Accessible Unlicensed Requires Authentication Published by De Gruyter June 10, 2015

Selecting the tuning parameter of the 1 trend filter

Hiroshi Yamada and Gawon Yoon

Abstract

The 1 trend filter, which is similar to the popular Hodrick–Prescott (HP) filter, seems to be very promising because it enables us to estimate a piecewise linear trend without specifying the location and number of kink points a priori. Such a trend may be regarded as a result of occasional permanent shocks to the growth rate. Similarly to the HP filter, the value of the tuning parameter needs to be selected in applying this filter. This paper proposes a method for selecting the tuning parameter of the 1 trend filter and its generalization.

JEL classification:: C22

Corresponding author: Hiroshi Yamada, Department of Economics, Hiroshima University, 1-2-1 Kagamiyama, Higashi-Hiroshima 739-8525, Japan, Phone: +81-82-424-7214, Fax: +81-82-424-7212, e-mail:

Acknowledgments

We are very grateful to two anonymous referees and the editor for their valuable suggestions and comments. The usual caveat applies. Hiroshi Yamada’s work was partly supported by JSPS KAKENHI Grant Numbers 22530272, 15K13010.

Appendix

Proofs of (8) and (9)

As in Osborne, Presnell, and Turlach (2000) and Kim et al. (2009), there exists v=[v1, …, vT−2]′ such that (a): 2(yx** )=ϕ**Dv, where, for t=1, …, T−2, vt=1 if ηt>0, vt=−1 if ηt<0, and vt∈[−1, 1] if ηt=0. Here, [η1, …, ηT−2]′=Dx** . As Dx**0, we see (b): ||v||=1. Combining (a) and (b), we obtain (8). In addition, from the definition of v, we see (c): (Dx** )′v=||Dx** ||1. Combining (a) and (c), we obtain (9).

References

Baumol, W. J., and A. S. Blinder. 2012. Macroeconomics: Principles and Policy. 12th ed. Mason: South-Western.Search in Google Scholar

Baxter, M., and R. G. King. 1999. “Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series.” Review of Economics and Statistics 81 (4): 575–593.Search in Google Scholar

Gómez, V. 2001. “The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series.” Journal of Business and Economic Statistics 19 (3): 365–373.Search in Google Scholar

Grant, M., and S. Boyd. 2013. CVX: Matlab software for disciplined convex programming, version 2.0 beta, .Search in Google Scholar

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.Search in Google Scholar

Hodrick, R. J., and E. C. Prescott. 1997. “Postwar U.S. Business Cycles: An Empirical Investigation.” Journal of Money, Credit and Banking 29 (1): 1–16.Search in Google Scholar

Hoerl, A. E., and R. W. Kennard. 1970. “Ridge Regression: Biased Estimation for Nonorthogonal Problems.” Technometrics 12 (1): 55–67.Search in Google Scholar

Kim, S., K. Koh, S. Boyd, and D. Gorinevsky. 2009. “1 Trend Filtering.” SIAM Review 51 (2): 339–360.Search in Google Scholar

King, R. G., and S. T. Rebelo. 1993. “Low Frequency Filtering and Real Business Cycles.” Journal of Economic Dynamics and Control 17 (1–2): 207–231.Search in Google Scholar

Morley, J. C., C. R. Nelson, and E. Zivot. 2003. “Why are the Beveridge–Nelson and Unobserved-Components Decompositions of GDP so Different?” Review of Economics and Statistics 85 (2): 235–243.Search in Google Scholar

Osborne, M. R., B. Presnell, and B. A. Turlach. 2000. “On the LASSO and its Dual.” Journal of Computational and Graphical Statistics 9 (2): 319–337.Search in Google Scholar

Paige, R. L., and A. A. Trindade. 2010. “The Hodrick–Prescott Filter: A Special Case of Penalized Spline Smoothing.” Electronic Journal of Statistics 4: 856–874.Search in Google Scholar

Perron, P. 1989. “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis.” Econometrica 57 (6): 1361–1401.Search in Google Scholar

Perron, P., and T. Wada. 2009. “Let’s Take a break: Trend and Cycles in US Real GDP.” Journal of Monetary Economics 56: 749–765.Search in Google Scholar

Rappoport, P. and L. Reichlin. 1989. “Segmented Trends and Non-Stationary Time Series.” Economic Journal 99: 168–177.Search in Google Scholar

Reeves, J. J., C. A. Blyth, C. M. Triggs, and J. P. Small. 2000. “The Hodrick–Prescott Filter, A Generalization, and A New Procedure for Extracting an Empirical Cycle From a Series.” Studies in Nonlinear Dynamics and Econometrics 4 (1): 1–16.Search in Google Scholar

Rockafellar, R. T. 1970. Convex Analysis. Princeton: Princeton University Press.Search in Google Scholar

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society Series B 58: 267–288.Search in Google Scholar

Tibshirani, R. J. 2014. “Adaptive Piecewise Polynomial Estimation via Trend Filtering.” Annals of Statistics 42 (1): 285–323.Search in Google Scholar

Tibshirani, R. J., and J. Taylor. 2011. “The Solution Path of the Generalized Lasso.” Annals of Statistics 39 (3): 1335–1371.Search in Google Scholar

Yamada, H. 2011. “A Note on Band-Pass Filters Based on the Hodrick–Prescott Filter and the OECD System of Composite Leading Indicators.” Journal of Business Cycle Measurement and Analysis 2011 (2): 105–109.Search in Google Scholar

Yamada, H., and L. Jin. 2013. “Japan’s Output Gap Estimation and 1 Trend Filtering.” Empirical Economics 45 (1): 81–88.Search in Google Scholar

Yamada, H., and G. Yoon. 2014. “When Grilli and Yang meet Prebisch and Singer: Piecewise Linear Trends in Primary Commodity Prices.” Journal of International Money and Finance 42: 193–207.Search in Google Scholar

Supplemental Material:

The online version of this article (DOI: 10.1515/snde-2014-0089) offers supplementary material, available to authorized users.

Published Online: 2015-6-10
Published in Print: 2016-2-1

©2016 by De Gruyter