Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 14, 2016

Evaluation of low-template DNA profiles using peak heights

Christopher D. Steele ORCID logo EMAIL logo , Matthew Greenhalgh and David J. Balding


In recent years statistical models for the analysis of complex (low-template and/or mixed) DNA profiles have moved from using only presence/absence information about allelic peaks in an electropherogram, to quantitative use of peak heights. This is challenging because peak heights are very variable and affected by a number of factors. We present a new peak-height model with important novel features, including over- and double-stutter, and a new approach to dropin. Our model is incorporated in open-source R code likeLTD. We apply it to 108 laboratory-generated crime-scene profiles and demonstrate techniques of model validation that are novel in the field. We use the results to explore the benefits of modeling peak heights, finding that it is not always advantageous, and to assess the merits of pre-extraction replication. We also introduce an approximation that can reduce computational complexity when there are multiple low-level contributors who are not of interest to the investigation, and we present a simple approximate adjustment for linkage between loci, making it possible to accommodate linkage when evaluating complex DNA profiles.

Award Identifier / Grant number: 507493

Funding statement: Cellmark Forensic Services, (Grant/Award Number: “CMD-PHD1”) Biotechnology and Biological Sciences Research Council, (Grant/Award Number: “507493”)

  1. Funding: Cellmark Forensic Services, (Grant/Award Number: “CMD-PHD1”) Biotechnology and Biological Sciences Research Council, (Grant/Award Number: “507493”).


Balding, D. J. (2013): “Evaluation of mixed-source, low-template DNA profiles in forensic science,” Proc. Natl. Acad. Sci. USA 110, 12241–12246.10.1073/pnas.1219739110Search in Google Scholar PubMed PubMed Central

Balding, D. J. and J. Buckleton (2009): “Interpreting low template DNA profiles,” Forensic Sci. Int.-Gen., 4, 1–10.10.1016/j.fsigen.2009.03.003Search in Google Scholar PubMed

Balding, D. J. and C. D. Steele (2015): Weight-of-evidence for Forensic DNA Profiles, 2nd Ed., London: John Wiley & Sons.10.1002/9781118814512Search in Google Scholar

Benschop, C. C. G., S. Y. Yoo and T. Sijen (2015): “Split DNA over replicates or perform one amplification?,” Forensic Sci. Int.-Gen. Supplement Series, 5, e532–e533.10.1016/j.fsigss.2015.09.210Search in Google Scholar

Bleka, Ø., G. Storvik and P. Gill (2016): “EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts,” Forensic Sci. Int.-Gen., 21, 35–44.10.1016/j.fsigen.2015.11.008Search in Google Scholar PubMed

Bright, J.-A., J. M. Curran and J. S. Buckleton (2013a): “Relatedness calculations for linked loci incorporating subpopulation effects,” Forensic Sci. Int.-Gen., 7, 380–383.10.1016/j.fsigen.2013.03.002Search in Google Scholar PubMed

Bright, J.-A., D. Taylor, J. M. Curran and J. S. Buckleton (2013b): “Developing allelic and stutter peak height models for a continuous method of DNA interpretation,” Forensic Sci. Int.-Gen., 7, 96–304.10.1016/j.fsigen.2012.11.013Search in Google Scholar PubMed

Bright, J.-A., I. W. Evett, D. Taylor, J. M. Curran and J. Buckleton (2015): “A series of recommended tests when validating probabilistic DNA profile interpretation software,” Forensic Sci. Int.-Gen., 14, 125–131.10.1016/j.fsigen.2014.09.019Search in Google Scholar PubMed

Brookes, C., J.-A. Bright, S. Harbison and J. Buckleton (2012): “Characterising stutter in forensic STR multiplexes,” Forensic Sci. Int.-Gen., 6, 58–63.10.1016/j.fsigen.2011.02.001Search in Google Scholar PubMed

Buckleton, J. and J. Curran (2008): “A discussion of the merits of random man not excluded and likelihood ratios,” Forensic Sci. Int.-Gen., 2, 343–348.10.1016/j.fsigen.2008.05.005Search in Google Scholar PubMed

Champod, C. (2013): “DNA transfer: informed judgment or mere guesswork?,” Front. Genet., 4, 300.10.3389/fgene.2013.00300Search in Google Scholar

Cowell, R. G., T. Graversen, S. L. Lauritzen and J. Mortera (2015): “Analysis of forensic DNA mixtures with artefacts,” J. Roy. Stat. Soc. C-App., 64, 1–48.10.1111/rssc.12071Search in Google Scholar

Dørum, G., D. Kling, A. Tillmar, M. D. Vigeland and T. Egeland (2016): “Mixtures with relatives and linked markers,” Int. J. Legal Med., 130, 621–634.10.1007/s00414-015-1288-xSearch in Google Scholar

Gill, P. and H. Haned (2013): “A new methodological framework to interpret complex DNA profiles using likelihood ratios,” Forensic Sci. Int.-Gen., 7, 251–263.10.1016/j.fsigen.2012.11.002Search in Google Scholar

Gill, P., J. Whitaker, C. Flaxman, N. Brown and J. Buckleton (2000): “An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA,” Forensic Sci. Int., 112, 17–40.10.1016/S0379-0738(00)00158-4Search in Google Scholar

Gill, P., C. H. Brenner, J. S. Buckleton, A. Carracedo, M. Krawczak, W. R. Mayr, N. Morling, M. Prinz, P. M. Schneider and B. S. Weir (2006): “DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures,” Forensic Sci. Int., 160, 90–101.10.1016/j.forsciint.2006.04.009Search in Google Scholar PubMed

Gill, P., J. Curran, C. Neumann, A. Kirkham, T. Clayton, J. Whitaker and J. Lambert (2008): “Interpretation of complex DNA profiles using empirical models and a method to measure their robustness,” Forensic Sci. Int.-Gen., 2, 91–103.10.1016/j.fsigen.2007.10.160Search in Google Scholar PubMed

Gill, P., L. Gusmão, H. Haned, W. R. Mayr, N. Morling, W. Parson, L. Prieto, M. Prinz, H. Schneider, P. M. Schneider and B. S. Weir (2012): “DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods,” Forensic Sci. Int.-Gen., 6, 679–688.10.1016/j.fsigen.2012.06.002Search in Google Scholar PubMed PubMed Central

Good, I. J. (1950): Probability and the weighing of evidence, Ann Arbor, MI, USA: JSTOR.Search in Google Scholar

Graversen, T. and S. Lauritzen (2014): “Computational aspects of DNA mixture analysis,” Stat. Comput., 25, 527–541.10.1007/s11222-014-9451-7Search in Google Scholar

Haned, H., L. Pene, J. R. Lobry, A. B. Dufour and D. Pontier (2011): “Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count?,” J. Forensic Sci., 56, 23–28.10.1111/j.1556-4029.2010.01550.xSearch in Google Scholar PubMed

Kelly, H., J.-A. Bright, J. S. Buckleton and J. M. Curran (2014): “Identifying and modelling the drivers of stutter in forensic DNA profiles,” Aust. J. Forensic Sci., 46, 194–203.10.1080/00450618.2013.808697Search in Google Scholar

Manabe, S., C. Kawai and K. Tamaki (2013): “Simulated approach to estimate the number and combination of known/unknown contributors in mixed DNA samples using 15 short tandem repeat loci,” Forensic Sci. Int.-Gen. Supplement Series, 4, e154–e155.10.1016/j.fsigss.2013.10.080Search in Google Scholar

McCord, B. R., J. M. Jung and E. A. Holleran (1993): “High resolution capillary electrophoresis of forensic DNA using a non-gel sieving buffer,” J Liq. Chromatogr. R. T., 16, 1963–1981.10.1080/10826079308019908Search in Google Scholar

Mullen, K. M., D. Ardia, D. L. Gil, D. Windover, and J. Cline (2011): “DEoptim: An R package for global optimization by differential evolution,” J. Stat. Softw., 40, 1–26.10.18637/jss.v040.i06Search in Google Scholar

Nathakarnkitkool, S., P. J. Oefner, G. Bartsch, M. A. Chin and G. K. Bonn (1992): “High-resolution capillary electrophoretic analysis of DNA in free solution,” Electrophoresis, 13, 18–31.10.1002/elps.1150130105Search in Google Scholar PubMed

Perlin, M. W., M. M. Legler, C. E. Spencer, J. L. Smith, W. P. Allan, J. L. Belrose and B. W. Duceman (2011): “Validating TrueAllele DNA mixture interpretation,” J. Forensic Sci., 56, 1430–1447.10.1111/j.1556-4029.2011.01859.xSearch in Google Scholar PubMed

Puch-Solis, R., L. Rodgers, A. Mazumder, S. Pope, I. Evett, J. Curran and D. Balding (2013): “Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters,” Forensic Sci. Int.-Gen., 7, 555–563.10.1016/j.fsigen.2013.05.009Search in Google Scholar PubMed

Ruiz-Martinez, M. C., O. Salas-Solano, E. Carrilho, L. Kotler and B. L. Karger (1998): “A sample purification method for rugged and high-performance DNA sequencing by capillary electrophoresis using replaceable polymer solutions. A. Development of the cleanup protocol,” Anal. Chem., 70, 1516–1527.10.1021/ac971143fSearch in Google Scholar PubMed

Steele, C. D. and D. J. Balding (2014): “Choice of population database for forensic DNA profile analysis,” Sci. Justice, 54, 487–493.10.1016/j.scijus.2014.10.004Search in Google Scholar PubMed PubMed Central

Steele, C. D., M. Greenhalgh and D. J. Balding (2014a): “Verifying likelihoods for low template DNA profiles using multiple replicates,” Forensic Sci. Int.-Gen., 13, 82–89.10.1016/j.fsigen.2014.06.018Search in Google Scholar PubMed PubMed Central

Steele, C. D., D. S. Court and D. J. Balding (2014b): “Worldwide FST estimates relative to five continental-scale populations,” Ann. Hum. Genet., 78, 468–477.10.1111/ahg.12081Search in Google Scholar

Taylor, D., J. Buckleton and I. Evett (2015): “Testing likelihood ratios produced from complex DNA profiles,” Forensic Sci. Int.-Gen., 16, 165–171.10.1016/j.fsigen.2015.01.008Search in Google Scholar

Taylor, D., J.-A. Bright, C. McGoven, C. Hefford, T. Kalafut and J. Buckleton (2016): “Validating multiplexes for use in conjunction with modern interpretation strategies,” Forensic Sci. Int.-Gen., 20, 6–19.10.1016/j.fsigen.2015.09.011Search in Google Scholar

Tvedebrink, T., P. S. Eriksen, H. S. Mogensen and N. Morling (2009): “Estimating the probability of allelic drop-out of STR alleles in forensic genetics,” Forensic Sci. Int.-Gen., 3, 222–226.10.1016/j.fsigen.2009.02.002Search in Google Scholar

Williams, P. E., M. A. Marino, S. A. Del Rio, L. A. Turni and J. M. Devaney (1994): “Analysis of DNA restriction fragments and polymerase chain reaction products by capillary electrophoresis,” J. Chromatogr. A, 680, 525–540.10.1016/0021-9673(94)85152-2Search in Google Scholar

Published Online: 2016-7-14
Published in Print: 2016-10-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.1.2023 from
Scroll Up Arrow