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S1. Details of the MCMC algorithms (for MC _DIST
and NIP)

We use a MCMC algorithm to generate posterior samples for tGeINST model.
The MCMC algorithm involves generating random samples fromfull condi-
tional distributions of each parameter of M@ST. Since the full conditional dis-
tributions ofAg;, A4, ro, b andd are not of a known form, we utilize a Metropolis-
Hastings algorithm using either a log-normal distribut{@r A, Asj, ro andb) or

a uniform distribution (fod) as the proposal distribution. Specifically, for each of
the parameterag;, A1, ro andb, the new candidate value in each iteration is gen-
erated by a log-normal distributionNix, y?), wherex is the current value ang

is a tuning parameter; for the parametieithe new candidate value in each itera-
tion is generated by a uniform distributiah1b, ub), wherelb = max(0,x— ) and

ub = min(D,x+ &) (remember thatl ~ U (0,D), whereD is a constant and was set
to be 10000 in the simulation study), whexkas the current value andlis a tuning
parameter. For the simulation study, the chosen tuninghpetexs of the proposal
distributions { or ) and the achieved acceptance rates are shown in Table S1. In
summary, all acceptance rates are reasonable.

Table S1: Metropolis-Hastings algorithm tuning paransetand achieved accep-
tance rates for MADIST in the simulation study.
parameter tuning parameter acceptance rate (or its range)

o 0.5 (0.45, 0.60)
Mi 0.5 (0.32, 0.78)
o 0.01 0.45
b 0.06 0.34
d 50 0.64

We also use a MCMC algorithm to generate posterior samplethéoNIP
model. The MCMC algorithm involves generating random sasfiem the full



conditional distributions of each parameter of NIP. Sireefull conditional distri-
butions ofAg;, A1, ro andb are not of a known form, we utilize Metropolis-Hastings
algorithms using log-normal distributions as the propadssttibutions for those pa-
rameters. For the simulation study, the chosen tuning petens of the proposal
log-normal distributions and the achieved acceptance it shown in Table S2.
Again, all acceptance rates are reasonable.

Table S2: Metropolis-Hastings algorithm tuning paransetend achieved accep-
tance rates for NIP in the simulation study.
parameter tuning parameter acceptance rate (or its range)

Ao 0.5 (0.52, 0.59)
A 0.5 (0.32, 0.76)
o 0.006 0.60
b 0.052 0.38

S2. Convergence diagnostics of the MCMC algorithms
(for MC _DIST and NIP) used in the simulation study

To check the convergence of the MCMC algorithm used for_BIIST in the sim-
ulation study, we first checked the trace plots for the modehmeters. The trace
plots (after a thinning of 100) are shown in Figure S1. Sihedw,;, Agi andAy; are

pair specific, i.e., depend anwe randomly selected one pair and checked the trace
plots ofwyj, Agi andAy; for the selected pair, The trace plots in the figure indicate
that the MCMC algorithm converges well.

We further checked the MCMC convergence using the Gelman abth&u
convergence diagnostic for each parameter. Such diagagstbvide a potential
scale reduction factor for each parameter. If a potentialesceduction factor is
high (greater than 1.1 or 1.2), then we need to run the chamelo We used the R
packagecoda to obtain the estimates of the above potential scale remtufdictors
and the estimates are shown in Table S3. They are all lesd.than

We also checked the MCMC convergence using the Raftery andslLdiwi
agnostic for each parameter. Such diagnostic is designeetéomine the number
of iterations and burn-in needed to ensure the convergdrecparameter. We used
the R packageoda to perform the Raftery and Lewis diagnostics and the results
are summarized in Table S4. All burn-in values are less t@n000 (the burn-in
value used in the MCMC algorithm). Also, all numbers of itemas needed to en-
sure the convergence (the “total” in the table) are less $@@0,000 (the number
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Figure S1: Trace plots (after a thinning of 100) of the paramsein the MCMC
algorithm used in the simulation study for MQIST.

Table S3: Gelman and Rubins convergence diagnostics for bl algorithm
used in the simulation study for MOIST.
parameter potential scale reduction factor estimate

o 1
b 1
d 1.04
o? 1
Wij 1.02
Aoi 1
A1 1

of iterations used in the MCMC algorithm) except tbandw;;. Although the num-

bers of iterations suggested exceed 2,000,000 ondws;, this suggestion should
be viewed in balance with the other diagnostic results. Hautsince the Raftery
and Lewis diagnostics are known to be conservative, we apbédo increase the



Table S4: Raftery and Lewis convergence diagnostics for tiiMi@ algorithm
used in the simulation study for MOIST.
parameter burn-in total

o 200 381100
b 400 470300
d 169900 94788200
o? 200 381800
Wi 11200 12643400
Aoi 100 369500
Agj 100 375500

run length, especially since no problem was detected basédhce plots and the
Gelman and Rubin diagnostics.

For NIP model, we also check the convergence of MCMC algoribgrthe
trace plots (after a thinning of 100), the Gelman and Rubinsegence diagnostic
and the Raftery and Lewis diagnostic for each parameter.réle plots are shown
in Figure S2. Note that in this figure, there is no parame&s no such a parameter
is in NIP, and that the parametey is not pair specific. Again, we randomly selected
a pair and checked the trace plotsAgfandA4; for the selected pair. The trace plots
indicate that the MCMC algorithm converges well.

The Gelman and Rubins convergence diagnostics for parasnetsiP are
summarized in Table S5. All estimates of the potential spadieiction factors are

Table S5: Gelman and Rubins convergence diagnostics for bl algorithm
used in the simulation study for NIP.
parameter potential scale reduction factor estimate
o 1
b
o
Wi
Aoi
A1

2

PR R R R

1, which indicate that the MCMC algorithm converges well.

The Gelman and Rubins convergence diagnostics for parasnetsiP are
summarized in Table S6. We see that all burn-in values andeatsrof iterations
needed for convergence are less than 40,000 (the burntie vakd in the MCMC
algorithm) and 2,000,000 (the number of iterations usetlénMCMC algorithm).
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Figure S2: Trace plots (after a thinning of 100) of the paramsein the MCMC
algorithm used in the simulation study for NIP.

Table S6: Raftery and Lewis convergence diagnostics for tM@ algorithm
used in the simulation study for NIP.
parameter burn-in total

ro 600 930200
b 800 1060200
o2 200 383800
W1 200 399400
Ao 100 375500
A1j 100 391300

S3. Analysis on posterior distributions

To investigate the properties of MOIST model, we analyzed the marginal poste-
rior distribution of each parameter of the MQIST model in the simulation study.
Such distributions were estimated from the posterior sampbtained from the



MCMC algorithm for MC DIST, using the kernel density estimation.
The estimated marginal posterior distributionglpt?, ro andb are shown
in Figure S3. The marginal posterior distribution rgfis concentrated over the
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Figure S3: Estimated posterior distributionsthfo?, ro andb, in the simulation
study.

narrow interval(3.8,4.1); the marginal posterior distribution &fis concentrated
over the interval7,11). To see whether these two distributions are reasonable, we
pooled the posterior samples f&g; (for all pairs) obtained from the MCMC algo-
rithm, and fitted a gamma distribution to the pooled samplése kernel density
estimation for the pooled samples and the fitted gamma llision " (8.63,2.18)
are shown as the black curve and the red dashed curve regheati Figure S4.
From the figure, we see that the gamma distribution fits payféc the samples
and the shape parametéj 8.63 falls in the interva{7,11), and the rate parameter
(%) 2.18 is equal to &3/3.96 where 3.96 falls in the interv&B.8,4.1). The above
observation show that the model assumption #Maafollows a gamma distribution
is consistent with the analysis results and that the margosterior distributions of
ro andb are reasonable. Furthermore, The observation that theimahppsterior
distribution ofrg is concentrated ovei3.8,4.1) is supported by the data analysis
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Figure S4: Estimated posterior distribution & for all pairs in the simulation
study. The black curve represents the estimated kerneltdemsl the red dashed
curve represents the density function of the fitted gammntailolision " (8.63,2.18).

result that the mean count for those pairs that were cladgdiffethe MCDIST as
false pairs is 3.90. Thus, the model assumpfign~ I (b, %) is reasonable for the

simulated data. The marginal posterior distributionodfis a normal-like distri-
bution with mean at about 315. To see whether such a diStibig consistent
with the data, we calculated different percentiles of addichormal distribution
N(0,351)-1(- > 0), and found that the theoretical percentiles are consistitnthe
data analysis result. In particular, the 10th, 20th, 30@th4heoretical percentiles
are 2.23, 4.50, 6.84 and 9.31 respectively; and the 10th, 20th, 40th empirical
percentiles are 2.91, 5.54, 7.99 and 10.41, respectivdigravthe empirical per-
centiles were calculated based on the posterior sampléa;pf Agi|1 <i < n}.
The above observation shows that the marginal posteritititions ofo? is rea-
sonable. The marginal posterior distributiordas more spread out, this is because
thatd is a hyperparameter in very top level of the hierarchy (segiféi 1 in the
main text) and thus the marginal posterior distributionas aiffected much by the



data.

We also randomly selected three pairs-(17, 18 and 70) and estimated the
marginal posterior distributions @¥y;, A1; andAg by the kernel density estimation
using the posterior samples obtained from the MCMC algorithifFhe count of
the three selected pairs are 3, 5, 13 and the rmcd’s of the Balected pairs are
0.05, 002 and 3300, respectively. The three rmcd’s are about 20th, 40th &iid 9
percentiles of all the rmcd’s, respectively. The first twarpare false and the last
one is a true pair and the MDIST classified all pairs correctly. The estimated
distributions are shown in Figure S5. We see that the postdistributions are
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Figure S5: Estimated posterior distributionsmaf, A1j andAg;, for three randomly
selected pairs in the simulation study.

consistent with the data. In particular, the marginal postelistribution ofAg; for
each pair is concentrated around the corresponding couné gfair.

Base on the above analysis on the marginal posterior ditsiis) we see
that the marginal posterior distributions are all reastamabd the MCDIST model
assumptions are consistent with the simulated data.



S4. Summary of 100 additional simulations

To investigate how reproducible the results from MCST are across multiple sim-
ulations, we replicated the simulation in section 3.1 16@:8 to obtain 100 simu-
lated data sets. The 184 loci used in each simulation ardadionrspecific. That
is, in each simulation we randomly selected 46o8btnding sites in MCF7 cell line
(two on each human chromosome), 46 gene transcriptionsstast (two on each
human chromosome), and 92 non-specific loci (not arEfhding site or a gene
transcription start site, four on each human chromosombg MIC DIST results

on those data sets are summarized in Figure S6, in which wieg@lthe box plot

of the type | error rates and the box plot of power for those diffulation studies.
We can see that the type | error rates and the powers are wnsasross the 100
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Figure S6: Summary of the MOIST results on 100 simulated data sets.

simulation studies.



S5. Investigation of variants of MC_DIST

To investigate the sensitivity and stability of MQIST, we modified MCDIST by
assuming an alternative prior distribution ag, i.e., N(Agi +m, 02) “1(A1i > Aoi)
with m > 0 pre-selected, and applied such a MCST variant on the simulated
data set. To choose differemtvalues, we ran MCDIST on the simulated data set

Table S7: MCDIST variants.
MC_DIST variant Type | error Power

MC_DIST 0.0003 0.876

10th percentile 0.0003 0.882
20th percentile 0.0003 0.882
30th percentile 0 0.878
40th percentile 0 0.872

and calculated the 10th, 20th, 30th and 40th percentildssgposterior samples of
{A1i — Aai|1 <i < n}, and used these four values as thealues. The results of
those MCDIST variants, together with the result for MQIST, are summarized
in Table S7. We can see that the MIST variants performed almost the same as
MC_DIST.



