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Abstract: Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose
of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and
max(zi , zj) as their ij entries, respectively. We are going to do this by interpreting these matrices as so-called
meet and join matrices and by applying some known results for meet and join matrices. Once the theorems
are found with the aid of advanced methods, we also consider whether it would be possible to prove these
same results by using elementary matrix methods only. In many cases the answer is positive.
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1 Introduction
MIN and MAX matrices are rather simple-structured matrices that appear in many contexts in mathematics
and statistics. As is pointed out in the next section, in some cases MIN matrices have an interpretation as co-
variance matrices of certain stochastic processes. Bhatia [3] shows that the MINmatrix [min(i, j)] is infinitely
divisible, and in [4] he gives a more comprehensive treatment to this subject. Moyé [16, Appendix B] studies
the covariance matrix of Brownian motion, which appears to be a certain MIN matrix. Motivated by Moyé’s
work, Neudecker, Trenkler and Liu [17] defined a more general matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 a1 a1 · · · a1
a1 a2 a2 · · · a2
a1 a2 a3 · · · a3
...

...
...

. . .
...

a1 a2 a3 · · · an

⎤⎥⎥⎥⎥⎥⎥⎦
(ai are real numbers for all i = 1, . . . , n), and proposed the following problems:
– find a necessary and sufficient condition for A to be positive definite;
– find the inverse of A when A is nonsingular;
– find the determinant of A.
Two years later Chu, Puntanen and Styan [5] made use of elementary matrix methods and provided answers
to the above questions.

Also in the field of pure mathematics MIN and MAX matrices have appeared in many contexts and by
many authors. Probably the first such appearance can be found in the famous book [18] by Pólya and Szegö,
where the reader is asked to calculate the determinant of theMINmatrix [min(i, j)] and also the determinants
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of some of its generalizations (in fact, all these exercises can be found already in the original German version
of the book published in 1925). Meet matrices were defined by Rajarama Bhat [20] for the first time and in this
samearticleMINmatrices are considered as an example. da Fonseca [7] studies the eigenvalues of certainMIN
and MAX matrices via their matrix inverses, and in [9] bounds for the values of trigonometric functions are
found by underestimating the smallest eigenvalue of a MINmatrix. Also the connection between generalized
Fibonacci numbers and the characteristic polynomials of MIN andMAXmatrices have been studied recently,
see [2].

As we are going to see, there is a very natural and straightforwardway to interpret MIN andMAXmatrices
as meet and joinmatrices, whose properties are well studied. On the other hand, because of the simple struc-
ture of MIN and MAXmatrices it is easy to apply basically any result related to meet and join matrices to MIN
and MAX matrices. At the same time we give some thoughts about how difficult it would be to verify these
formulas by using only elementary linear algebra. The reader is also very welcome to amuse herself/himself
by trying to answer the same question.

2 Preliminaries
We begin by presenting the definition of MIN and MAX matrices. Let T = {z1, z2, . . . , zn} be a finite multiset
of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn (in some cases, however, we need to assume that z1 < z2 < · · · < zn).
The MIN matrix (T)min of the set T has min(zi , zj) as its ij entry, whereas the MAX matrix of the set T has
max(zi , zj) as its ij entry and is denoted by [T]max. Both matrices are clearly square and symmetric and they
may be written explicitly as

(T)min =

⎡⎢⎢⎢⎢⎢⎢⎣
z1 z1 z1 · · · z1
z1 z2 z2 · · · z2
z1 z2 z3 · · · z3
...

...
...

. . .
...

z1 z2 z3 · · · zn

⎤⎥⎥⎥⎥⎥⎥⎦ and [T]max =

⎡⎢⎢⎢⎢⎢⎢⎣
z1 z2 z3 · · · zn
z2 z2 z3 · · · zn
z3 z3 z3 · · · zn
...

...
...

. . .
...

zn zn zn · · · zn

⎤⎥⎥⎥⎥⎥⎥⎦ .

Remark 2.1. Here it is convenient to assume that the elements of T are listed in increasing order, since this
assumption does not affect most of the basic properties of the matrices (T)min and [T]max. Rearranging the
indexing of the elements of the set T corresponds to multiplying the matrices (T)min and [T]max from left by
a certain permutation matrix Q and from right by the matrix QT . Properties like determinant and positive
definiteness remain invariant in this operation.

An interesting special case of MIN matrices is obtained by setting T = {1, 2, . . . , n}. In this case we have

(T)min =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · n

⎤⎥⎥⎥⎥⎥⎥⎦ and [T]max =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 3 · · · n
2 2 3 · · · n
3 3 3 · · · n
...

...
...

. . .
...

n n n · · · n

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix (T)min is, up to a positive scalar, the covariance matrix of a stochastic process with increments
which possess the same variance and are uncorrelated. See, for example, Davidson and MacKinnon [6, p.
606]. Bhatia [4] provided six alternative proofs for its positive definiteness. This same matrix is also studied
in a recent book about matrices in statistics, see [19, pp. 251–253]. Isotalo and Puntanen [11, pp. 1021–1022]
considered an example related to prediction of the new observation in the linear model with the covariance
matrix of the type (T)min above.

Nextwe review some basic concepts of lattice theory. A partially ordered set (poset) is a pair (P,⪯), where
P is a nonempty set and⪯ is a reflexive, antisymmetric and transitive relation. A closed interval [x, y] in P is
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the set
[x, y] = {z ∈ P

⃒⃒
x ⪯ z ⪯ y}, x, y ∈ P.

Poset (P,⪯) is said to be locally finite if the interval [x, y] is finite for all x, y ∈ P. Poset (P,⪯) is a chain if
x ⪯ y or y ⪯ x for all x, y ∈ P. A lattice is a poset, where the infimum x ∧ y and the supremum x ∨ y exist
for all x, y ∈ P. It is easy to see that every chain is a lattice with x ∧ y = min(x, y) and x ∨ y = max(x, y).
For example, the set of real numbers equipped with the usual ordering is a lattice and a chain, but it is not
locally finite. The set of positive integers equipped with the divisibility relation is a locally finite lattice with
x∧ y = gcd(x, y) and x∨ y = lcm(x, y), but this poset is not a chain. For a general account on lattices, see [21].

Next we need to define meet and join matrices. Let (P,⪯) be a locally finite lattice. Moreover, let S =
{x1, x2, . . . , xn} be a finite subset of P with distinct elements such that xi ⪯ xj ⇒ i ≤ j (in other words, the
indexing of the elements xi ∈ S is a linear extension, see [21, p. 110]). Finally, let f be a function on P toR (or
to C). The meet matrix (S)f of the set S with respect to the function f is the n × n matrix with f (xi ∧ xj) as its
ij entry. Similarly, the join matrix [S]f of the set S with respect to f is the n × n matrix with f (xi ∨ xj) as its ij
entry. For further material about meet and join matrices we refer to [8, 12].

LikeMINandMAXmatrices,meet and joinmatrices are square and (complex) symmetric aswell. Aproper
way to describe meet and join matrices might be to say that in meet and join matrices the entries are deter-
mined partly by the function f and partly by the set S and the underlying lattice structure (P,⪯).

3 Some important results for meet and join matrices
In our study of MIN and MAX matrices we are going to make use of a couple of known results for meet and
join matrices. The first one is about the structure of (S)f . For any two subsets S = {x1, x2, . . . , xn} and T =
{y1, y2, . . . , ym} of P, let E(S, T) = (eij) denote the n × m incidence matrix defined as

eij =
{︃

1 if yj ⪯ xi ,
0 otherwise.

Proposition 3.1. [8, Theorem 1] Let T = {y1, y2, . . . , ym} be a meet closed subset of P containing S =
{x1, x2, . . . , xn} (m ≥ n). Then

(S)f = EΛET = AAT ,

where E = E(S, T), Λ = diag(ΨT,f (y1), . . . , ΨT,f (ym)), A = EΛ 1
2 and ΨT,f is defined recursively as

ΨT,f (yj) = f (yj) −
∑︁
yi≺yj

ΨT,f (yi).

Themain idea of this factorization can be generalized for joinmatrices and even formeet and joinmatrices on
two sets, see [1, Theorem 3.1] and [14, Theorem 3.1]. Furthermore, these factorization theorems can be used,
among other things, to find the following determinant and inverse formulas for meet and join matrices. In
Propositions 3.3 and 3.5 the function ΦS,f is again the Möbius inversion of f , but in this case the inversion is
executed from above. In other words,

ΦS,f (xk) = f (xk) −
∑︁
xk≺xv

ΦS,f (xv).

Proposition 3.2. [1, Theorem 4.2] If S is meet closed, then

det(S)f =
n∏︁
v=1

ΨS,f (xv) =
n∏︁
v=1

∑︁
z⪯xv
z⪯̸xt
t<v

∑︁
w⪯z

f (w)µP(w, z).
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Proposition 3.3. [14, Theorem 4.2] If S is join closed, then

det[S]f =
n∏︁
v=1

ΦS,f (xv) =
n∏︁
v=1

∑︁
xv⪯xt

f (xt)µS(xv , xt) =
n∏︁
v=1

∑︁
xv⪯z⪯∨S
xt⪯̸z
v<t

∑︁
z⪯w⪯∨S

f (w)µP(z, w).

Proposition 3.4. [1, Theorem 5.3] Suppose that S is meet closed. If (S)f is invertible, then the inverse of (S)f
is the n × n matrix B = (bij), where

bij =
n∑︁
k=1

(−1)i+j
ΨS,f (xk)

det E(Ski ) det E(Skj ),

where E(Ski ) is the (n − 1) × (n − 1) submatrix of E(S) := E(S, S) obtained by deleting the ith row and the kth
column of E(S), or

bij =
∑︁

xi∨xj⪯xk

µS(xi , xk)µS(xj , xk)
ΨS,f (xk)

,

where µS is the Möbius function of the poset (S,⪯).

Proposition 3.5. [14, Theorem 5.3] Suppose that S is join closed. If [S]f is invertible, then the inverse of [S]f
is the n × n matrix B = (bij), where

bij =
n∑︁
k=1

(−1)i+j
ΦS,f (xk)

det E(Sik) det E(S
j
k),

where E(Sik) is the (n − 1) × (n − 1) submatrix of E(S) obtained by deleting the kth row and the ith column of
E(S), or

bij =
∑︁

xk⪯xi∧xj

µS(xk , xi)µS(xk , xj)
ΦS,f (xk)

,

where µS is the Möbius function of the poset (S,⪯).

Our last proposition tells about the divisibility of meet and join matrices in the ring of integer matrices of size
n × n. Here it is also required that the values of the function f are integers.

Proposition 3.6. [13, Corollary 3.1] Let S be a chain such that (S)f is invertible (i.e. f (x1) ≠ 0 and f (xk) ≠
f (xk−1) for k = 2, 3, . . . , n). Then (S)f | [S]f .

4 MIN and MAX matrices as meet and join matrices
The most straightforward attempt to interpret MIN and MAX matrices as meet and join matrices would be
to set (P,⪯) = (R, ≤). This, however, cannot be done since the set of real numbers is not locally finite (meet
and join matrices are usually studied via Möbius inversion, which requires the local finiteness property).
Nevertheless, there is a way around the problem. We set P = {1, 2, . . . , n}, ⪯ is the usual ordering ≤ of the
integers and S = P. Since in this case (P, ≤) is a chain with n elements, it is trivially a locally finite lattice.
Moreover, by defining f : P → R by f (i) = zi for all i = 1, 2, . . . , n we obtain (S)f = (T)min and [S]f = [T]max.

Executing the Möbius inversion is now easy due to the simple chain-structure of the poset (P, ≤) (general
information about Möbius inversion andMöbius functions on posets can be found for example from [21]). For
the Möbius function of the chain (P, ≤) we have for i, j ∈ P that

µP(j, i) =

⎧⎪⎨⎪⎩
1 if i = j,
−1 if i = j + 1,
0 otherwise.
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The function µP can then be used to define two other functions ΨP and ΦP as

ΨP(1) = z1, ΨP(i) =
∑︁
1≤j≤i

µP(j, i)zj = zi − zi−1 for 1 < i ≤ n

and
ΦP(n) = zn , ΦP(i) =

∑︁
i≤j≤n

µP(i, j)zj = zi − zi+1 for 1 ≤ i < n.

It turns out that the values of the functionsΨP andΦP characterizemany key properties of thematrices (T)min
and [T]max.

Remark 4.1. Similarly defined functionsΨP,S,f andΦP,S,f are alsoused in the studyofmore generalmeet and
join matrices (see [1, Section 2], [14, Section 2] and [15, Section 2]), but here these functions take particularly
simple forms due to the simple chain-structure of the set P.

Meet and joinmatrices and their special cases GCD and LCMmatrices have been studied in dozens of research
papers and their basic properties are ratherwell known. In this articlewe are going to formulate these general
results for MIN andMAXmatrices. Sincemost of the results presented in this paper follow directly from some
stronger theorem formeet and joinmatrices, it would not be absolutely necessary to reprove these statements.
However, we are going to see that in many cases it is still interesting and useful to find simpler proofs that are
also accessible to those who are not so familiar with themethods used in the study of meet and joinmatrices.

5 Factorization of MIN and MAX matrices
Now we are in a position to give factorizations for the matrices (T)min and [T]max by using our newly defined
functions ΨP and ΦP.

Theorem 5.1. Let n ≥ 2 and let E denote the lower triangular 0, 1 matrix of size n × n, where eij = 1 for i ≥ j
and eij = 0 otherwise. Then

(T)min = E diag(ΨP(1), ΨP(2), . . . , ΨP(n)) ET

=

⎡⎢⎢⎢⎢⎣
1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
z1 0 · · · 0
0 z2 − z1 · · · 0
...

...
. . .

...
0 0 · · · zn − zn−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎥⎦
and

[T]max = ET diag(ΦP(1),ΦP(2), . . . ,ΦP(n)) E

=

⎡⎢⎢⎢⎢⎣
1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
z1 − z2 0 · · · 0

0 z2 − z3 · · · 0
...

...
. . .

...
0 0 · · · zn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

⎤⎥⎥⎥⎥⎦ .

Proof. The first formula follows directly from Proposition 3.1 or from [1, Theorem 3.1], the second from [14,
Theorem 3.1]. It is also easy to verify these equations by carrying out the above matrix multiplications.

It should be noted that the factorizations found in Theorem 5.1 work also in the case when the elements of T
are not distinct (i.e., z1 ≤ z2 ≤ · · · ≤ zn and there is at least one equality). For example, if zi−1 < zi = zi+1 =
· · · = zi+k , then we simply have ΨP(i) ≠ 0 and ΨP(i + 1) = · · · = ΨP(i + k) = 0.
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Remark 5.1. This same factorizationworks also on anyHadamard power of aMINmatrix; the only thing that
needs to be changed are the diagonal elements of thematrix D (d11 = zα1 , d22 = zα2−zα1 etc.). This factorization
works even if we map all the elements zi with an increasing real-valued function g. The explanation is that
the resulting matrix remains to be a MIN matrix, but in this case the set is {g(z1), g(z2), . . . , g(zn)}.

Remark 5.2. In [5] Chu, Puntanen and Styan give a factorization, which is equivalent to that found in Theo-
rem 5.1. Their formula can be obtained from Theorem 5.1 by multiplying the equations from left and right by
the inverse matrices E−1 and (ET)−1 (the matrix (ET)−1 is in fact the matrix of the Möbius function µP of the
poset (P, ≤)).

By taking (possibly complex-valued) square roots of the diagonal elements in Theorem 5.1 it is possible to
obtain a further factorization for the matrices (T)min and [T]max.

Theorem 5.2. Let A and B be the n × n matrices with

aij =

⎧⎪⎨⎪⎩
√z1 if j = 1,
√zj − zj−1 if 1 < j ≤ i,
0 otherwise

and bij =

⎧⎪⎨⎪⎩
√zi − zi+1 if j ≤ i < n,
√zn if i = n,
0 otherwise.

Then
(T)min = AAT and [T]max = BTB.

Proof. Let us denote
D = diag(ΨP(1), ΨP(2), . . . , ΨP(n))

and
D′ = diag(ΦP(1),ΦP(2), . . . ,ΦP(n)).

By Theorem 5.1 we have

(T)min = EDET = ED
1
2 D

1
2 ET = (ED

1
2 )(ED

1
2 )T = AAT .

Similarly
[T]max = ETD′E = ET(D′)

1
2 (D′)

1
2 E = ((D′)

1
2 E)T((D′)

1
2 E) = BTB.

Yet another factorizations for the matrices (T)min and [T]max can be found by making use of entrywise MIN
and MAX operations for matrices. There appears to be also some resemblance between them and those in
Theorem 5.2.

Theorem 5.3. Let us define thematrix operations∧ and∨ by (aij)n×m∧(bij)n×m = (min(aij , bij)) and (aij)n×m∨
(bij)n×m = (max(aij , bij)). Let C denote the n × n matrix with cij = zi for all 1 ≤ i, j ≤ n. Then

(T)min = C ∧ CT and [T]max = C ∨ CT .

Proof. The claim follows directly after writing down the matrices C ∧ CT and C ∨ CT .

6 Inertia and determinant of MIN and MAX matrices
The inertia of a Hermitean matrix A is the triple (i+(A), i−(A), i0(A)), where i+(A), i−(A) and i0(A) are the
numbers of positive, negative and zero eigenvalues of thematrix A, countingmultiplicities. The factorization
presented in Theorem 5.1 allows us to determine the inertias of the matrices (T)min and [T]max rather easily.
We adopt the following notation: given a property P, define χ(P) = 1 if P holds and χ(P) = 0 otherwise.
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Theorem 6.1. The inertias of the matrices (T)min and [T]max are given by the following formulas:
1. i+((T)min) = −1 + (#of distinct zi) + χ(z1 > 0), i−((T)min) = χ(z1 < 0),
2. i−([T]max) = −1 + (#of distinct zi) + χ(z1 < 0), i+([T]max) = χ(z1 > 0).

Proof. We prove only part (1), since part (2) follows from similar argument. The hypothesis z1 ≤ z2 ≤ · · · ≤ zn
implies that exactly as many of the elements z2 − z1, . . . , zn − zn−1 are positive as there are strict ‘<’ signs in
the chain. This number is by one less than the number of distinct elements zi. Therefore the diagonal matrix
D in Theorem 5.1, first part, has −1+ (#of distinct zi) positive entries in rows 2, . . . , n. The remaining of these
entries are 0. There is one additional positive, zero or negative element on the diagonal, according to if z1 > 0,
z1 = 0 or z1 < 0 holds. Thus we now have the above formulas for the inertias of the diagonal matrix D in place
of (T)min. But Theorem 5.1 gives us that (T)min is Tcongruent with D. Since Tcongruence preserves inertia by
Sylvester’s law, see [10, p. 223], we get the claim.

Remark 6.1. Theorem6.1 implies that the rank of theMIN andMAXmatrices is usually the number of distinct
elements in T . However, if z1 = 0, then the rank of the matrix (T)min decreases from this by one. The same
happens to the matrix [T]max if zn = 0.

Next we consider the determinants of the matrices (T)min and [T]max.

Theorem 6.2. We have

det(T)min = ΨP(1)ΨP(2) · · ·ΨP(n) = z1(z2 − z1)(z3 − z2) · · · (zn − zn−1)

and
det[T]max = ΦP(1)ΦP(2) · · ·ΦP(n) = (z1 − z2)(z2 − z3) · · · (zn−1 − zn)zn .

Proof. These determinant formulas follow directly from Proposition 3.2 and Proposition 3.3, but they are also
easily recovered from Theorem 5.1. If one wishes to use elementary methods only, the Gauss-Jordan elimina-
tion process works also quite nicely but it requires a lot of computation.

7 Inverses of MIN and MAX matrices
Under the assumption that the elements of the set T are distinct the MIN and MAX matrices of the set T are
usually invertible. Next we shall find their inverses.

Theorem 7.1. Suppose that the elements of the set T are distinct. If z1 ≠ 0, then the MIN matrix is invertible
and the inverse matrix is the n × n tridiagonal matrix B = (bij), where

bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |i − j| > 1,
z2

z1(z2 − z1)
if i = j = 1,

1
zi − zi−1

+ 1
zi+1 − zi

if 1 < i = j < n,

1
zn − zn−1

if i = j = n,

−1
|zi − zj|

if |i − j| = 1.
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Similarly, if zn ≠ 0, then the inverse of the MAX matrix is the n × n tridiagonal matrix C = (cij) with

cij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |i − j| > 1,
1

z1 − z2
if i = j = 1,

1
zi−1 − zi

+ 1
zi − zi+1

if 1 < i = j < n,

1
zn−1 − zn

+ 1
zn

if i = j = n,

1
|zi − zj|

if |i − j| = 1.

Proof. The inverse formulas follow straight fromProposition 3.4 andProposition 3.5. An elementary approach
would be to construct the supposed inverse matrices and multiply them with the matrices (T)min and [T]max.

In the case when z1, . . . , zn are distinct integers it is interesting to study their divisibility properties among
the ring of integer matrices of size n × n.

Theorem 7.2. Let 0 ≠ z1, . . . , zn ∈ Z with z1 < z2 < · · · < zn . Then (T)min divides [T]max in the ring of n × n
matrices over the integers. In other words, there exists an integer matrix A such that [T]max = A(T)min.

Proof. The claim follows from Proposition 3.6. Another approach would be to make use of the inverse matrix
(T)−1min found in Theorem 7.1 and to show that the matrix [T]max(T)−1min := A is an integer matrix.

8 Positive definiteness of MIN and MAX matrices
The factorizations found inTheorem5.1 alsomake it possible to find conditionsunderwhich theMINandMAX
matrices of the set T are positive definite. It should be noted that Theorem 8.1 is in fact a trivial consequence
of Theorem 6.1 (see Remark 8.1), but since this result can be obtained by using only elementary means, we
are going to do so.

Theorem 8.1. Suppose first that the elements of the set T are distinct.
1. If z1 > 0, then the matrix (T)min is positive definite and the matrix [T]max is indefinite.
2. If z1 = 0, then the matrix (T)min is positive semidefinite and the matrix [T]max is indefinite.
3. If z1 < 0 and zn > 0, then both the matrix (T)min and the matrix [T]max are indefinite.
4. If zn = 0, then the matrix (T)min is indefinite and the matrix [T]max is negative semidefinite.
5. If zn < 0, then the matrix (T)min is indefinite and the matrix [T]max is negative definite.

If the elements of the set T are not distinct, then the matrices (T)min and [T]max are positive or negative
semidefinite instead of positive or negative definite.

Proof. First we should note that since the 0, 1 matrix E in Theorem 5.1 is invertible, the matrices (T)min and
[T]max share the same positive definiteness properties as the matrices

diag(ΨP(1), ΨP(2), . . . , ΨP(n))

and
diag(ΦP(1),ΦP(2), . . . ,ΦP(n))

(this canbe easily verifiedby looking at quadratic forms). Again, from thequadratic form it is easy to see that if
all the diagonal elements are positive, thenwehave a positive definitematrix. And if all the diagonal elements
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are negative, then in this case the matrix is negative definite. If some of the diagonal elements are positive
and some negative, then the respective matrix is indefinite. And finally, if some of the diagonal elements are
equal to zero, then the matrix is positive or negative semidefinite instead of positive or negative definite (the
matrix is not invertible which means that it has 0 as an eigenvalue).

Remark 8.1. Theorem 8.1 follows easily from Theorem 6.1, since a real symmetric n × n matrix A is positive
definite iff i+(A) = n and positive semidefinite iff i−(A) = 0. Similarly A is negative definite iff i−(A) = n and
negative semidefinite if i+(A) = 0. Finally A is indefinite iff we have both i−(A) ≥ 1 and i+(A) ≥ 1.

Remark 8.2. In the casewhen z1 > 0 and the elements of T are distinct it is also possible to prove the positive
definiteness of thematrix (T)min bymaking use of [15, Theorem 3.1]. Another option would be to use Theorem
5.2. In this case all the diagonal elements of the matrix D are positive, which implies that the matrix A is real
and

(T)min = AAT = AA*.

The positive definiteness follows now from the invertibility of the matrix (T)min.
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