Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 15, 2021

Regulated seasonal unit root process

  • Burak Alparslan Eroğlu ORCID logo EMAIL logo and Ayşe Özgür Pehlivan ORCID logo

Abstract

Unfortunately, time series problems do not appear in data singly. We focus on the joint occurrence of nonstationarity, seasonality and bounded data. Seasonal unit root tests and bounded unit root tests already exist in the literature, yet when all these issues are combined their performance needs improvement. That is why we offer a testing procedure for bounded seasonal unit root processes. The combination of these tests is not straightforward as the nonlinearity coming from bounds causes the limiting distribution of the proposed test statistic to be multivariate Brownian motion while the others have univariate distributions. The simulation exercises reveal that the existing tests, which ignores the presence of bounds or seasonality, suffer significant size problems. Our statistic removes the size distortions and also maintain satisfactory power performance.


Corresponding author: Burak Alparslan Eroğlu, Department of Economics, İstanbul Bilgi University, Eski Silahtarag̃a Elektrik Santrali, Kazım Karabekir Cad, No: 2/13, L1 203, 34060, Eyüp, İstanbul, Turkey, E-mail:

Funding source: The Scientific and Technological Research Council of Turkey

Award Identifier / Grant number: 117K261

Acknowledgment

The authors acknowledge funding from the 3501 Career Development Program (CAREER) of Scientific and Technological Research Council of Turkey (TUBITAK) with the grant ID 117K261 and project title “New Approaches in Seasonal Unit Root and Cointegration Models”. Moreover, the authors are grateful to Taner Yiğit, Haluk Yener for their support, comments and suggestions.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors thank for the support of The Scientific and Technological Research Council of Turkey. This study is funded under project no: 117K261.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

A. Proofs of the lemmas and theorems

Proof of Lemma 1

The proof of Lemma 1 resembles the proofs in Cavaliere (2005) and Cavaliere and Xu (2014), thus Assumption A.2, which is required to use the results of the authors, is in force throughout the proof. However, we extend their proofs for multivariate processes. First, we start proving the results for i.i.d. random variable case, then investigate the impact of serial correlation later. Now, from Assumption A.1 S-dimensional process V t = E t defined in Eqs. (8) and (11) satisfies the conditions so that S N ( ) = N 1 / 2 t = 1 N V t B ( ) where V t = [ V 1 , t , V 2 , t , , V S , t ] for all t ∈ {1, …, N}. Notice that for this case we set V t = j = 0 Φ j E t j such that Φ0 = I S and Φ j = 0 S×S for all j ≥ 1 where is a vector of the i.i.d. random variables with zero mean and identity variance-covariance matrix. Next define the S-dimensional process X ̃ t = [ X ̃ 1 , t , X ̃ 1 , t , , X ̃ S , t ] , where for each j ∈ {1, …, S} and t ∈ {1, …, N} as,

(14) X ̃ j , t = X ̃ j , t 1 + V j , t if X ̃ i , t 1 + V j , t [ b ̲ , b ̄ ] , b ̄ if X ̃ j , t 1 + V j , t > b ̄ , b ̲ if X ̃ j , t 1 + V j , t < b ̲ ,

With the above construction, X ̃ t is a vector bounded regulated process within the nominal bounds [ b ̲ , b ̄ ] where b ̲ = b ̲ 1 and b ̄ = b ̄ 1 . Using these nominal bounds and Assumption A.3, we define the asymptotic lower and upper bounds as c ̲ * = ( b ̲ / N ) 1 and c ̄ * = ( b ̄ / N ) 1 , respectively. In this specification, we have σ = 1 and Φ(1) = I S . Note that we concatenate the independent bounded unit root process in the vector X ̃ t . The idea in such construction is to show that the asymptotic properties of the regulated process does not depend on regulation principle. In that sense, we first generate a regulated time series with absorbing bounds, which enable us to easily find the asymptotic distribution, then demonstrate that this process has the same asymptotic behavior as any time series satisfying Eqs. (1) and (2), sharing the same innovation process and being restricted in the same interval. To achieve this, we utilize the following lemma.

Lemma 3

Let X ̃ N ( t ) = N 1 / 2 i = 1 N t X ̃ i be the partial sum process for the vector sequence { X ̃ i } i = 1 N , where X ̃ i = [ X ̃ 1 , i , , X ̃ S , i ] for all i ∈ {1, …, N} and X ̃ j , i is defined in Eq. (14) for each j ∈ {1, …, S}. Under the conditions of Lemma 1, X ̃ N ( t ) = S N ( t ) + L N ( t ) U N ( t ) B c ̲ * , c ̄ * ( t ) , where S N (t), L N (t) and U N (t) are the partial sum processes defined in the proof and B c ̲ * , c ̄ * ( t ) is the S-dimensional regulated Brownian motion with the asymptotic bounds c ̲ * and c ̄ * .

Proof of Lemma 3

First, we define the following S-dimensional partial sum processes for t ∈ [0, 1]:

(15) S N ( t ) = 1 N 1 / 2 i = 1 N t V 1 , i , 1 N 1 / 2 i = 1 N t V 2 , i , , 1 N 1 / 2 i = 1 N t V S , i , L N ( t ) = 1 N 1 / 2 i = 1 N t Ξ ̲ 1 , i , 1 N 1 / 2 i = 1 N t Ξ ̲ 2 , i , , 1 N 1 / 2 i = 1 N t Ξ ̲ S , i , U N ( t ) = 1 N 1 / 2 i = 1 N t Ξ ̄ 1 , i , 1 N 1 / 2 i = 1 N t Ξ ̄ 2 , i , , 1 N 1 / 2 i = 1 N t Ξ ̄ S , i ,

where for all i 1 , , N and j ∈ {1, …, S}, Ξ ̄ j , i = X ̃ i , i 1 + V j , i b ̄ and Ξ ̲ j , i = b ̄ X ̃ i , i 1 V j , i are the upper and lower regulators of X ̃ j , i , respectively. The processes in Eq. (15) are not continuous, thus, following Cavaliere (2005) we construct the continuous approximant of these processes on C [ 0,1 ] with t ∈ [0, 1] as,

S N * ( t ) = N 1 / 2 i = 1 [ N t ] V i + V [ N t ] + 1 N t [ N t ] N 1 / 2 ,

for all j ∈ {1, …, S},

L j , N * ( t ) = N 1 / 2 i = 1 [ N t ] Ξ ̲ j , i if Ξ ̲ j , N t + 1 = 0 , N 1 / 2 i = 1 [ N t ] Ξ ̲ j , i + N 1 / 2 N t [ N t ] V j , [ N t ] + 1 Ξ ̲ j , N t + 1 Ξ ̲ j , N t + 1 1 V j , [ N t ] + 1 Ξ ̲ j , N t + 1 Ξ ̲ j , N t + 1 Ξ ̲ j , N t + 1 × I N t [ N t ] + V j , [ N t ] + 1 Ξ ̲ j , N t + 1 Ξ ̲ j , N t + 1 if Ξ ̲ j , N t + 1 > 0 ,

U j , N * ( t ) = N 1 / 2 i = 1 [ N t ] Ξ ̄ j , i if Ξ ̄ j , N t + 1 = 0 , N 1 / 2 i = 1 [ N t ] Ξ ̄ j , i + N 1 / 2 N t [ N t ] V j , [ N t ] + 1 Ξ ̄ j , N t + 1 Ξ ̄ j , N t + 1 1 V j , [ N t ] + 1 Ξ ̄ j , N t + 1 Ξ ̄ j , N t + 1 Ξ ̄ j , N t + 1 × I N t [ N t ] + V j , [ N t ] + 1 Ξ ̄ j , N t + 1 Ξ ̄ j , N t + 1 if Ξ ̄ j N t + 1 > 0 .

Note that we can write S N * ( t ) = [ S 1 , N * ( t ) , , S S , N * ( t ) ] , L N * ( t ) = [ L 1 , N * ( t ) , , L S , N * ( t ) ] and U N * ( t ) = [ U 1 , N * ( t ) , , U S , N * ( t ) ] for all t ∈ [0, 1]. Using these objects, we can write the continuous approximation of the partial sum process for the regulated series { X ̃ i } i = 1 N as

X ̃ N * ( t ) = S N * ( t ) + L N * ( t ) U N * ( t ) , t [ 0,1 ] .

At the beginning of the proof, we mentioned that S N (t) ⇒ B(t). What needs to be demonstrated for the proof to follow however, is that S N * ( t ) B ( t ) . This can be obtained by noting that

(16) sup t [ 0,1 ] S j , N * ( t ) S j , N ( t ) = sup t [ 0,1 ] V j , [ N t ] + 1 N t [ N t ] N 1 / 2 N 1 / 2 1 max t = 1 , , N V j , t = o p ( 1 ) .

The above inequality follows from the proof of Theorem 6 of Cavaliere (2005) for each j ∈ {1, …, S}. Note that the rightmost equality in Eq. (16) is a direct implication of Assumption A.1, which indicates each element of V t is a martingale difference sequence. Invoking Theorem 4.1 of Billingsley (1968) then implies that S j , N * ( t ) B j ( t ) where for each j ∈ {1, …, S} B j (t) is a univariate standard Brownian motion. Consequently, the Cartesian product S N * ( t ) B ( t ) where B ( t ) = [ B 1 ( t ) , , B S ( t ) ] .

The main part of the proof now follows by noting that X ̃ N * ( t ) satisfies the construction for the regulated vector Brownian motion. In particular, this construction is same as the formulation for the regulated vector Brownian motions in Harrison and Reiman (1981). First, we define the function X ̃ N * ( t ) = g c ̲ * c ̄ * ( S N * ( t ) ) regulates S N * ( t ) as an integrated process which lies between [ c ̲ * , c ̄ * ] . Further, this process satisfies the following four conditions in Definition 1.

  1. The limits of L j , N * ( s ) and U j , N * ( s ) are continuous and non-decreasing with L j , N * ( 0 ) = U j , N * ( 0 ) = 0 for all j ∈ {1, …, S} by construction.

  2. X ̃ N * ( t ) = S N * ( t ) + L N * ( t ) U N * ( t ) [ c ̲ * , c ̄ * ] for all t ∈ [0, 1].

  3. L j , N * ( t ) only increases when X ̃ j , N * ( t ) = c ̲ * and U j , N * ( t ) increases only when X ̃ j , N * ( t ) = c ̄ * for all j ∈ {1, …, S} t ∈ [0, 1], because, they are continuous approximations of the regulators, which only increases at the associated boundaries.

  4. The reflection matrix R in the formulation in Harrison and Reiman (1981) is set to identity matrix I on this case, thus each regulated process are regulated separately when they hit the bound.

From Theorem 1 of Harrison and Reiman (1981), since X ̃ N * ( t ) satisfies the above four condition, X ̃ N * ( t ) is a unique solution to regulation problem for vector Brownian motion process. The continuous mapping theorem (CMT) and the convergence S N * ( t ) B ( t ) entail that

X ̃ N * ( t ) = g c ̲ * c ̄ * ( S N * ( t ) ) g c ̲ * c ̄ * B ( t ) = B ( t ) + L ( t ) U ( t ) for t [ 0,1 ] .

What remains to be shown is that X ̃ N ( t ) converges to X ̃ N * ( t ) for all t ∈ [0, 1]. A first step toward attaining this result is to check the condition whether each element of the vector process X ̃ N ( t ) pairwisely converges to the associated element of the process X ̃ N ( t ) . We can verify this condition by using the arguments in the proof of Theorem 6 of Cavaliere (2005). Now, notice that for t ∈ [0, 1]

X ̃ j , N ( t ) X ̃ j , N * ( t ) = L j , N * ( t ) L j , [ N t ] N 1 / 2 U j , N * ( t ) U j , [ N t ] N 1 / 2 + V j , [ N t ] + 1 N t [ N t ] N 1 / 2 2 N 1 / 2 V j , [ N t ] + 1 j { 1 , , S } .

To show the inequality above holds, consider the following objects

L j , N * ( t ) L j , [ N t ] N 1 / 2 and U j , N * ( t ) U j , [ N t ] N 1 / 2 j { 1 , , S } t [ 0,1 ] .

Note that these components belong to a univariate bounded integrated process, thus we can use the finding of Cavaliere (2005), which states that both objects are smaller than N 1 / 2 1 V j , [ N t ] + 1 for each j ∈ {1, …, S} and due to the fact that the non-zero sets of L N * ( t ) and U N * ( t ) are clearly disjoint for all t ∈ [0, 1]. The convergence follows from the same arguments used in the convergence of S N * ( t ) . That is,

sup t [ 0,1 ] X ̃ j , N ( t ) X ̃ j , N * ( t ) 2 N 1 / 2 V j , t = o p ( 1 ) .

This completes the proof of Lemma 3 which demonstrates that X ̃ N ( t ) X ̃ N * ( t ) B c ̲ * , c ̄ * ( t ) for t ∈ [0, 1]. □

To prove the postulate of Lemma 1 however, the convergence of X ̃ N ( t ) and X N (t) to the same limit remains to be shown, where X N (t) is defined as in Lemma 1. For this, we employ Lemma 7 of Cavaliere (2005) to each element of the vector processes, such that

(17) max t = 0 , , N X ̃ j , t X j , t max max t = 0 , , N Ξ ̲ j , t , max t = 0 , , N Ξ ̄ j , t max t = 0 , , N Ξ ̲ j , t + max t = 0 , , N Ξ ̄ j , t .

Notice that max t = 0 , , N Ξ ̲ j , t and max t = 0 , , N Ξ ̄ j , t are o p (1) from Assumption A.2. Accordingly, the expression in Eq. (17) implies that for each j { 1 , , S } sup t [ 0,1 ] X ̃ j , N ( t ) X j , N ( t ) 0 , thus, X ̃ N ( t ) and X N (t) converges to the same limit by the application of Cramér–Wold device. That is X N ( t ) B c ̲ * , c ̄ * ( t ) .

Now consider the general case with arbitrary stationary serial correlation for the innovation process such that V t = j = 0 Φ j E t j where E t is defined at the beginning of the proof. We first define Ξ ̲ t * = Φ ( L ) 1 Ξ ̲ t and Ξ ̄ t * = Φ ( L ) 1 Ξ ̄ t . Notice that X t = i = 1 t Φ ( L ) V t * where V t * = E t + Ξ ̲ t * Ξ ̄ t * . We can apply the multivariate version of the Beveridge and Nelson decomposition to X t :

N 1 / 2 t = 1 N X t = N 1 / 2 σ Φ ( 1 ) t = 1 N V t * + V ̃ 0 * V ̃ N * ,

where V ̃ t = i = 1 Φ ̃ i V t i * and Φ ̃ i j = i + 1 Φ j . Notice that E t is i.i.d. and we can apply the results of Lemma 3, thus N 1 / 2 t = 1 N V t * B c ̲ , c ̄ ( t ) where c ̲ = c ̲ * Φ ( 1 ) 1 / σ and c ̄ = c ̄ * Φ ( 1 ) 1 / σ are as defined in Lemma 1. Moreover, for j { 1 , , S } sup t V ̃ j , t = O p ( N 1 / 2 ) where V ̃ j , t is the jth element of V ̃ t . Applying CMT, we obtain the desired result such that X N ( t ) σ Φ ( 1 ) B c ̲ , c ̄ ( t ) . □

Proof of Lemma 2

First note that ∀j ∈ {0, …, ⌊S/2⌋}, X j,t = C j X t and for all j ∈ {1, ‥, S*} we have X j , t * = C j * X t . As in del Barrio Castro, Osborn, and Taylor (2012), we have C 0Φ(1) = ϕ(1)C 0, C S/2⌋Φ(1) = ϕ(−1)C S/2⌋, C j Φ ( 1 ) = b j C j + a j C j * and C j * Φ ( 1 ) = a j C j + b j C j * for j = 1, …, S*. Further, we have following identities: C 0 C 0 = SC 0, C S/2⌋ C S/2⌋ = SC S/2⌋, C j C j = S 2 C j , C j C j * = S 2 C j * and C j * C j * = S 2 C j for j ∈ {1, …, S*}. It is also stated in del Barrio Castro, Osborn, and Taylor (2012) that the other products of the circulant matrices are all zero.

Note that for j ∈ {0, ⌊S/2⌋} X j,t = C 0 X t we can write the partial sum process as

N 1 / 2 X j , N r = N 1 / 2 C j X N r σ C j Φ ( 1 ) B c ̲ , c ̄ ( t ) = σ ϕ ( 1 ) C j B c ̲ , c ̄ ( t ) ,

where the first convergence immediately follows Lemma 1 and the last equation stems form the property of the circulant matrix introduced above. With similar arguments, the other results follow from manipulating the associated circulant matrices and CMT. □

Proof of Theorem 1

In this proof, we will use the construction of del Barrio Castro, Osborn, and Taylor (2012). To save space, we will skip the parts that are exactly same as in del Barrio Castro, Osborn, and Taylor (2012). Consider the augmented regression in Eq. (5). Under Assumption A.1, del Barrio Castro, Osborn, and Taylor (2012) show that

T π ̂ j = T 1 t = 1 N s = 1 S 0 x j , S t + s ϵ S t + s + T 1 t = 1 N s = 1 S 0 x j , S t + s ( e k , S t + s ϵ S t + s ) T 2 t = 1 N s = 1 S 0 x j , S t + s 2 + o p ( 1 ) for j { 0 , S / 2 } , T π ̂ j * = T 1 t = 1 N s = 1 S 0 x j , S t + s * ϵ S t + s + T 1 t = 1 N s = 1 S 0 x j , S t + s * ( e k , S t + s ϵ S t + s ) T 2 t = 1 N s = 1 S 0 x j , S t + s * 2 + o p ( 1 ) for j { 1 , , S * } .

First consider the denominators. For j ∈ {0, ⌊S/2⌋}, we have

T 2 t = 1 N s = 1 S 0 x j , S t + s 2 = T 2 t = 1 N S X t C j X t + o p ( 1 ) , σ 2 S 0 1 B c ̲ , c ̄ ( s ) Φ ( 1 ) C j Φ ( 1 ) B c ̲ , c ̄ ( s ) d s = σ 2 ϕ ( 1 ) 2 S 0 1 B c ̲ , c ̄ ( s ) C 0 B c ̲ , c ̄ ( s ) d ( s ) if j = 0 , σ 2 ϕ ( 1 ) 2 S 0 1 B c ̲ , c ̄ ( s ) C S / 2 B c ̲ , c ̄ ( s ) d ( s ) if j = S / 2 .

The first equality stems from the properties of the circulant matrices C 0 and C S/2. The weak convergence is a result of Lemma 1 and the CMT. But also note that the term 1/S appears since the partial sum convergence is over N, but not T = NS, thus we have an extra term 1/S 2. Similarly, for j ∈ {1, …, S*} we can show

T 2 t = 1 N s = 1 S 0 x j , S t + s 2 = T 2 t = 1 N S 2 X t C j X t + o p ( 1 ) σ 2 2 S 0 1 B c ̲ , c ̄ ( s ) Φ ( 1 ) C j Φ ( 1 ) B c ̲ , c ̄ ( s ) d s , = σ 2 ( a j 2 + b j 2 ) 2 S 0 1 B c ̲ , c ̄ ( s ) C j B c ̲ , c ̄ ( s ) d ( s ) .

Now we can focus on the numerators. del Barrio Castro, Osborn, and Taylor (2012) prove that T 1 t = 1 N s = 1 S 0 x j , S t + s ( e S t + s k ϵ S t + s ) = O p ( T ) and T 1 t = 1 N s = 1 S 0 x j , S t + s * ( e S t + s k ϵ S t + s ) = O p ( T ) , then we can write the numerators as

T 1 t = 1 N s = 1 S 0 x j , S t + s ϵ S t + s = T 1 t = 1 N s = 1 S 0 X t C j E t + o p ( 1 ) for j { 0 , , S * } , T 1 t = 1 N s = 1 S 0 x j , S t + s * ϵ S t + s = T 1 t = 1 N s = 1 S 0 X t C j * E t + o p ( 1 ) for j { 1 , , S * } .

From the CMT and Lemma 1, we have

T 1 t = 1 N s = 1 S 0 x 0 , S t + s ϵ S t + s σ 2 ϕ ( 1 ) S 0 1 B c ̲ , c ̄ ( s ) C 0 d B c ̲ , c ̄ ( s ) , T 1 t = 1 N s = 1 S 0 x S / 2 , S t + s ϵ S t + s σ 2 ϕ ( 1 ) S 0 1 B c ̲ , c ̄ ( s ) C S / 2 d B c ̲ , c ̄ ( s ) , and for j { 1 , , S * } , T 1 t = 1 N s = 1 S 0 x j , S t + s ϵ S t + s σ 2 b j 2 S 0 1 B c ̲ , c ̄ ( s ) C j d B c ̲ , c ̄ ( s ) σ 2 a j 2 S 0 1 B c ̲ , c ̄ ( s ) C j * d B c ̲ , c ̄ ( s ) , T 1 t = 1 N s = 1 S 0 x j , S t + s * ϵ S t + s σ 2 a j 2 S 0 1 B c ̲ , c ̄ ( s ) C j d B c ̲ , c ̄ ( s ) + σ 2 b j 2 S 0 1 B c ̲ , c ̄ ( s ) C j * d B c ̲ , c ̄ ( s )

Note that the t statistic can be written as

t j = T π ̂ j σ ̂ 2 / T 2 t = 1 N s = 1 S 0 x j , S t + s 2 j 0 , , S / 2 , t j * = T π ̂ j * σ ̂ 2 / T 2 t = 1 N s = 1 S 0 x j , S t + s * 2 j { 1 , , S * } .

The rest of the proof follows from the application of the CMT and the consistency of σ ̂ 2 . The innovation variance σ 2 can be estimated by σ ̂ 2 = T 1 t = 1 N s = 1 S 0 e ̂ k , S t + s where e ̂ k , S t + s is the residuals from the augmented HEGY Equation. The consistency of σ ̂ 2 directly follows the results of Lemma A.2 in Cavaliere and Xu (2014) and del Barrio Castro, Osborn, and Taylor (2012), thus we skip the full proof. □

B. Tables for the simulation results

Table 1:

Size of the zero frequency standard and regulated HEGY tests.

c ̄ * t 0 b t 0 b r t 0 s
T δ t Model 0.3 0.6 0.3 0.6 0.3 0.6
100 0 1 0.044 0.041 0.048 0.023 0.008 0.048 0.074 0.044 0.043
2 0.050 0.040 0.036 0.047 0.036 0.034 0.097 0.049 0.037
3 0.084 0.067 0.054 0.090 0.067 0.058 0.375 0.123 0.077
4 0.062 0.049 0.047 0.050 0.031 0.036 0.119 0.054 0.043
5 0.101 0.063 0.051 0.098 0.065 0.052 0.178 0.070 0.049
1 1 0.048 0.039 0.043 0.018 0.006 0.035 0.157 0.068 0.065
2 0.051 0.041 0.038 0.050 0.032 0.036 0.204 0.071 0.053
3 0.105 0.067 0.059 0.092 0.052 0.060 0.514 0.166 0.101
4 0.059 0.051 0.049 0.048 0.028 0.036 0.213 0.095 0.066
5 0.086 0.055 0.047 0.082 0.055 0.049 0.269 0.098 0.065
1000 0 1 0.041 0.044 0.051 0.010 0.018 0.051 0.104 0.053 0.047
2 0.057 0.049 0.047 0.057 0.046 0.042 0.184 0.056 0.046
3 0.054 0.052 0.049 0.044 0.049 0.045 0.270 0.088 0.059
4 0.052 0.047 0.051 0.052 0.052 0.048 0.170 0.071 0.050
5 0.070 0.048 0.048 0.062 0.048 0.054 0.212 0.071 0.048
1 1 0.037 0.043 0.048 0.012 0.017 0.045 0.108 0.053 0.050
2 0.062 0.047 0.053 0.059 0.050 0.049 0.198 0.062 0.054
3 0.055 0.048 0.046 0.043 0.048 0.047 0.312 0.082 0.067
4 0.055 0.049 0.049 0.057 0.047 0.048 0.211 0.069 0.051
5 0.063 0.050 0.050 0.063 0.050 0.054 0.222 0.077 0.055
Table 2:

Size of the Nyquist frequency standard and regulated HEGY tests.

c ̄ * t 2 b t 2 b r t 2 s
T δ t Model 0.3 0.6 0.3 0.6 0.3 0.6
100 0 1 0.059 0.086 0.121 0.074 0.064 0.111 0.089 0.089 0.109
2 0.046 0.039 0.039 0.053 0.034 0.034 0.101 0.049 0.037
3 0.086 0.067 0.062 0.091 0.060 0.059 0.354 0.113 0.082
4 0.049 0.047 0.049 0.045 0.029 0.039 0.099 0.052 0.048
5 0.093 0.062 0.056 0.090 0.060 0.053 0.196 0.069 0.055
1 1 0.032 0.062 0.081 0.043 0.041 0.084 0.146 0.099 0.097
2 0.049 0.040 0.041 0.042 0.035 0.036 0.184 0.079 0.053
3 0.101 0.066 0.048 0.103 0.055 0.049 0.525 0.182 0.100
4 0.064 0.051 0.050 0.053 0.031 0.040 0.192 0.093 0.071
5 0.083 0.054 0.049 0.084 0.055 0.043 0.262 0.094 0.065
1000 0 1 0.042 0.059 0.076 0.076 0.126 0.080 0.035 0.047 0.068
2 0.063 0.056 0.049 0.059 0.054 0.045 0.183 0.075 0.047
3 0.048 0.048 0.049 0.039 0.046 0.040 0.276 0.081 0.063
4 0.051 0.051 0.052 0.053 0.050 0.051 0.182 0.063 0.051
5 0.060 0.053 0.052 0.060 0.053 0.051 0.198 0.075 0.053
1 1 0.039 0.061 0.067 0.072 0.127 0.069 0.042 0.054 0.067
2 0.064 0.052 0.054 0.063 0.053 0.047 0.186 0.072 0.051
3 0.048 0.051 0.046 0.040 0.049 0.040 0.313 0.087 0.059
4 0.049 0.046 0.051 0.054 0.046 0.050 0.187 0.065 0.055
5 0.058 0.058 0.050 0.067 0.056 0.050 0.230 0.075 0.052
Table 3:

Size of the π/2 harmonic frequency standard and regulated HEGY tests.

c ̄ * F 1 b F 1 b r F 1 s
T δ t Model 0.3 0.6 0.3 0.6 0.3 0.6
100 0 1 0.055 0.033 0.035 0.030 0.010 0.038 0.088 0.037 0.034
2 0.055 0.044 0.039 0.069 0.041 0.035 0.112 0.042 0.035
3 0.070 0.045 0.049 0.085 0.045 0.051 0.463 0.074 0.050
4 0.058 0.049 0.045 0.071 0.035 0.042 0.109 0.043 0.043
5 0.106 0.054 0.047 0.106 0.054 0.043 0.223 0.053 0.047
1 1 0.047 0.034 0.040 0.029 0.010 0.039 0.128 0.060 0.055
2 0.061 0.040 0.034 0.068 0.040 0.032 0.212 0.070 0.054
3 0.071 0.038 0.055 0.080 0.037 0.056 0.583 0.124 0.063
4 0.073 0.043 0.044 0.069 0.033 0.039 0.185 0.068 0.054
5 0.091 0.053 0.044 0.104 0.050 0.040 0.279 0.077 0.064
1000 0 1 0.047 0.039 0.044 0.017 0.028 0.045 0.109 0.048 0.045
2 0.070 0.049 0.045 0.071 0.054 0.047 0.190 0.060 0.043
3 0.047 0.044 0.045 0.036 0.042 0.044 0.338 0.062 0.044
4 0.056 0.049 0.047 0.061 0.052 0.045 0.200 0.052 0.054
5 0.064 0.049 0.045 0.066 0.048 0.047 0.265 0.051 0.048
1 1 0.043 0.038 0.046 0.019 0.027 0.049 0.127 0.048 0.046
2 0.055 0.054 0.055 0.059 0.050 0.051 0.210 0.057 0.053
3 0.043 0.048 0.047 0.035 0.044 0.050 0.358 0.063 0.048
4 0.060 0.050 0.049 0.062 0.051 0.047 0.235 0.059 0.050
5 0.070 0.052 0.047 0.065 0.048 0.047 0.279 0.065 0.049
Table 4:

Size of all the frequencies except zero joint standard and regulated HEGY tests.

c ̄ * F 12 b F 12 b r F 12 s
T δ t Model 0.3 0.6 0.3 0.6 0.3 0.6
100 0 1 0.065 0.039 0.056 0.050 0.017 0.059 0.106 0.048 0.056
2 0.051 0.034 0.035 0.052 0.032 0.037 0.115 0.033 0.035
3 0.059 0.046 0.049 0.083 0.045 0.043 0.639 0.092 0.053
4 0.058 0.041 0.043 0.066 0.031 0.037 0.136 0.040 0.047
5 0.101 0.060 0.042 0.114 0.053 0.042 0.295 0.055 0.042
1 1 0.053 0.048 0.061 0.045 0.013 0.052 0.209 0.078 0.071
2 0.053 0.042 0.039 0.060 0.037 0.034 0.296 0.077 0.050
3 0.079 0.042 0.045 0.094 0.036 0.046 0.856 0.188 0.076
4 0.067 0.047 0.050 0.063 0.031 0.040 0.272 0.081 0.063
5 0.107 0.049 0.043 0.104 0.053 0.040 0.468 0.092 0.058
1000 0 1 0.053 0.055 0.057 0.031 0.060 0.052 0.093 0.063 0.053
2 0.053 0.050 0.049 0.057 0.047 0.048 0.273 0.051 0.049
3 0.040 0.043 0.051 0.034 0.037 0.050 0.456 0.067 0.052
4 0.049 0.045 0.047 0.053 0.048 0.048 0.255 0.052 0.048
5 0.064 0.056 0.048 0.060 0.048 0.052 0.354 0.063 0.047
1 1 0.050 0.056 0.060 0.030 0.060 0.050 0.102 0.063 0.056
2 0.056 0.054 0.046 0.061 0.051 0.042 0.285 0.052 0.048
3 0.038 0.043 0.050 0.029 0.034 0.053 0.541 0.077 0.052
4 0.050 0.048 0.054 0.052 0.049 0.048 0.302 0.062 0.052
5 0.057 0.050 0.050 0.056 0.046 0.051 0.399 0.060 0.053
Table 5:

Size of all the frequencies joint standard and regulated HEGY tests.

c ̄ * F 02 b F 02 b r F 02 s
T δ t Model 0.3 0.6 0.3 0.6 0.3 0.6
100 0 1 0.053 0.038 0.058 0.032 0.011 0.059 0.091 0.044 0.051
2 0.043 0.032 0.033 0.047 0.031 0.031 0.119 0.033 0.030
3 0.056 0.044 0.049 0.088 0.041 0.040 0.790 0.111 0.062
4 0.060 0.043 0.047 0.060 0.029 0.037 0.152 0.037 0.045
5 0.118 0.059 0.042 0.125 0.058 0.044 0.363 0.051 0.043
1 1 0.048 0.044 0.051 0.025 0.006 0.051 0.258 0.080 0.074
2 0.046 0.037 0.033 0.054 0.028 0.028 0.407 0.080 0.047
3 0.097 0.043 0.081 0.110 0.037 0.085 0.933 0.237 0.098
4 0.067 0.045 0.051 0.063 0.028 0.037 0.401 0.090 0.066
5 0.114 0.054 0.046 0.118 0.050 0.041 0.620 0.105 0.065
1000 0 1 0.039 0.051 0.055 0.011 0.034 0.053 0.089 0.058 0.050
2 0.045 0.050 0.049 0.049 0.043 0.050 0.339 0.047 0.050
3 0.029 0.041 0.055 0.019 0.035 0.050 0.613 0.065 0.056
4 0.037 0.046 0.046 0.040 0.049 0.045 0.319 0.051 0.048
5 0.060 0.050 0.052 0.052 0.049 0.057 0.476 0.060 0.048
1 1 0.034 0.056 0.056 0.010 0.042 0.047 0.098 0.061 0.051
2 0.049 0.052 0.045 0.055 0.050 0.044 0.360 0.049 0.048
3 0.028 0.038 0.056 0.020 0.034 0.056 0.718 0.076 0.059
4 0.041 0.047 0.050 0.042 0.047 0.046 0.383 0.061 0.049
5 0.052 0.047 0.046 0.051 0.046 0.049 0.507 0.056 0.054
Table 6:

Size-adjusted power of the zero frequency regulated HEGY tests.

c ̄ * t 0 b t 0 b r
T Model α 0 0.3 0.6 0.3 0.6
100 1 0.99 0.160 0.196 0.219 0.064 0.033 0.176
0.9 0.934 0.950 0.957 0.892 0.876 0.944
2 0.99 0.127 0.175 0.209 0.119 0.126 0.138
0.9 0.899 0.961 0.975 0.928 0.953 0.954
3 0.99 0.103 0.148 0.183 0.176 0.156 0.312
0.9 0.815 0.810 0.768 0.928 0.836 0.853
4 0.99 0.148 0.181 0.216 0.152 0.129 0.163
0.9 0.890 0.954 0.973 0.918 0.948 0.955
5 0.99 0.128 0.175 0.201 0.219 0.201 0.200
0.9 0.794 0.875 0.893 0.872 0.902 0.892
1000 1 0.99 1.000 1.000 1.000 0.998 0.999 1.000
0.9 1.000 1.000 1.000 0.998 1.000 1.000
2 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
3 0.99 0.976 0.997 0.997 0.975 0.996 0.998
0.9 1.000 1.000 1.000 1.000 1.000 1.000
4 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
5 0.99 0.996 1.000 1.000 0.997 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
Table 7:

Size-adjusted power of the Nyquist frequency regulated HEGY tests.

c ̄ * t 2 b t 2 b r
T Model α 2 0.3 0.6 0.3 0.6
100 1 0.99 0.143 0.164 0.163 0.112 0.112 0.271
0.9 0.856 0.599 0.508 0.783 0.532 0.606
2 0.99 0.138 0.175 0.202 0.124 0.115 0.146
0.9 0.902 0.965 0.967 0.911 0.949 0.946
3 0.99 0.097 0.153 0.181 0.189 0.176 0.295
0.9 0.797 0.803 0.757 0.908 0.828 0.831
4 0.99 0.135 0.189 0.207 0.132 0.115 0.162
0.9 0.884 0.958 0.969 0.877 0.917 0.950
5 0.99 0.122 0.175 0.215 0.214 0.177 0.200
0.9 0.790 0.883 0.917 0.856 0.894 0.907
1000 1 0.99 0.988 0.974 0.979 0.994 0.994 0.990
0.9 0.980 0.900 0.847 0.995 0.980 0.894
2 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
3 0.99 0.980 0.994 0.997 0.972 0.994 0.998
0.9 1.000 1.000 1.000 1.000 1.000 1.000
4 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
5 0.99 0.996 1.000 1.000 0.997 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
Table 8:

Size-adjusted power of the π/2 harmonic frequency regulated HEGY tests.

c ̄ * F 1 b F 1 b r
T Model α 1 0.3 0.6 0.3 0.6
100 1 0.99 0.221 0.304 0.304 0.133 0.065 0.260
0.9 0.956 0.977 0.979 0.907 0.881 0.971
2 0.99 0.197 0.255 0.280 0.213 0.231 0.219
0.9 0.979 0.992 0.995 0.988 0.993 0.992
3 0.99 0.146 0.268 0.313 0.192 0.219 0.345
0.9 0.786 0.795 0.811 0.829 0.770 0.817
4 0.99 0.211 0.295 0.309 0.259 0.236 0.261
0.9 0.974 0.994 0.995 0.983 0.985 0.992
5 0.99 0.164 0.269 0.286 0.287 0.264 0.239
0.9 0.717 0.851 0.901 0.783 0.854 0.888
1000 1 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
2 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
3 0.99 0.999 1.000 1.000 0.998 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
4 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
5 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
Table 9:

Size-adjusted power of all the frequencies except zero joint regulated HEGY tests.

c ̄ * F 12 b F 12 b r
T Model α 1 0.3 0.6 0.3 0.6
100 1 0.99 0.174 0.215 0.203 0.108 0.032 0.210
0.9 0.891 0.923 0.917 0.787 0.699 0.921
2 0.99 0.127 0.181 0.213 0.120 0.107 0.128
0.9 0.911 0.966 0.980 0.940 0.948 0.957
3 0.99 0.092 0.158 0.191 0.180 0.128 0.295
0.9 0.585 0.643 0.659 0.712 0.599 0.744
4 0.99 0.135 0.207 0.221 0.159 0.110 0.156
0.9 0.905 0.965 0.972 0.921 0.908 0.959
5 0.99 0.111 0.174 0.218 0.237 0.170 0.160
0.9 0.592 0.740 0.824 0.669 0.720 0.785
1000 1 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 0.998 1.000 1.000
2 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
3 0.99 0.990 0.999 1.000 0.967 0.998 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
4 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
5 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
Table 10:

Size-adjusted power of all the frequencies joint regulated HEGY tests.

c ̄ * F 02 b F 02 b r
T Model α 1 0.3 0.6 0.3 0.6
100 1 0.99 0.209 0.253 0.236 0.191 0.080 0.261
0.9 0.919 0.946 0.943 0.895 0.835 0.945
2 0.99 0.155 0.202 0.234 0.156 0.156 0.158
0.9 0.946 0.979 0.988 0.965 0.972 0.978
3 0.99 0.116 0.200 0.236 0.184 0.168 0.306
0.9 0.678 0.714 0.728 0.761 0.675 0.779
4 0.99 0.170 0.240 0.261 0.189 0.160 0.191
0.9 0.944 0.978 0.985 0.955 0.949 0.979
5 0.99 0.129 0.214 0.235 0.251 0.213 0.192
0.9 0.641 0.794 0.857 0.715 0.784 0.837
1000 1 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
2 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
3 0.99 0.995 1.000 1.000 0.986 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
4 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000
5 0.99 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000

References

Billingsley, P. 1968. Convergence of Probability Measures. New York: Wiley.Search in Google Scholar

Carrion-i-Silvestre, J. L., and M. D. Gadea. 2013. “Gls-Based Unit Root Tests for Bounded Processes.” Economics Letters 120 (2): 184–7. https://doi.org/10.1016/j.econlet.2013.04.016.Search in Google Scholar

Carrion-i-Silvestre, J. L., and M. D. Gadea. 2016. “Bounds, Breaks and Unit Root Tests.” Journal of Time Series Analysis 37 (2): 165–81. https://doi.org/10.1111/jtsa.12140.Search in Google Scholar

Cavaliere, G. 2002. “Bounded Integrated Processes and Unit Root Tests.” Statistical Methods and Applications 11 (1): 41–69. https://doi.org/10.1007/s102600200020.Search in Google Scholar

Cavaliere, G. 2005. “Limited Time Series with a Unit Root.” Econometric Theory 21 (05): 907–45. https://doi.org/10.1017/s0266466605050462.Search in Google Scholar

Cavaliere, G., and F. Xu. 2014. “Testing for Unit Roots in Bounded Time Series.” Journal of Econometrics 178: 259–72. https://doi.org/10.1016/j.jeconom.2013.08.026.Search in Google Scholar

Chang, Y., and J. Park. 2002. “On the Asymptotics of Adf Tests for Unit Roots.” Econometric Reviews 21 (4): 431–47. https://doi.org/10.1081/etc-120015385.Search in Google Scholar

del Barrio Castro, T., D. R. Osborn, and A. R. Taylor. 2012. “On Augmented HEGY Tests for Seasonal Unit Roots.” Econometric Theory 28 (5): 1121–43. https://doi.org/10.1017/s0266466612000060.Search in Google Scholar

del Barrio Castro, T., D. R. Osborn, and A. R. Taylor. 2016. “The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests.” Econometric Reviews 35 (1): 122–68. https://doi.org/10.1080/07474938.2013.807710.Search in Google Scholar

del Barrio Castro, T., P. M. Rodrigues, and A. R. Taylor. 2018. “Semi-parametric Seasonal Unit Root Tests.” Econometric Theory 34 (2): 447–76. https://doi.org/10.1017/s0266466617000135.Search in Google Scholar

den Haan, W. J., and A. T. Levin. 1997. “12 a Practitioner’s Guide to Robust Covariance Matrix Estimation.” Handbook of Statistics 15: 299–342. https://doi.org/10.1016/s0169-7161(97)15014-3.Search in Google Scholar

Elliott, G., T. Rothenberg, and J. Stock. 1996. “Efficient Tests for an Autoregressive Unit Root.” Econometrica 64 (4): 813–36. https://doi.org/10.2307/2171846.Search in Google Scholar

Eroğlu, B. A., K. Ç. Göğebakan, and M. Trokić. 2018. “Powerful Nonparametric Seasonal Unit Root Tests.” Economics Letters 167: 75–80.10.1016/j.econlet.2018.03.011Search in Google Scholar

Harrison, J. 1985. Brownian Motion and Stochastic Flow Systems. New York: Wiley.Search in Google Scholar

Harrison, J. M., and M. I. Reiman. 1981. “Reflected Brownian Motion on an Orthant.” The Annals of Probability 9 (2): 302–8.10.1214/aop/1176994471Search in Google Scholar

Huang, G., M. Mandjes, and P. Spreij. 2014. “Limit Theorems for Reflected Ornstein–Uhlenbeck Processes.” Statistica Neerlandica 68 (1): 25–42. https://doi.org/10.1111/stan.12021.Search in Google Scholar

Hylleberg, S., R. F. Engle, C. W. Granger, and B. S. Yoo. 1990. “Seasonal Integration and Cointegration.” Journal of Econometrics 44 (1): 215–38. https://doi.org/10.1016/0304-4076(90)90080-d.Search in Google Scholar

Newey, W., and K. West. 1987. “A Simple Positive Semidefinite Heteroscedasticity and Autocorrelation Consistent Covariance Matrix.” Econometrica 55: 150–61. https://doi.org/10.2307/1913610.Search in Google Scholar

Ng, S., and P. Perron. 2001. “Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power.” Econometrica 69 (6): 1519–54. https://doi.org/10.1111/1468-0262.00256.Search in Google Scholar

Rodrigues, P. M., and A. R. Taylor. 2004. “Asymptotic Distributions for Regression-Based Seasonal Unit Root Test Statistics in a Near-Integrated Model.” Econometric Theory 20 (4): 645–70.10.1017/S0266466604204029Search in Google Scholar

Rodrigues, P. M., and A. R. Taylor. 2007. “Efficient Tests of the Seasonal Unit Root Hypothesis.” Journal of Econometrics 141 (2): 548–73. https://doi.org/10.1016/j.jeconom.2006.10.007.Search in Google Scholar

Smith, R. J., A. R. Taylor, and T. del Barrio Castro. 2009. “Regression-based Seasonal Unit Root Tests.” Econometric Theory 25 (2): 527–60. https://doi.org/10.1017/s0266466608090166.Search in Google Scholar

Taylor, A. R. 2002. “Regression-based Unit Root Tests with Recursive Mean Adjustment for Seasonal and Nonseasonal Time Series.” Journal of Business & Economic Statistics 20 (2): 269–81. https://doi.org/10.1198/073500102317352001.Search in Google Scholar

Trokić, M. 2013. “Regulated Fractionally Integrated Processes.” Journal of Time Series Analysis 34 (5): 591–601.10.1111/jtsa.12036Search in Google Scholar

Ward, A., and P. W. Glynn. 2003. “Properties of the Reflected Ornstein–Uhlenbeck Process.” Queueing Systems 44 (2): 109–23. https://doi.org/10.1023/a:1024403704190.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/snde-2019-0110).


Received: 2019-09-11
Revised: 2021-04-29
Accepted: 2021-06-04
Published Online: 2021-06-15

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.12.2023 from https://www.degruyter.com/document/doi/10.1515/snde-2019-0110/html
Scroll to top button