Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 6, 2017

Blink and you’ll miss it: a new biosensing strategy with nucleic acids

Sameer Sajja , Brandon K. Roark , Morgan Chandler and Marcus Jones EMAIL logo

Abstract

Fluorescent biosensors typically use energy or electron transfer to modulate the emission from a fluorophore. This requirement often makes it difficult to change the biosensor to make it selective to a difference target. In this research highlight we describe a recently reported strategy that relies, for the first time, on fluorescence blinking from nucleic acid-coupled quantum dots to report the presence of a target molecule. This strategy produces a decoupled biosensor, whose fluorescence output is not directly modulated by interaction with the target. The resulting biosensor can be readily modified to sense any target that can be selectively bound to nucleic acids and is therefore much more widely applicable than the vast majority of fluorescent sensors that have been reported.

References

[1] National Cancer Institute. Surveillance, Epidemiology, and End Results (SEER) Program; NCI, 2016.Search in Google Scholar

[2] Bohunicky, B.; Mousa, S. A. Biosensors: the new wave in cancer diagnosis. NSA 2011, 4, 1-10.10.2147/NSA.S13465Search in Google Scholar PubMed PubMed Central

[3] Catuogno, S.; Esposito, C. L.; Quintavalle, C.; Cerchia, L.; Condorelli, G.; De Franciscis, V. Recent Advance in Biosensors for microRNAs Detection in Cancer. Cancers 2011, 3 (4), 1877-1898.10.3390/cancers3021877Search in Google Scholar PubMed PubMed Central

[4] Wang, X.; Shu, G.; Gao, C.; Yang, Y.; Xu, Q.; Tang, M. Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy. Anal Biochem 2014, 466, 51-58.Search in Google Scholar

[5] Pazos, E.; Garcia-Algar, M.; Penas, C.; Nazarenus, M.; Torruella, A.; Pazos-Perez, N.; Guerrini, L.; Vázquez, M. E.; Garcia-Rico, E.; Mascareñas, J. L.; et al. Surface-Enhanced Raman Scattering Surface Selection Rules for the Proteomic Liquid Biopsy in Real Samples: Efficient Detection of the Oncoprotein c-MYC. J. Am. Chem. Soc. 2016, 138 (43), 14206-14209.Search in Google Scholar

[6] Afonin, K. A.; Viard, M.; Martins, A. N.; Lockett, S. J.; Maciag, A. E.; Freed, E. O.; Heldman, E.; Jaeger, L.; Blumenthal, R.; Shapiro, B. A. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nat. Nano. 2013, 8 (4), 296-304.Search in Google Scholar

[7] Roark, B.; Tan, J. A.; Ivanina, A.; Chandler, M.; Castaneda, J.; Kim, H. S.; Jawahar, S.; Viard, M.; Talic, S.; Wustholz, K. L.; et al. Fluorescence Blinking as an Output Signal for Biosensing. ACS Sens. 2016, 1 (11), 1295-1300.Search in Google Scholar

[8] Li, J.; Zhu, J.-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 2013, 138 (9), 2506.10.1039/c3an36705cSearch in Google Scholar PubMed

[9] Krauss, T. D.; Peterson, J. J. Bright Future for Fluorescence Blinking in Semiconductor Nanocrystals. J. Phys. Chem. Lett. 2010, 1 (9), 1377-1382.Search in Google Scholar

[10] Srinivas, N.; Ouldridge, T. E.; Sulc, P.; Schaeffer, J. M.; Yurke, B.; Louis, A. A.; Doye, J. P. K.; Winfree, E. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Research 2013, 41 (22), 10641-10658.10.1093/nar/gkt801Search in Google Scholar PubMed PubMed Central

Received: 2017-3-28
Accepted: 2017-5-19
Published Online: 2017-9-6
Published in Print: 2017-8-28

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 10.12.2022 from https://www.degruyter.com/document/doi/10.1515/rnan-2017-0002/html
Scroll Up Arrow