Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 7, 2022

Probiotic effects on anxiety-like behavior in animal models

Robert Lalonde and Catherine Strazielle


Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.

Corresponding author: Catherine Strazielle, University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France; and CHRU Nancy, 54500 Vandoeuvre-les-Nancy, France, E-mail:

Funding source: EA7300

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Our work is supported by EA7300.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Ahlawat, S., Shankar, A., Vandna Mohan, H., and Sharma, K.K. (2021). Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut. Toxicol. Appl. Pharmacol. 431: 115741, in Google Scholar PubMed

Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L., and Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37: 1885–1895, in Google Scholar PubMed

Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., Jafari, P., Akbari, H., Taghizadeh, M., Memarzadeh, M.R., Asemi, Z., and Esmaillzadeh, A. (2016). Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32: 315–320, in Google Scholar PubMed

Allen, A.P., Hutch, W., Borre, Y.E., Kennedy, P.J., Temko, A., Boylan, G., Murphy, E., Cryan, J.F., Dinan, T.G., and Clarke, G. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 6: e939, in Google Scholar PubMed PubMed Central

Altaib, H., Nakamura, K., Abe, M., Badr, Y., Yanase, E., Nomura, I., and Suzuki, T. (2021). Differences in the concentration of the fecal neurotransmitters GABA and glutamate are associated with microbial composition among healthy human subjects. Microorganisms 9: 378, in Google Scholar PubMed PubMed Central

Andresen, V. and Camilleri, M. (2006). Irritable bowel syndrome: recent and novel therapeutic approaches. Drugs 66: 1073–1088, in Google Scholar PubMed

Appleton, J. (2018). The gut-brain axis: influence of microbiota on mood and mental health. Integr. Med. 17: 28–32.Search in Google Scholar

Barrera-Bugueno, C., Realini, O., Escobar-Luna, J., Sotomayor-Zárate, R., Gotteland, M., Julio-Pieper, M., and Bravo, J.A. (2017). Anxiogenic effects of a Lactobacillus, inulin and the synbiotic on healthy juvenile rats. Neuroscience 359: 18–29, in Google Scholar PubMed

Barros-Santos, T., Silva, K.S.O., Libarino-Santos, M., Cata-Preta, E.S., Reis, H.S., Tamura, E.K., de Oliveira-Lima, A.J., Berro, L.F., Uetanabaro, A.P.T., and Marinho, E.A.V. (2020). Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS One 15: e0234037, in Google Scholar PubMed PubMed Central

Bear, T., Dalziel, J., Coad, J., Roy, N., Butts, C., and Gopal, P. (2021). The microbiome-gut-brain axis and resilience to developing anxiety or depression under stress. Microorganisms 9: 723, in Google Scholar PubMed PubMed Central

Benton, D., Williams, C., and Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61: 355–361, in Google Scholar PubMed

Bercik, P., Verdu, E.F., Foster, J.A., Macri, J., Potter, M., Huang, X., Malinowski, P., Jackson, W., Blennerhassett, P., Neufeld, K.A., et al.. (2010). Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139: 2102–2112, in Google Scholar PubMed

Bercik, P., Park, A.J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P.A., Fahnestock, M., Moine, D., et al.. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neuro Gastroenterol. Motil. 23: 1132–1139, in Google Scholar PubMed PubMed Central

Bermudez-Humaran, L.G., Salinas, E., Ortiz, G.G., Ramirez-Jirano, J., Morales, J.A., and Quintero, O.K.B. (2019). From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients 11: 890, in Google Scholar PubMed PubMed Central

Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108: 16050–16055, in Google Scholar PubMed PubMed Central

Burokas, A., Arboleya, S., Moloney, R.D., Peterson, V.L., Murphy, K., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2017). Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatr. 82: 472–487, in Google Scholar PubMed

Butler, M.I., Cryan, J.F., and Dinan, T.G. (2019). Man and the microbiome: a new theory of everything? Annu. Rev. Clin. Psychol. 15: 371–398, in Google Scholar PubMed

Carpenter, M.B. (1991). Core text of neuroanatomy, 4th ed. Philadelphia: Williams & Wilkins.Search in Google Scholar

Chen, J., He, X., and Huang, J. (2014). Diet effects in gut microbiome and obesity. J. Food Sci. 79: R442–R451, in Google Scholar PubMed

Chok, K.C., Ng, K.Y., Koh, R.Y., and Chye, S.M. (2021). Role of the gut microbiome in Alzheimer’s disease. Rev. Neurosci. 32: 767–789, in Google Scholar PubMed

Cowan, C.S.M., Stylianakis, A.A., and Richardson, R. (2019). Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev. Cogn. Neurosci. 37: 100627, in Google Scholar PubMed PubMed Central

Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., Codagnone, M.G., Cussotto, S., Fulling, C., Golubeva, A.V., et al.. (2019). The microbiota-gut-brain axis. Physiol. Rev. 99: 1877–2013, in Google Scholar PubMed

Daugé, V., Philippe, C., Mariadassou, M., Rué, O., Martin, J.C., Rossignol, M.N., Dourmap, N., Svilar, L., Tourniaire, F., Monnoye, M., et al.. (2020). A probiotic mixture induces anxiolytic- and antidepressive-like effects in Fischer and maternally deprived Long Evans rats. Front. Behav. Neurosci. 14: 581296.10.3389/fnbeh.2020.581296Search in Google Scholar PubMed PubMed Central

Davis, D.J., Doerr, H.M., Grzelak, A.K., Busi, S.B., Jasarevic, E., Ericsson, A.C., and Bryda, E.C. (2016). Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6: 33726, in Google Scholar PubMed PubMed Central

De la Fuente, M. (2021). The role of the microbiota-gut-brain axis in the health and illness condition: a focus on Alzheimer’s disease. J. Alz. Dis. 81: 1345–1360, in Google Scholar PubMed

Del Toro-Barbosa, M., Hurtado-Romero, A., Garcia-Amezquita, L.E., and García-Cayuela, T. (2020). Psychobiotics: mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients 12: 3896, in Google Scholar PubMed PubMed Central

Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43: 164–174, in Google Scholar PubMed

Douglas-Escobar, M., Elliott, E., and Neu, J. (2013). Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr. 2167: 374–379, in Google Scholar PubMed

Dugyala, S., Ptacek, T.S., Simon, J.M., Li, Y., and Fröhlich, F. (2020). Putative modulation of the gut microbiome by probiotics enhances preference for novelty in a preliminary double-blind placebo-controlled study in ferrets. Anim. Microbiome 2: 14, in Google Scholar PubMed PubMed Central

Engevik, M.A., Luck, B., Visuthranukul, C., Ihekweazu, F.D., Engevik, A.C., Shi, Z., Danhof, H.A., Chang-Graham, A.L., Hall, A., Endres, B.T., et al.. (2021). Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis. J. Cell Mol. Gastroenterol. Hepatol. 11: 221–248, in Google Scholar PubMed PubMed Central

Foster, J.A. (2021). Is anxiety associated with the gut microbiota? Mod. Trends Psychiatry 32: 68–73, in Google Scholar PubMed

Foster, J.A. and McVey Neufeld, K.A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36: 305–312, in Google Scholar PubMed

Fukui, H., Oshima, T., Tanaka, Y., Oikawa, Y., Makizaki, Y., Ohno, H., Tomita, T., Watari, J., and Miwa, H. (2018). Effect of probiotic Bifidobacterium bifidum G9-1 on the relationship between gut microbiota profile and stress sensitivity in maternally separated rats. Sci. Rep. 8: 12384, in Google Scholar PubMed PubMed Central

Gall, A.J. and Griffin, G.D. (2021). Anxiolytic effects of administration of a commercially available prebiotic blend of galacto-oligosaccharides and beta glucans in Sprague-Dawley rats. Benef. Microbes 25: 1–10, in Google Scholar

Gao, K., Farzi, A., Ke, X., Yu, Y., Chen, C., Chen, S., Yu, T., Wang, H., and Li, Y. (2022). Oral administration of Lactococcus lactis WHH2078 alleviates depressive and anxiety symptoms in mice with induced chronic stress. Food Funct. 13: 957–969, in Google Scholar PubMed

Gareau, M.G., Jury, J., MacQueen, G., Sherman, P.M., and Perdue, M.H. (2007). Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56: 1522–1528, in Google Scholar PubMed PubMed Central

Generoso, J.S., Giridharan, V.V., Lee, J., Macedo, D., and Barichello, T. (2021). The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Br. J. Psychiatry 43: 293–305, in Google Scholar PubMed PubMed Central

Goehler, L.E., Gaykema, R.P., Opitz, N., Reddaway, R., Badr, N., and Lyte, M. (2005). Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun. 19: 334–444, in Google Scholar PubMed

Goode, T.D., Ressler, R.L., Acca, G.M., Miles, O.W., and Maren, S. (2019). Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. eLife 8: e46525, in Google Scholar PubMed PubMed Central

Haas, G.S., Wang, W., Saffar, M., Mooney-Leber, S.M., and Brummelte, S. (2020). Probiotic treatment (Bifidobacterium longum subsp. longum 35624) affects stress responsivity in male rats after chronic corticosterone exposure. Behav. Brain Res. 393: 112718, in Google Scholar PubMed

Hadizadeh, M., Hamidi, G.A., and Salami, M. (2019). Probiotic supplementation improves the cognitive function and the anxiety-like behaviors in the stressed rats. Iran J. Basic Med. Sci. 22: 506–514, in Google Scholar PubMed PubMed Central

Han, S.K. and Kim, D.H. (2019). Lactobacillus mucosae and Bifidobacterium longum synergistically alleviate immobilization stress-induced anxiety/depression in mice by suppressing gut dysbiosis. J. Microbiol. Biotechnol. 29: 1369–1374, in Google Scholar PubMed

Hao, Z., Wang, W., Guo, R., and Liu, H. (2019). Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology 104: 132–142, in Google Scholar PubMed

Harmon-Jones, S.K., Cowan, C.S.M., Shnier, N., and Richardson, R. (2020). Is good memory always a good thing? An early offset of infantile amnesia predicts anxiety-like behavior throughout development in rats. Behav. Res. Ther. 135: 103763, in Google Scholar PubMed

Hart, P.C., Bergner, C.L., Smolinsky, A.N., Dufour, B.D., Egan, R.J., Laporte, J.L., and Kalueff, A.V. (2010). Experimental models of anxiety for drug discovery and brain research. Methods Mol. Biol. 602: 299–321, in Google Scholar PubMed

Hilimire, M.R., DeVylder, J.E., and Forestell, C.A. (2015). Fermented foods, neuroticism, and social anxiety: an interaction model. Psychiatr. Res. 228: 203–208, in Google Scholar PubMed

Huang, F. and Wu, X. (2021). Brain neurotransmitter modulation by gut microbiota in anxiety and depression. Front. Cell Dev. Biol. 9: 649103, in Google Scholar PubMed PubMed Central

Jang, H.M., Lee, K.E., and Kim, D.H. (2019). The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients 11: 819, in Google Scholar PubMed PubMed Central

Jang, H.M., Jang, S.E., Han, M.J., and Kim, D.H. (2018a). Anxiolytic-like effect of Bifidobacterium adolescentis IM38 in mice with or without immobilisation stress. Benef. Microbes 9: 123–132, in Google Scholar

Jang, H.M., Lee, K.E., Lee, H.J., and Kim, D.H. (2018b). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Sci. Rep. 8: 13897, in Google Scholar PubMed PubMed Central

Janik, R., Thomason, L.A.M., Stanisz, A.M., Forsythe, P., Bienenstock, J., and Stanisz, G.J. (2016). Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 125: 988–995, in Google Scholar PubMed

Jing, Y., Bai, F., and Yu, Y. (2021). Spinal cord injury and gut microbiota: a review. Life Sci. 266: 118865, in Google Scholar PubMed

Kawai, Y. (2018). Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an interface between local microcircuits and global macrocircuits. Front. Neuroanat. 12: 63, in Google Scholar PubMed PubMed Central

Kim, J., Yoon, B.E., and Jeon, Y.K. (2020). Effect of treadmill exercise and probiotic ingestion on motor coordination and brain activity in adolescent mice. Healthcare 9: 7, in Google Scholar PubMed PubMed Central

Lee, K.J. and Tack, J. (2010). Altered intestinal microbiota in irritable bowel syndrome. Neuro Gastroenterol. Motil. 22: 493–498, in Google Scholar PubMed

Lai, C.T., Chen, C.Y., She, S.C., Chen, W.J., Kuo, T.B.J., Lin, H.C., and Yang, C.C.H. (2020). Production of Lactobacillus brevis ProGA28 attenuates stress-related sleep disturbance and modulates the autonomic nervous system and the motor response in anxiety/depression behavioral tests in Wistar-Kyoto rats. Life Sci. 288: 120165.10.1016/j.lfs.2021.120165Search in Google Scholar PubMed

Lee, Y. and Kim, Y.K. (2021). Understanding the connection between the gut-brain axis and stress/anxiety disorders. Curr. Psychiatr. Rep. 23: 22, in Google Scholar PubMed

Li, H. and Cao, Y. (2010). Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 1107–1116, in Google Scholar PubMed

Li, N., Wang, Q., Wang, Y., Sun, A., Lin, Y., Jin, Y., and Li, X. (2018). Oral probiotics ameliorate the behavioral deficits induced by chronic mild stress in mice via the gut microbiota-inflammation axis. Front. Behav. Neurosci. 6: 266, in Google Scholar PubMed PubMed Central

Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y., and Jin, F. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310: 561–577, in Google Scholar PubMed

Liao, J.F., Hsu, C.C., Chou, G.T., Hsu, J.S., Liong, M.T., and Tsai, Y.C. (2019). Lactobacillus paracasei PS23 reduced early-life stress abnormalities in maternal separation mouse model. Benef. Microbes 10: 425–436, in Google Scholar

Liu, Q.F., Kim, H.M., Lim, S., Chung, M.J., Lim, C.Y., Koo, B.S., and Kang, S.S. (2020). Effect of probiotic administration on gut microbiota and depressive behaviors in mice. Daru 28: 181–189, in Google Scholar PubMed PubMed Central

Liu, Y., Sanderson, D., Mian, F., McVey Neufeld, K.A., and Forsythe, P. (2021). Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology 195: 108682, in Google Scholar

Liu, Y.W., Liu, W.H., Wu, C.C., Juan, Y.C., Wu, Y.C., Tsai, H.P., Wang, S., and Tsai, Y.C. (2016). Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res. 1631: 1–12, in Google Scholar

Long-Smith, C., O’Riordan, K.J., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2020). Microbiota-gut-brain axis: new therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 60: 477–502, in Google Scholar

Luang-In, V., Katisart, T., Konsue, A., Nudmamud-Thanoi, S., Narbad, A., Saengha, W., Wangkahart, E., Pumriw, S., Samappito, W., and Ma, N.L. (2020). Psychobiotic effects of multi-strain probiotics originated from Thai fermented foods in a rat model. Food Sci. Anim. Resour. 40: 1014–1032, in Google Scholar

Lyte, M., Varcoe, J.J., and Bailey, M.T. (1998). Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol. Behav. 65: 63–68, in Google Scholar

Maguire, M. and Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev. Neurosci. 30: 179–201, in Google Scholar PubMed

McCormick, C.M., Smith, K., Baumbach, J.L., de Lima, A.P.N., Shaver, M., Hodges, T.E., Marcolin, M.L., and Ismail, N. (2020). Adolescent social instability stress leads to immediate and lasting sex-specific changes in the neuroendocrine-immune-gut axis in rats. Horm. Behav. 126: 104845, in Google Scholar PubMed

McEwen, B.S. (1991). Stressful experience, brain and emotions: developmental, genetic, and hormonal influences. In: Gazzaniga, M.S. (Ed.), The cognitive neurosciences. Cambridge: MIT Press, pp. 1117–1151.Search in Google Scholar

McVey Neufeld, K.A., Kay, S., and Bienenstock, J. (2018). Mouse strain affects behavioral and neuroendocrine stress responses following administration of probiotic Lactobacillus rhamnosus JB-1 or traditional antidepressant fluoxetine. Front. Neurosci. 12: 294, in Google Scholar PubMed PubMed Central

Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.F., Rougeot, C., Pichelin, M., Cazaubiel, M., et al.. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105: 755–764, in Google Scholar

Mika, A., Day, H.E., Martinez, A., Rumian, N.L., Greenwood, B.N., Chichlowski, M., Berg, B.M., and Fleshner, M. (2017). Early life diets with prebiotics and bioactive milk fractions attenuate the impact of stress on learned helplessness behaviours and alter gene expression within neural circuits important for stress resistance. Eur. J. Neurosci. 45: 342–357, in Google Scholar PubMed

Mindus, C., Ellis, J., van Staaveren, N., and Harlander-Matauschek, A. (2021). Lactobacillus-based probiotics reduce the adverse effects of stress in rodents: a meta-analysis. Front. Behav. Neurosci. 15: 642757, in Google Scholar PubMed PubMed Central

Motta, S.C., Goto, M., Gouveia, F.V., Baldo, M.V., Canteras, N.S., and Swanson, L.W. (2009). Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl. Acad. Sci. U.S.A. 106: 4870–4875, in Google Scholar PubMed PubMed Central

Moya-Perez, A., Perez-Villalba, A., Benítez-Páez, A., Campillo, I., and Sanz, Y. (2017). Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav. Immun. 65: 43–56, in Google Scholar PubMed

Myles, E.M., O’Leary, M.E., Smith, R., MacPherson, C.W., Oprea, A., Melanson, E.H., Tompkins, T.A., and Perrot, T.S. (2020). Supplementation with combined Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 across development reveals sex differences in physiological and behavioural effects of western diet in Long-Evans rats. Microorganisms 8: 1527, in Google Scholar PubMed PubMed Central

Natale, N.R., Kent, M., Fox, N., Vavra, D., and Lambert, K. (2021). Neurobiological effects of a probiotic-supplemented diet in chronically stressed male Long-Evans rats: evidence of enhanced resilience. IBRO Neurosci. Rep. 11: 207–215, in Google Scholar PubMed PubMed Central

Naveed, M., Zhou, Q.G., Xu, C., Taleb, A., Meng, F., Ahmed, B., Zhang, Y., Fukunaga, K., and Han, F. (2021). Gut-brain axis: a matter of concern in neuropsychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 104: 110051, in Google Scholar PubMed

Niu, Y., Liang, S., Wang, T., Hu, X., Li, W., Wu, X., and Jin, F. (2020). Pre-gestational intake of Lactobacillus helveticus NS8 has anxiolytic effects in adolescent Sprague Dawley offspring. Brain Behav. 10: e01714, in Google Scholar PubMed PubMed Central

Ohland, C.L., Kish, L., Bell, H., Thiesen, A., Hotte, N., Pankiv, E., and Madsen, K.L. (2013). Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 38: 1738–1747, in Google Scholar PubMed

Park, K., Park, S., Nagappan, A., Ray, N., Kim, J., Yoon, S., and Moon, Y. (2021). Probiotic Escherichia coli ameliorates antibiotic-associated anxiety responses in mice. Nutrients 13: 811, in Google Scholar PubMed PubMed Central

Peng, H.H., Tsai, T.C., Huang, W.Y., Wu, H.M., and Hsu, K.S. (2019). Probiotic treatment restores normal developmental trajectories of fear memory retention in maternally separated infant rats. Neuropharmacology 153: 53–62, in Google Scholar PubMed

Ramalho, J.B., Soares, M.B., Spiazzi, C.C., Bicca, D.F., Soares, V.M., Pereira, J.G., da Silva, W.P., Sehn, C.P., and Cibin, F.W.S. (2019). In Vitro probiotic and antioxidant potential of Lactococcus lactis subsp. cremoris LL95 and its effect in mice behaviour. Nutrients 11: 901, in Google Scholar PubMed PubMed Central

Reis, D.J., Ilardi, S.S., and Punt, S.E.W. (2018). The anxiolytic effect of probiotics: a systematic review and meta-analysis of the clinical and preclinical literature. PLoS One 13: e0199041, in Google Scholar PubMed PubMed Central

Rios, A.C., Maurya, P.K., Pedrini, M., Zeni-Graiff, M., Asevedo, E., Mansur, R.B., Wieck, A., Grassi-Oliveira, R., McIntyre, R.S., Hayashi, M.A.F., et al.. (2017). Microbiota abnormalities and the therapeutic potential of probiotics in the treatment of mood disorders. Rev. Neurosci. 28: 739–749, in Google Scholar PubMed

Rodriguez, M., Ceric, F., Murgas, P., Harland, B., Torrealba, F., and Contreras, M. (2019). Interoceptive insular cortex mediates both innate fear and contextual threat conditioning to predator odor. Front. Behav. Neurosci. 13: 283, in Google Scholar PubMed PubMed Central

Sasmita, A.O. (2019). Modification of the gut microbiome to combat neurodegeneration. Rev. Neurosci. 30: 795–805, in Google Scholar PubMed

Savignac, H.M., Kiely, B., Dinan, T.G., and Cryan, J.F. (2014). Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neuro Gastroenterol. Motil. 26: 1615–1627, in Google Scholar PubMed

Savignac, H.M., Tramullas, M., Kiely, B., Dinan, T.G., and Cryan, J.F. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 287: 59–72, in Google Scholar PubMed

Savignac, H.M., Couch, Y., Stratford, M., Bannerman, D.M., Tzortzis, G., Anthony, D.C., and Burnet, P.W.J. (2016). Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun. 52: 120–131, in Google Scholar PubMed PubMed Central

Schmidt, K., Cowen, P.J., Harmer, C.J., Tzortzis, G., Errington, S., and Burnet, P.W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berlin) 232: 1793–1801, in Google Scholar PubMed PubMed Central

Sharma, R., Gupta, D., Mehrotra, R., and Mago, P. (2021). Psychobiotics: the next-generation probiotics for the brain. Curr. Microbiol. 78: 449–463, in Google Scholar PubMed

Skonieczna-Zydecka, K., Marlicz, W., Misera, A., Koulaouzidis, A., and Łoniewski, I. (2018). Microbiome- the missing link in the gut-brain axis: focus on its role in gastrointestinal and mental health. J. Clin. Med. 7: 521, in Google Scholar PubMed PubMed Central

Soto, A., Martín, V., Jiménez, E., Mader, I., Rodríguez, J.M., and Fernández, L. (2014). Lactobacilli and Bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 59: 78–88, in Google Scholar PubMed PubMed Central

Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J.A., and Colzato, L.S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 48: 258–264, in Google Scholar PubMed

Stenman, L.K., Patterson, E., Meunier, J., Roman, F.J., and Lehtinen, M.J. (2020). Strain specific stress-modulating effects of candidate probiotics: a systematic screening in a mouse model of chronic restraint stress. Behav. Brain Res. 379: 112376, in Google Scholar PubMed

Stilling, R.M., Dinan, T.G., and Cryan, J.F. (2014). Microbial genes, brain and behaviour- epigenetic regulation of the gut-brain axis. Gene Brain Behav. 13: 69–86, in Google Scholar PubMed

Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., and Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558: 263–275, in Google Scholar PubMed PubMed Central

Sylvia, K.E. and Demas, G.E. (2018). A gut feeling: microbiome-brain-immune interactions modulate social and affective behaviors. Horm. Behav. 99: 41–49, in Google Scholar PubMed PubMed Central

Szklany, K., Wopereis, H., de Waard, C., van Wageningen, T., An, R., van Limpt, K., Knol, J., Garssen, J., Knippels, L.M.J., Belzer, C., et al.. (2020). Supplementation of dietary non-digestible oligosaccharides from birth onwards improve social and reduce anxiety-like behaviour in male BALB/c mice. Nutr. Neurosci. 23: 896–910, in Google Scholar

Taibi, A. and Comelli, E.M. (2014). Practical approaches to probiotics use. Appl. Physiol. Nutr. Metabol. 39: 980–986, in Google Scholar PubMed

Takada, M., Nishida, K., Kataoka-Kato, A., Gondo, Y., Ishikawa, H., Suda, K., Kawai, M., Hoshi, R., Watanabe, O., Igarashi, T., et al.. (2016). Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. Neuro Gastroenterol. Motil. 28: 1027–1036, in Google Scholar PubMed

Tan, A.H., Hor, J.W., Chong, C.W., and Lim, S.Y. (2020). Probiotics for Parkinson’s disease: current evidence and future directions. JGH Open 5: 414–419, in Google Scholar PubMed PubMed Central

Tan, Q., Orsso, C.E., Deehan, E.C., Kung, J.Y., Tun, H.M., Wine, E., Madsen, K.L., Zwaigenbaum, L., and Haqq, A.M. (2021). Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: a systematic review. Autism Res. 14: 1820–1836, in Google Scholar PubMed

Tarr, A.J., Galley, J.D., Fisher, S.E., Chichlowski, M., Berg, B.M., and Bailey, M.T. (2015). The prebiotics 3’sialyllactose and 6’sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: evidence for effects on the gut-brain axis. Brain Behav. Immun. 50: 166–177, in Google Scholar PubMed PubMed Central

Taylor, A.M. and Holscher, H.D. (2020). A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 23: 237–250, in Google Scholar PubMed

Teitelbaum, J.E. and Walker, W.A. (2002). Nutritional impact of pre- and probiotics as protective gastrointestinal organisms. Annu. Rev. Nutr. 22: 107–138, in Google Scholar PubMed

Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., et al.. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144: 1394–1401, in Google Scholar PubMed PubMed Central

Tillmann, S. and Wegener, G. (2019). Probiotics reduce risk-taking behavior in the elevated plus maze in the Flinders sensitive line rat model of depression. Behav. Brain Res. 359: 755–762, in Google Scholar PubMed

Tremblay, A., Lingrand, L., Maillard, M., Feuz, B., and Tompkins, T.A. (2021). The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 105: 110142, in Google Scholar PubMed

van der Kooy, D., Koda, L.Y., McGinty, J.F., Gerfen, C.R., and Bloom, F.E. (1984). The organization of projections from the cortex, amygdala and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224: 1–24, in Google Scholar PubMed

Vanhaecke, T., Aubert, P., Grohard, P.A., Durand, T., Hulin, P., Paul-Gilloteaux, P., Fournier, A., Docagne, F., Ligneul, A., Fressange-Mazda, C., et al.. (2017). L. fermentum CECT 5716 prevents stress- induced intestinal barrier dysfunction in newborn rats. Neuro Gastroenterol. Motil. 29: e13069, in Google Scholar PubMed

Verbeek, E., Dicksved, J., and Keeling, L. (2021). Supplementation of Lactobacillus early in life alters attention bias to threat in piglets. Sci. Rep. 11: 10130, in Google Scholar

Vianna, D.M. and Brandão, M.L. (2003). Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz. J. Med. Biol. Res. 36: 557–566, in Google Scholar

Wang, H., Lee, I.S., Braun, C., and Enck, P. (2016). Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J. Neuro Gastroenterol. Motil. 22: 589–605, in Google Scholar

Wilensky, A.E., Schafe, G.E., Kristensen, M.P., and LeDoux, J.E. (2006). Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26: 12387–12396, in Google Scholar

Wolever, T.M.S., Rahn, M., Dioum, E.H., Jenkins, A.L., Ezatagha, A., Campbell, J.E., and Chu, Y. (2021). Effect of oat beta-glucan on affective and physical feeling states in healthy adults: evidence for reduced headache, fatigue, anxiety and limb/joint pains. Nutrients 13: 1534, in Google Scholar

Yaeshima, T., Takahashi, S., Ishibashi, N., and Shimamura, S. (1996). Identification of Bifidobacteria from dairy products and evaluation of a microplate hybridization method. Int. J. Food Microbiol. 30: 303–313, in Google Scholar

Yang, B., Wei, J., Ju, P., and Chen, J. (2019). Effects of regulating intestinal microbiota on anxiety symptoms: a systematic review. Gen. Psychiatr. 32: e100056, in Google Scholar PubMed PubMed Central

Yang, Y., Zhao, S., Yang, X., Li, W., Si, J., and Yang, X. (2022). The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci. Lett. 774: 136474, in Google Scholar PubMed

Yu, L., Han, X., Cen, S., Duan, H., Feng, S., Xue, Y., Tian, F., Zhao, J., Zhang, H., Zhai, Q., et al.. (2020). Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol. Res. 233: 126409, in Google Scholar PubMed

Yun, S.W., Kim, J.K., Han, M.J., and Kim, D.H. (2021). Lacticaseibacillus paracasei NK112 mitigates Escherichia coli-induced depression and cognitive impairment in mice by regulating IL-6 expression and gut microbiota. Benef. Microbes 12: 541–551, in Google Scholar

Zhao, Y., Yang, G., Zhao, Z., Wang, C., Duan, C., Gao, L., and Li, S. (2020). Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav. Brain Res. 395: 112853, in Google Scholar PubMed

Zhou, B., Jin, G., Pang, X., Mo, Q., Bao, J., Liu, T., Wu, J., Xie, R., Liu, X., Liu, J., et al.. (2022). Lactobacillus rhamnosus GG colonization in early life regulates gut-brain axis and relieves anxiety-like behavior in adulthood. Pharmacol. Res. 177: 106090, in Google Scholar PubMed

Received: 2021-12-22
Accepted: 2022-02-22
Published Online: 2022-04-07
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow