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S1. Details of the MCMC algorithms (for MC DIST
and NIP)

We use a MCMC algorithm to generate posterior samples for the MC DIST model.
The MCMC algorithm involves generating random samples from the full condi-
tional distributions of each parameter of MCDIST. Since the full conditional dis-
tributions ofλ0i, λ1i, r0, b andd are not of a known form, we utilize a Metropolis-
Hastings algorithm using either a log-normal distribution(for λ0i, λ1i, r0 andb) or
a uniform distribution (ford) as the proposal distribution. Specifically, for each of
the parametersλ0i, λ1i, r0 andb, the new candidate value in each iteration is gen-
erated by a log-normal distribution lnN(x,γ2), wherex is the current value andγ
is a tuning parameter; for the parameterd, the new candidate value in each itera-
tion is generated by a uniform distributionU(lb,ub), wherelb = max(0,x−δ ) and
ub = min(D,x+δ ) (remember thatd ∼U(0,D), whereD is a constant and was set
to be 10,000 in the simulation study), wherex is the current value andδ is a tuning
parameter. For the simulation study, the chosen tuning parameters of the proposal
distributions (γ or δ ) and the achieved acceptance rates are shown in Table S1. In
summary, all acceptance rates are reasonable.

Table S1: Metropolis-Hastings algorithm tuning parameters and achieved accep-
tance rates for MCDIST in the simulation study.

parameter tuning parameter acceptance rate (or its range)
λ0i 0.5 (0.45, 0.60)
λ1i 0.5 (0.32, 0.78)
r0 0.01 0.45
b 0.06 0.34
d 50 0.64

We also use a MCMC algorithm to generate posterior samples forthe NIP
model. The MCMC algorithm involves generating random samples from the full



conditional distributions of each parameter of NIP. Since the full conditional distri-
butions ofλ0i, λ1i, r0 andb are not of a known form, we utilize Metropolis-Hastings
algorithms using log-normal distributions as the proposaldistributions for those pa-
rameters. For the simulation study, the chosen tuning parameters of the proposal
log-normal distributions and the achieved acceptance rates are shown in Table S2.
Again, all acceptance rates are reasonable.

Table S2: Metropolis-Hastings algorithm tuning parameters and achieved accep-
tance rates for NIP in the simulation study.

parameter tuning parameter acceptance rate (or its range)
λ0i 0.5 (0.52, 0.59)
λ1i 0.5 (0.32, 0.76)
r0 0.006 0.60
b 0.052 0.38

S2. Convergence diagnostics of the MCMC algorithms
(for MC DIST and NIP) used in the simulation study

To check the convergence of the MCMC algorithm used for MCDIST in the sim-
ulation study, we first checked the trace plots for the model parameters. The trace
plots (after a thinning of 100) are shown in Figure S1. Since thatw1i, λ0i andλ1i are
pair specific, i.e., depend oni, we randomly selected one pair and checked the trace
plots ofw1i, λ0i andλ1i for the selected pair, The trace plots in the figure indicate
that the MCMC algorithm converges well.

We further checked the MCMC convergence using the Gelman and Rubins
convergence diagnostic for each parameter. Such diagnostics provide a potential
scale reduction factor for each parameter. If a potential scale reduction factor is
high (greater than 1.1 or 1.2), then we need to run the chain longer. We used the R
packagecoda to obtain the estimates of the above potential scale reduction factors
and the estimates are shown in Table S3. They are all less than1.1.

We also checked the MCMC convergence using the Raftery and Lewis di-
agnostic for each parameter. Such diagnostic is designed todetermine the number
of iterations and burn-in needed to ensure the convergence of a parameter. We used
the R packagecoda to perform the Raftery and Lewis diagnostics and the results
are summarized in Table S4. All burn-in values are less than 400,000 (the burn-in
value used in the MCMC algorithm). Also, all numbers of iterations needed to en-
sure the convergence (the “total” in the table) are less than2,000,000 (the number
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Figure S1: Trace plots (after a thinning of 100) of the parameters in the MCMC
algorithm used in the simulation study for MCDIST.

Table S3: Gelman and Rubins convergence diagnostics for the MCMC algorithm
used in the simulation study for MCDIST.

parameter potential scale reduction factor estimate
r0 1
b 1
d 1.04
σ2 1
w1i 1.02
λ0i 1
λ1i 1

of iterations used in the MCMC algorithm) except ford andw1i. Although the num-
bers of iterations suggested exceed 2,000,000 ford andw1i, this suggestion should
be viewed in balance with the other diagnostic results. Further, since the Raftery
and Lewis diagnostics are known to be conservative, we optednot to increase the



Table S4: Raftery and Lewis convergence diagnostics for the MCMC algorithm
used in the simulation study for MCDIST.

parameter burn-in total
r0 200 381100
b 400 470300
d 169900 94788200
σ2 200 381800
w1i 11200 12643400
λ0i 100 369500
λ1i 100 375500

run length, especially since no problem was detected based on trace plots and the
Gelman and Rubin diagnostics.

For NIP model, we also check the convergence of MCMC algorithmby the
trace plots (after a thinning of 100), the Gelman and Rubins convergence diagnostic
and the Raftery and Lewis diagnostic for each parameter. The trace plots are shown
in Figure S2. Note that in this figure, there is no parameterd as no such a parameter
is in NIP, and that the parameterw1 is not pair specific. Again, we randomly selected
a pair and checked the trace plots ofλ0i andλ1i for the selected pair. The trace plots
indicate that the MCMC algorithm converges well.

The Gelman and Rubins convergence diagnostics for parameters in NIP are
summarized in Table S5. All estimates of the potential scalereduction factors are

Table S5: Gelman and Rubins convergence diagnostics for the MCMC algorithm
used in the simulation study for NIP.

parameter potential scale reduction factor estimate
r0 1
b 1
σ2 1
w1 1
λ0i 1
λ1i 1

1, which indicate that the MCMC algorithm converges well.
The Gelman and Rubins convergence diagnostics for parameters in NIP are

summarized in Table S6. We see that all burn-in values and numbers of iterations
needed for convergence are less than 40,000 (the burn-in value used in the MCMC
algorithm) and 2,000,000 (the number of iterations used in the MCMC algorithm).
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Figure S2: Trace plots (after a thinning of 100) of the parameters in the MCMC
algorithm used in the simulation study for NIP.

Table S6: Raftery and Lewis convergence diagnostics for the MCMC algorithm
used in the simulation study for NIP.

parameter burn-in total
r0 600 930200
b 800 1060200
σ2 200 383800
w1 200 399400
λ0i 100 375500
λ1i 100 391300

S3. Analysis on posterior distributions

To investigate the properties of MCDIST model, we analyzed the marginal poste-
rior distribution of each parameter of the MCDIST model in the simulation study.
Such distributions were estimated from the posterior samples obtained from the



MCMC algorithm for MCDIST, using the kernel density estimation.
The estimated marginal posterior distributions ofd, σ2, r0 andb are shown

in Figure S3. The marginal posterior distribution ofr0 is concentrated over the
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Figure S3: Estimated posterior distributions ofd, σ2, r0 andb, in the simulation
study.

narrow interval(3.8,4.1); the marginal posterior distribution ofb is concentrated
over the interval(7,11). To see whether these two distributions are reasonable, we
pooled the posterior samples forλ0i (for all pairs) obtained from the MCMC algo-
rithm, and fitted a gamma distribution to the pooled samples.The kernel density
estimation for the pooled samples and the fitted gamma distribution Γ(8.63,2.18)
are shown as the black curve and the red dashed curve respectively in Figure S4.
From the figure, we see that the gamma distribution fits perfectly to the samples
and the shape parameter (b) 8.63 falls in the interval(7,11), and the rate parameter
( b

r0
) 2.18 is equal to 8.63/3.96 where 3.96 falls in the interval(3.8,4.1). The above

observation show that the model assumption thatλ0i follows a gamma distribution
is consistent with the analysis results and that the marginal posterior distributions of
r0 andb are reasonable. Furthermore, The observation that the marginal posterior
distribution ofr0 is concentrated over(3.8,4.1) is supported by the data analysis



0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

λ0i for all pairs

de
ns

ity

Figure S4: Estimated posterior distribution ofλ0i for all pairs in the simulation
study. The black curve represents the estimated kernel density and the red dashed
curve represents the density function of the fitted gamma distributionΓ(8.63,2.18).

result that the mean count for those pairs that were classified by the MCDIST as
false pairs is 3.90. Thus, the model assumptionλ0i ∼ Γ(b, b

r0
) is reasonable for the

simulated data. The marginal posterior distribution ofσ2 is a normal-like distri-
bution with mean at about 315. To see whether such a distribution is consistent
with the data, we calculated different percentiles of a folded normal distribution
N(0,351) · I(·> 0), and found that the theoretical percentiles are consistentwith the
data analysis result. In particular, the 10th, 20th, 30th, 40th theoretical percentiles
are 2.23, 4.50, 6.84 and 9.31 respectively; and the 10th, 20th, 30th, 40th empirical
percentiles are 2.91, 5.54, 7.99 and 10.41, respectively, where the empirical per-
centiles were calculated based on the posterior samples of{λ1i − λ0i|1 ≤ i ≤ n}.
The above observation shows that the marginal posterior distributions ofσ2 is rea-
sonable. The marginal posterior distribution ofd is more spread out, this is because
that d is a hyperparameter in very top level of the hierarchy (see Figure 1 in the
main text) and thus the marginal posterior distribution is not affected much by the



data.
We also randomly selected three pairs (i = 17, 18 and 70) and estimated the

marginal posterior distributions ofw1i, λ1i andλ0i by the kernel density estimation
using the posterior samples obtained from the MCMC algorithm. The count of
the three selected pairs are 3, 5, 13 and the rmcd’s of the three selected pairs are
0.05, 0.02 and 33.00, respectively. The three rmcd’s are about 20th, 40th and 96th
percentiles of all the rmcd’s, respectively. The first two pairs are false and the last
one is a true pair and the MCDIST classified all pairs correctly. The estimated
distributions are shown in Figure S5. We see that the posterior distributions are

0.0 0.2 0.4 0.6

0
50

0
15

00

w1,17

de
ns

ity

0 20 40 60 80 100
0.

00
0.

02
0.

04

λ1,17

de
ns

ity

0 2 4 6 8

0.
0

0.
2

λ0,17

de
ns

ity

0.0 0.2 0.4 0.6

0
10

00
25

00

w1,18

de
ns

ity

0 20 40 60 80

0.
00

0.
02

0.
04

λ1,18

de
ns

ity

2 4 6 8 10
0.

00
0.

15
0.

30

λ0,18

de
ns

ity

0.4 0.6 0.8 1.0

0
40

0
80

0

w1,70

de
ns

ity

0 10 20 30 40 50

0.
00

0.
04

0.
08

λ1,70

de
ns

ity

0 2 4 6 8 10 12

0.
00

0.
15

0.
30

λ0,70

de
ns

ity

Figure S5: Estimated posterior distributions ofw1i, λ1i andλ0i, for three randomly
selected pairs in the simulation study.

consistent with the data. In particular, the marginal posterior distribution ofλ0i for
each pair is concentrated around the corresponding count ofthe pair.

Base on the above analysis on the marginal posterior distributions, we see
that the marginal posterior distributions are all reasonable and the MCDIST model
assumptions are consistent with the simulated data.



S4. Summary of 100 additional simulations

To investigate how reproducible the results from MCDIST are across multiple sim-
ulations, we replicated the simulation in section 3.1 100 times to obtain 100 simu-
lated data sets. The 184 loci used in each simulation are simulation-specific. That
is, in each simulation we randomly selected 46 ERα binding sites in MCF7 cell line
(two on each human chromosome), 46 gene transcription startsites (two on each
human chromosome), and 92 non-specific loci (not a ERα binding site or a gene
transcription start site, four on each human chromosome). The MC DIST results
on those data sets are summarized in Figure S6, in which we plotted the box plot
of the type I error rates and the box plot of power for those 100simulation studies.
We can see that the type I error rates and the powers are consistent across the 100
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Figure S6: Summary of the MCDIST results on 100 simulated data sets.

simulation studies.



S5. Investigation of variants of MC DIST

To investigate the sensitivity and stability of MCDIST, we modified MCDIST by
assuming an alternative prior distribution onλ1i, i.e., N(λ0i + m,σ2) · I(λ1i > λ0i)
with m > 0 pre-selected, and applied such a MCDIST variant on the simulated
data set. To choose differentm values, we ran MCDIST on the simulated data set

Table S7: MCDIST variants.
MC DIST variant Type I error Power
MC DIST 0.0003 0.876
10th percentile 0.0003 0.882
20th percentile 0.0003 0.882
30th percentile 0 0.878
40th percentile 0 0.872

and calculated the 10th, 20th, 30th and 40th percentiles of the posterior samples of
{λ1i − λ0i|1 ≤ i ≤ n}, and used these four values as them values. The results of
those MCDIST variants, together with the result for MCDIST, are summarized
in Table S7. We can see that the MCDIST variants performed almost the same as
MC DIST.


