Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 16, 2015

Nonlinear maps preserving Lie products on triangular algebras

Weiyan Yu
From the journal Special Matrices

Abstract

In this paper we prove that every bijection preserving Lie products from a triangular algebra onto a normal triangular algebra is additive modulo centre. As an application, we described the form of bijections preserving Lie products on nest algebras and block upper triangular matrix algebras.

References

[1] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993) 525-546.10.1090/S0002-9947-1993-1069746-XSearch in Google Scholar

[2] D. Benkovič, D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra, 280 (2004) 797-824.Search in Google Scholar

[3] D. Benkovič, Biderivations triangular algebras, Linear Algebra Appl. 431 (2009) 1587-1602.10.1016/j.laa.2009.05.029Search in Google Scholar

[4] M. Brešar, P. Šemrl, Commutativity preserving linear maps on central simple algebras, J. Algebras, 284 (2005) 102-110.Search in Google Scholar

[5] M. Choi, A. Jafarian, H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987) 227-241.10.1016/0024-3795(87)90169-8Search in Google Scholar

[6] W.S. Cheung, Commuting maps of triangular algebras, J. London math. Soc. 63 (2001) 117-127.10.1112/S0024610700001642Search in Google Scholar

[7] W.S. Cheung, Lie derivation of triangular algebras, Linear Multilinear Algebra, 51 (2003) 299-310.Search in Google Scholar

[8] K.R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1988.Search in Google Scholar

[9] J.C. Hou, M.Y. Jiao, Additive maps preserving Jordan zero-products on nest algebras, Linear Algebra Appl. 429 (2008) 190-208.10.1016/j.laa.2008.02.021Search in Google Scholar

[10] F.Y. Lu, Additive Jordan isomorphisms of nest algebras on normed spaces, J. Math. Anal. Appl. 284 (2003) 127-143.10.1016/S0022-247X(03)00287-7Search in Google Scholar

[11] L.W. Marcoux, Lie isomorphisms of nest algebras, J. Funct. Anal. Appl. 164 (1999) 163-180.10.1006/jfan.1999.3388Search in Google Scholar

[12] W.S. Martindale, Lie isomorphisms of simple rings, J. London Math. Soc. 44 (1969) 213-221.10.1112/jlms/s1-44.1.213Search in Google Scholar

[13] C.R. Miers, Commutativity preserving maps of factors, Canad. J. Math. 40 (1988) 248-256.10.4153/CJM-1988-011-1Search in Google Scholar

[14] C.R. Miers, Lie isomorphisms of operator algebras, Pacific J. Math. 38 (1971) 717-735.10.2140/pjm.1971.38.717Search in Google Scholar

[15] C.R. Miers, Lie isomorphisms of factors, Trans. Amer. Math. Soc. 147 (1970) 55-63.10.1090/S0002-9947-1970-0273423-7Search in Google Scholar

[16] L. Molnár, P. Šemrl, Nonlinear commutativity preserving maps on self-adjoint operators, Q. J. Math. 56 (2005) 589-595.10.1093/qmath/hah058Search in Google Scholar

[17] M. Omladič, H. Radjavi, P. Šemrl, Preserving commutativity, J. Pure Appl. Algebra 156 (2001) 309-328.10.1016/S0022-4049(99)00154-1Search in Google Scholar

[18] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005) 781-819.Search in Google Scholar

[19] T.L. Wong, Jordan isomorphisms of triangular algebras, Linear Algebra Appl. 418 (2006) 225-233.10.1016/j.laa.2006.02.001Search in Google Scholar

[20] J.H. Zhang, W.Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006) 251-255.10.1016/j.laa.2006.04.015Search in Google Scholar

[21] W.Y. YU, J.H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010) 2953-2960.10.1016/j.laa.2009.12.042Search in Google Scholar

[22] W.Y. YU, J.H. Zhang, Lie triple derivations of CSL algebras, Int Theor Phys. 52 (2013) 2118-2127.10.1007/s10773-013-1507-5Search in Google Scholar

[23] J.H. Zhang, F.J. zhang, Nonlinear maps preserving lie products on factor von Neumann algebras, Linear Algebra Appl. 429 (2008) 18-30.10.1016/j.laa.2008.01.031Search in Google Scholar

[24] W.Y. YU, J.H. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012) 1979-1991.10.1016/j.laa.2012.05.032Search in Google Scholar

Received: 2015-9-6
Accepted: 2015-11-10
Published Online: 2015-12-16
Published in Print: 2016-1-1

© 2016 Weiyan Yu, published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow