A., Grueninger, S., McKinnon, C., Sirinathsinghji, E., Kahlon, S., Pfister, E.L., et al.. (2014). HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain 137: 819–833, https://doi.org/10.1093/brain/awt355.Search in Google Scholar PubMed PubMed Central
Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients 2: 21231–21246, https://doi.org/10.3390/nu2121231.Search in Google Scholar PubMed PubMed Central
Upchurch, G.R.Jr, Welch, G.N., Fabian, A.J., Freedman, J.E., Johnson, J.L., Keaney, J.F.Jr, and Loscalzo, J. (1997). Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J. Biol. Chem. 227: 17012–17017, https://doi.org/10.1074/jbc.272.27.17012.Search in Google Scholar PubMed
van der Burg, J.M., Winqvist, A., Aziz, N.A., Maat-Schieman, M.L., Roos, R.A., Bates, G.P., Brundin, P., Björkqvist, M., and Wierup, N. (2011). Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol. Dis. 44: 1–8, https://doi.org/10.1016/j.nbd.2011.05.006.Search in Google Scholar PubMed
Vigont, V., Kolobkova, Y., Skopin, A., Zimina, O., Zenin, V., Glushankova, L., and Kaznacheyeva, E. (2015). Both Orai1 and TRPC1 are involved in excessive store-operated calcium entry in striatal neurons expressing mutant huntingtin exon 1. Front. Physiol. 6: 337, https://doi.org/10.3389/fphys.2015.00337.Search in Google Scholar PubMed PubMed Central
Wasser, C.I., Mercieca, E.C., Kong, G., Hannan, A.J., McKeown, S.J., Glikmann-Johnston, Y., and Stout, J.C. (2020). Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance, and clinical outcomes. Brain Commun. 2: fcaa110, https://doi.org/10.1093/braincomms/fcaa110.Search in Google Scholar PubMed PubMed Central
Weiss, A., Trager, U., Wild, E.J., Grueninger, S., Farmer, R., Landles, C., Scahill, R.I., Lahiri, N., Haider, S., Macdonald, D., et al.. (2012). Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J. Clin. Invest. 122: 3731–3736, https://doi.org/10.1172/jci64565.Search in Google Scholar
Wu, L.L.Y. and Zhou, X.F. (2009). Huntingtin associated protein 1 and its functions. Cell Adhes. Migrat. 3: 71–76, https://doi.org/10.4161/cam.3.1.7511.Search in Google Scholar PubMed PubMed Central
Yilmaz, N. (2012). Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Arch. Med. Sci. 8: 138–153, https://doi.org/10.5114/aoms.2012.27294.Search in Google Scholar PubMed PubMed Central
Yu, L.C.H. (2018). Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J. Biomed. Sci. 25: 79, https://doi.org/10.1186/s12929-018-0483-8.Search in Google Scholar PubMed PubMed Central
Zhang, H.S., Xiao, J.H., Cao, N.H., and Qin, J.F. (2005). Homocysteine inhibits store-mediated calcium entry in human endothelial cells: evidence for involvement of membrane potential and actin cytoskeleton. Mol. Cell. Biochem. 269: 37–47, https://doi.org/10.1007/s11010-005-3168-z.Search in Google Scholar PubMed
Zhang, S., Al-Maghout, T., Cao, H., Pelzl, L., Salker, M.S., Veldhoen, M., Cheng, A., Lang, F., and Singh, Y. (2019). Gut bacterial metabolite urolithin A (UA) mitigates Ca2+ entry in T cells by regulating miR-10a-5p. Front. Immunol. 10: 1737, https://doi.org/10.3389/fimmu.2019.01737.Search in Google Scholar PubMed PubMed Central
Ziemisnska, E., Stafiej, A., and Lazarewicz, J.W. (2003). Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurons. Neurochem. Int. 43: 481–492.10.1016/S0197-0186(03)00038-XSearch in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston