
© 2016 A. K. Bhuniya and Sudip Bera, published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Spec. Matrices 2016; 4:121–129

Research Article Open Access

A. K. Bhuniya* and Sudip Bera

On some characterizations of strong power
graphs of finite groups
DOI 10.1515/spma-2016-0012
Received August 21, 2015; accepted January 22, 2016
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1 Introduction
The study of different algebraic structures using graph theory becomes an exciting research topic in the last
few decades, leading to many fascinating results and questions [1, 4], - ,[7, 15, 16, 20]. Given an algebraic
structure S, there are different formulations to associate a directed or undirected graph to S, and the algebraic
properties of S are studied in terms of properties of associated graphs.

Directed power graphs associated to semigroups were introduced by Kelarev and Quinn [15]. If S is a
semigroup, then the directed power graph

−−→
P(S) of S is a directed graph with S as the set of all vertices and

for any two distinct vertices u and v of S, there is an arc from u to v if v = um for some positive integer m.
Then Chakrabarty, Ghosh and Sen [6] defined the undirected power graph P(S) of a semigroup S such that
two distinct elements u and v of S are edge connected in P(S) if u = vm or v = um for some positive integer m.
They proved that for a finite group G, the undirected power graph P(G) is complete if and only if G is a cyclic
group of order 1 or pm for some prime p and positive integer m. In [4], Cameron and Ghosh showed that for
two finite abelian groups G1 and G2, P(G1) ∼= P(G2) implies that G1 ∼= G2. They also conjectured that two
finite groups with isomorphic undirected power graphs have the same number of elements of each order.

Singh andManilal [20] introduced strong power graph as a generalization of the undirected power graph
of a finite group. Let G be a group of order n. The strong power graph Ps(G) of G is a graph whose vertices are
the elements of G and two distinct vertices a and b are adjacent inPs(G) if am1=bm2 for some positive integers
m1,m2 < n. Thus a finite group G is noncyclic if and only if Ps(G) is complete. Also Ps(G) is connected if and
only if n is composite. By definition, the strong power graph of every group is simple. Henceforth, unless
otherwise stated, by a graph we always mean a simple graph.

Here we give several graph theoretic and spectral characterizations of the strong power graph of a finite
group. A complete list of the finite groups G such that Ps(G) is a line graph is given in Section 2. In Section 3,
the algebraic connectivity and the chromatic number of Ps(G) have been found.

For any graph Γ, let A(Γ) be the adjacency matrix and D(Γ) be the diagonal matrix of vertex degrees.
Then the Laplacianmatrix of Γ is defined as L(Γ)=D(Γ)−A(Γ). Clearly L(Γ) is a real symmetric matrix and it is
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well known that L(Γ) is a positive semidefinite matrix with 0 as the smallest eigenvalue. Thus we can assume
that the Laplacian eigenvalues are λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn = 0. The eigenvalues of the Laplacian matrix
L(Γ) is called the Laplacian spectrum of Γ. In the study of connectivity, coloring, energy of graphs Laplacian
spectrum plays an important role. According to Mohar [19] the Laplacian eigenvalues are more intuitive and
much more important than the eigenvalues of the adjacency matrix. We give a complete characterization of
the Laplacian spectrum of strong power graph of any finite group in Section 4.

In Section 5, we have derived an explicit formula for the permanent of the Laplacian matrix of strong
power graphs of any finite group.

We refer to [9, 21] for the notions of the graph theory, [2, 3] for thematrix theory related to graphs and [14]
for the group theoretic background.

2 Representing strong power graph as line graph
In this section we characterize the groups G such that the strong power graph Ps(G) of the group G is a line
graph. The line graph of a graph Γ is the graph L(Γ)with the edges of Γ as its vertices, and where two edges of
Γ are adjacent in L(Γ) if and only if they are incident in Γ. A subgraph T of a graph Γ is an induced subgraph
if two vertices of T are adjacent in T if and only if they are adjacent in Γ. The graph obtained by taking the
union of two graphs Γ1 and Γ2 with disjoint vertex set is the disjoined union or sum, denoted by Γ1 + Γ2. The
following result is a fundamental characterization of the line graphs. Proof of this result can be found in [21].

Lemma 2.1. A graph G is the line graph of some graph if and only if G does not have any of the following nine
graphs as an induced subgraph.

For any positive integer n,Zn denotes the cyclic group of order n and ϕ(n) denotes the number of positive
integers r ≤ n such that gcd(r, n) = 1. Then the number of generators of Zn is ϕ(n). Let D′(n) = {d ∈ N |
d|n, d ≠ 1, n}. ThusD′(p) = ∅ for everyprime p. Thenwehaveϕ(n) > n−4 ⇔ n−ϕ(n) < 4 ⇔

∑︀
d∈D′(n) ϕ(d) < 3

or n is a prime⇔ n = 4, 9 or a prime.

Lemma 2.2. If Ps(Zn) is a line graph then n = 4, 9 or a prime.

Proof. If possible, on the contrary, suppose that n ≠ 4, 9 and a prime. Then it follows that ϕ(n) ≤ n −4which
implies that n − ϕ(n) − 1 ≥ 3, and hence Zn has at least three nonzero nongenerators, say a, b and c. In this
case the following graph is an induced subgraph of Ps(Zn).
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where [0] is the zero element and [1] is the unity in Zn. Therefore, by Lemma 2.1, Ps(Zn) can not be a line
graph.

Now we characterize all finite groups G such that Ps(G) is a line graph.

Theorem 2.3. Let G be a finite group of order n.
1. If G is noncyclic, then Ps(G) is a line graph of K1,n, where K1,n is the complete bipartite graph whose vertex

set V = V1 ∪ V2, where V1 contains only one vertex and V2 contains n vertices.
2. If G is cyclic, then Ps(G) is a line graph if and only if n = 4, 9 or a prime.

Proof. 1. If G is noncyclic then Ps(G) is a complete graph with n vertices, and hence Ps(G) = L(K1,n).
2. First suppose that n = 4, 9 or a prime. We have Ps(Z4) is the line graph of the graph

and Ps(Z9) is the line graph of the graph

.

If n = p, a prime number then Ps(Zp) is the line graph of K1,p−1 + K2.
Converse follows from Lemma 2.2.
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3 Vertex connectivity and chromatic number of strong power
graphs of finite groups

The vertex connectivity or connectivity of a graph Γ, denoted by κ(Γ), is the minimum number of vertices in
Γ whose deletion from Γ leaves either a disconnected graph or a graph with only one vertex. Thus if Γ is a
complete graph with n vertices then κ(Γ) = n − 1, and if Γ is a disconnected graph then κ(Γ) = 0. The strong
power graph Ps(G) of every finite noncyclic group G is complete. Thus for any noncyclic finite group G of
order n, the vertex connectivity κ(Ps(G)) is n−1. In the following we give the vertex connectivity of the strong
power graphs of cyclic groups.

Theorem 3.1. 1. If n is a prime number then κ(Ps(Zn)) = 0.
2. If n is a composite number then κ(Ps(Zn)) = n − ϕ(n) − 1.

Proof. 1. Suppose that n is prime. Then order of every nonzero element of Zn is n which implies that no
nonzero element of Zn is adjacent with [0]. Thus Ps(Zn) is a disconnected graph with two components {[0]}
and Zn \ {[0]}, which implies that κ(Ps(Zn))=0.
2. If n is composite then Zn has n − ϕ(n) − 1 nonzero and nongenerator elements. Each of these nonzero
nongenerators is adjacent to every other vertex, which implies that to make the graph Ps(Zn) disconnected
we have to remove at least these n−ϕ(n)−1 nonzero nongenerators. Thus κ(Ps(G)) ≥ n−ϕ(n)−1. Since each
generator is adjacent to every nonzero element but not with [0], the removal of these n − ϕ(n) − 1 nonzero
nongenerators makes the remaining graph disconnected with two components, one containing [0] only and
other containing all the generators. Thus κ(Ps(Zn)) = n − ϕ(n) − 1.

The chromatic number of a graph Γ is the minimum number of colors required to color the vertices so that
every pair of adjacent vertices get distinct colors.

Theorem 3.2. Let G be a group of order n.
1. If G is cyclic then the chromatic number χ(Ps(G)) of the strong power graph Ps(G) is n − 1.
2. If G is noncyclic then the chromatic number χ(Ps(G)) of the strong power graph Ps(G) is n.

Proof. 1. The subgraph Ps(Zn) \ {[0]} is complete. Since the chromatic number of a complete graph with
n − 1 vertices is n − 1, the chromatic number χ(Ps(Zn)) ≥ n − 1. Since the generators of Zn are not adjacent
with [0], either of the colors of the generators can be given to [0] which implies that χ(Ps(Zn)) ≤ n − 1. Thus
χ(Ps(Zn)) = n − 1.
2. The result follows from the fact that the strong power graphPs(G) of the noncyclic group G is complete.

4 Laplacian spectrum of the strong power graphs of finite groups
If L is the Laplacian matrix of a graph Γ, then we denote the characteristic polynomial of L by Θ(Γ , x); and
call it the Laplacian characteristic polynomial of Γ. Thus Θ(Γ , x) = |xIn − L|, where n is the order of L. For
the vertices v1, v2, · · · , vi in Γ, Lv1 ,v2 ,··· ,vi (Γ) is defined as the principal submatrix of L(Γ) formed by deleting
the rows and columns corresponding to the vertices v1, v2, · · · , vi. In particular if i = n, then for convention
it has been taken that Θ(Lv1 ,v2 ,··· ,vn (Γ), x) = 1. The distance and adjacency spectrum of strong power graphs
is obtained by Ma [16]. In this section, we determine the Laplacian spectrum of strong power graphs of finite
groups.

Theorem 4.1. For each positive integer n ≥ 2, let s̄i(i = 1, 2, · · ·m) be the nonzero nongenerators of Zn. Then
Θ(Ps(Zn)), x) =x(x − n)n−ϕ(n)−1(x − n + ϕ(n) + 1)(x − n + 1)ϕ(n)−1, where m=n − ϕ(n) − 1.
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Proof. The Laplacian matrix L(Ps(Zn)) is the n × n matrix whose rows and columns are indexed in order by
the nonzero nongenerators s̄i(i = 1, 2, · · ·m) and the generators of Zn and [0] is in last position. Then

L(Ps(Zn)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − 1 −1 · · · −1 −1 · · · −1 −1
−1 n − 1 · · · −1 −1 · · · −1 −1
...

...
. . .

...
...

. . .
...

...
−1 −1 · · · n − 1 −1 · · · −1 −1
−1 −1 · · · −1 n − 2 · · · −1 0
...

...
. . .

...
...

. . .
...

...
−1 −1 · · · −1 −1 · · · n − 2 0
−1 −1 · · · −1 0 · · · 0 n − ϕ(n) − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Each row and column sum of the above matrix is zero. Then the characteristic polynomial of L(Ps(Zn)) is
Θ(L(Ps(Zn)), x)=⃒⃒⃒⃒

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

x − (n − 1) · · · 1 1 · · · 1 1
...

. . .
...

...
. . . 1

...
1 · · · x − (n − 1) 1 · · · 1 1
1 · · · 1 x − (n − 2) · · · 1 0
...

. . .
...

...
. . . 1

...
1 · · · 1 1 · · · x − (n − 2) 0
1 · · · 1 0 · · · 0 x − (n − ϕ(n) − 1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

Multiply the first row of Θ(L(Ps(Zn)), x) by (x − 1) and apply the row operation R
′

1=R1 − R2 − R3 − · · · −
R(n−1) − Rn. Then expanding the determinant in terms of the first row we get

Θ(L(Ps(Zn)), x) =
x(x − n)
(x − 1) Θ(L s̄1 (Ps(Zn)), x).

Again multiplying the first row of Θ(L s̄1 (Ps(Zn)), x) by (x − 2) and applying the row operation R
′

1=R1 − R2 −
R3 − · · · − R(n−1) we get

Θ(L s̄1 (Ps(Zn)), x) =
(x − 1)(x − n)

(x − 2) Θ(L s̄1 ,s2 (Ps(Zn)), x),

and so

Θ(L(Ps(Zn)), x) =
x(x − n)2
(x − 2) Θ(L s̄1 ,s̄2 (Ps(Zn)), x).

Continuing in this way we get

Θ(L(Ps(Zn)), x) =
x(x − n)n−ϕ(n)−1
(x − n + ϕ(n) + 1)Θ(L s̄1 ,s2 ,··· ,s̄m (Ps(Zn)), x),

where

Θ(L s̄1 ,s2 ,··· ,s̄m (Ps(Zn)), x)=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
x − λ 1 1 · · · 0
1 x − λ 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 0
0 0 0 · · · x − m

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

λ = n−2,m = n−ϕ(n)−1 andorder of thedeterminant isϕ(n)+1. NowexpandingΘ(L s̄1 ,s2 ,··· ,s̄m (Ps(Zn), x))
with respect to last row we get
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Θ(L s̄1 ,s2 ,··· ,s̄m (Ps(Zn)), x)) =(−1)
2ϕ(n)(x − m)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
x − λ 1 · · · 1
1 x − λ · · · 1
...

...
. . .

...
1 1 · · · x − λ

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

= (x − n + ϕ(n) + 1)(x − λ + ϕ(n) + 1 − 2)(x − λ − 1)ϕ(n)−1

= (x − n + ϕ(n) + 1)2(x − n + 2 − 1)ϕ(n)−1

= (x − n + ϕ(n) + 1)2(x − n + 1)ϕ(n)−1.

Thus Θ(L(Ps(Zn)), x) = x(x − n)n−ϕ(n)−1(x − n + ϕ(n) + 1)(x − n + 1)ϕ(n)−1.

Proposition 4.2. Let G be a group of order n.
1. If G is cyclic, then the laplacian spectrum of Ps(G) is

(︃
0 n n − ϕ(n) − 1 n − 1
1 n − ϕ(n) − 1 1 ϕ(n) − 1

)︃
.

2. If G is noncyclic, then the Laplacian spectrum of Ps(G) is(︃
0 n
1 n − 1

)︃
.

The algebraic connectivity of a graph Γ, denoted by a(Γ), is the second smallest Laplcian eigenvalue of Γ [8].
Now the algebraic connectivity has received special attention due to its huge applications on connectivity
problems, isoperimetric numbers, genus, combinatorial optimizations and many other problems. It follows
immediately from Proposition 4.2 that:

Corollary 4.3. Let G be a group of order n.
1 If G is a cyclic group then a(Ps(G)) = n − ϕ(n) − 1.
2 If G is a noncyclic group then a(Ps(G)) = n.

Another important application of Laplacian spectrum is on the number of spanning trees of a graph. A span-
ning tree T of a graph Γ is a subgraph which is a tree having same vertex set as Γ. If λ1 ≥λ2≥λ3≥· · · ≥λn=0 are
the Laplacian eigenvalues of a graph Γ of n-vertices, then the number of spanning trees of Γ, denoted by τ(Γ),
is λ1λ2···λn−1

n [Theorem 4.11; [2]]. Thus from Proposition 4.2 we have:

Corollary 4.4. Let G be a group of order n.
1. If G is a cyclic group then τ(Ps(G)) = nn−ϕ(n)−2(n − ϕ(n) − 1)(n − 1)ϕ(n)−1.
2. If G is a noncyclic group then τ(Ps(G)) = nn−2.

The graph energy is defined in terms of the spectrum of the adjacency matrix. Depending on the well-
developed spectral theory of the Laplacian matrix, recently Gutman et. al [10] have defined the Laplacian
energy of a graph Γ with n vertices andm edges as: LE(Γ) =

∑︀n
i=1 |λi −

2m
n |, where λ1 ≥λ2≥λ3≥· · · ≥λn=0 are the

Laplacian eigenvalues of the graph Γ. This definition has been adjusted so that the Laplcian energy becomes
equal to the energy for any regular graph. For various properties of Laplacian energy we refer [11–13]. From
Proposition 4.2 we have

Corollary 4.5. Let G be a finite group of order n.
1. If G is cyclic then LE(Ps(G)) = 2(n − 1) − 4ϕ(n)

n .
2. If G is noncyclic then LE(Ps(G)) = 2(n − 1).
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5 Permanent of the Laplacian of strong power graph
If A = (aij) be a square matrix of order n, then the permanent of A, denoted by per(A), is per(A) =∑︀

σ∈Sn a1σ(1)a2σ(2) · · · anσ(n), where Sn is the set of all permutations of 1, 2, · · · , n. The permanent function
was introduced by Binet and independently by Cauchy in 1812. It is quite difficult to determine the permanent
of a square matrix. We refer to [17] and [18] for more on permanent. In this section we have determined the
permanent of the Laplacian matrix of strong power graph of any finite group explicitly. Our method is based
on the following observation. Let A =(aij) be a matrix of order n. Then per(A) is equal to the coefficient of
x1x2 · · · xn in the expression (a11x1 + a12x2 + · · · + a1nx1n)(a21x1 + a22x2 + · · · + a2nxn) · · · (an1x1 + an2x2 +
· · · + annxn). Throughout the rest of this section we make the following convention: for any n-functions
f1(x), f2(x), · · · , fn(x) we denote f1(x)f2(x) · · ·̂︂fi(x) · · · fn(x) = f1(x)f2(x) · · · fi−1(x)fi+1(x) · · · fn(x), and for any
n variables x1, x2, · · · xn, the coefficient of xn1xn2 · · · xnk in a polynomial F(x1, x2, · · · xn) will be denoted by
Cxn1 xn2 ···xnk (F(x1, x2, · · · xn)). Here we first find the permanent of adjacencymatrix of any graphwithm+n+1
vertices such that m + n vertices form a clique and the rest vertex is adjacent with n vertices. We have the
following Lemma,

Lemma 5.1. The permanent of the adjacencymatrix of any graphwithm+n+1 vertices such thatm+n vertices
form a clique and the rest vertex is adjacent with n vertices is

n[
m+n∑︁
r=1

(−1)r−1(m + n − r)!{
(︃
m + n − 1
r − 1

)︃
+ (n − 1)

(︃
m + n − 2
r − 1

)︃
}].

Proof. The required permanent is the coefficient of x1x2 · · · xm+n+1 in F(x1, x2, · · · xm+n+1) = (X − x1)(X −
x2) · · · (X − xm)(X − xm+1 + xm+n+1)(X − xm+2 + xm+n+1) · · · (X − xm+n + xm+n+1)(xm+1 + xm+2 + · · · xm+n), where
X = x1 + x2 + · · · xm+n.

Nowwehave F(x1, x2, · · · xm+n+1) =
∏︀m
i=1(X−xi)[x

n
m+n+1+· · ·+xm+n+1

∑︀n
i=1(X−xm+1)(X−xm+2) · · · ̂(X − xm+i)· · · (X−

xm+n) +
∏︀n
i=1(X − xm+i)](

∑︀n
i=1 xm+i) which shows that

Cx1x2···xm+n+1 (F(x1, x2, · · · xm+n+1))

= Cx1x2···xm+n
m∏︁
i=1

(X − xi)[
n∑︁
i=1

(X − xm+1)(X − xm+2) · · · ̂(X − xm+i) · · · (X − xm+n)](
n∑︁
i=1

xm+i).

= nCx1x2···xm+n (xm+1
m∏︁
i=1

(X − xi)[
n∑︁
i=1

(X − xm+1)(X − xm+2) · · · ̂(X − xm+i) · · · (X − xm+n)])

= nCx1x2···xmxm+2···xm+n (
m∏︁
i=1

(X − xi)[
n∑︁
i=1

(X − xm+1)(X − xm+2) · · · ̂(X − xm+i) · · · (X − xm+n)])

= n[Cx1x2···xmxm+2···xm+n ((X − x1) · · · (X − xm)(X − xm+2) · · · (X − xm+n))+
Cx1x2···xmxm+2···xm+n ((X − x1) · · · (X − xm)(X − xm+1)(X − xm+3) · · · (X − xm+n)) + · · ·

· · · + Cx1x2···xmxm+2···xm+n ((X − x1) · · · (X − xm)(X − xm+1) · · · (X − xm+n−1))]

Now, (X − x1)(X − x2) · · · (X − xm)(X − xm+2) · · · (X − xm+n) = Xm+n−1 − Xm+n−2
∑︀

i= ̸(m+1) xi + · · · +
(−1)m+n−1x1x2 · · · xmxm+2 · · · xm+n, shows that Cx1x2···xmxm+2···xm+n ((X− x1)(X− x2) · · · (X− xm)(X− xm+2) · · · (X−

xm+n)) =
∑︀m+n

r=1 (−1)r−1(m+ n− r)!
(︃
m + n − 1
r − 1

)︃
, and (X − x1)(X − x2) · · · (X − xm)(X − xm+1)(X − xm+3) · · · (X −

xm+n)= Xm+n−1−Xm+n−2
∑︀

i= ̸(m+2) xi+· · ·+(−1)
m+n−1x1x2 · · · xmxm+1xm+3 · · · xm+n shows that Cx1x2···xmxm+2···xm+n

((X − x1)(X − x2) · · · (X − xm)(X − xm+1)(X − xm+3) · · · (X − xm+n)) =
∑︀m+n

r=1 (−1)r−1(m + n − r)!
(︃
m + n − 2
r − 1

)︃
.

Also Cx1x2···xmxm+2···xm+n ((X − x1)(X − x2) · · · (X − xm+2)(X − xm+4) · · · (X − xm+n))
= Cx1x2···xmxm+2···xm+n ((X − x1)(X − x2) · · · (X − xm+3)(X − xm+5) · · · (X − xm+n)) = · · · = Cx1x2···xmxm+2···xm+n ((X −
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x1)(X − x2) · · · (X − xm) · · · (X − xm+n−1))

=
∑︀m+n

r=1 (−1)r−1(m + n − r)!
(︃
m + n − 2
r − 1

)︃
.

Hence the permanent of the adjacency matrix of the stated graph is

n[
m+n∑︁
r=1

(−1)r−1(m + n − r)!{
(︃
m + n − 1
r − 1

)︃
+ (n − 1)

(︃
m + n − 2
r − 1

)︃
}].

Now from the above lemmawe get the permanent of the adjacency matrix of strong power graph of any finite
cyclic group. The cyclic group Zn has m = ϕ(n) generators none of which is adjacent to [0]. Thus the set
Zn \ {[0]} of all n − 1 nonzero vertices forms a clique and [0] is adjacent to each of the n − (ϕ(n) + 1) nonzero
nongenerators. Hence from Lemma 5.1 it follows immediately that:

Theorem 5.2. The permanent of the adjacency matrix of the strong power graph Ps(Zn) of Zn is

(n − ϕ(n) − 1)[
n−1∑︁
r=1

(−1)r−1(n − 1 − r)!{
(︃
n − 2
r − 1

)︃
+ (n − 2 − ϕ(n))

(︃
n − 3
r − 1

)︃
}].

Now we compute the permanent of the Laplacian matrix of the strong power graph of any finite group. For
this, first we prove the following lemma.

Lemma 5.3. The permanent of the Laplacian matrix of a graph Γ with m + n + 1 vertices such that m + n
vertices forma clique and the rest vertex is edge connectedwith n vertices is

∑︀m+n
r=1 (m+n−r)!Fr(d), where Fr(d) =∑︀

i+j=r−1

(︃
m
i

)︃
(d+2)j(d+1)i[n

(︃
n − 1
j

)︃
+n(n−1)

(︃
n − 2
j

)︃
+(−1)m+n−r+1(d−m+1)(m+n−r+1)

(︃
n
j

)︃
],

and d = m + n − 1.

Proof. Consider F(x1, x2, · · · , xm+n+1) =
∏︀m
i=1(X + (d + 1)xi)

∏︀n
i=1(X + (d + 2)xm+i − xm+n+1)((d − m +

1)xm+n+1 +
∑︀n

i=1 −xm+i), where X = −(x1 + x2 + · · · + xm+n). Then the permanent of the Laplacian ma-
trix of Γ is Cx1x2···xm+n+1 (F(x1, x2, · · · , xm+n+1)) which is equal to Cx1x2···xm+n+1 (

∏︀m
i=1(X + (d + 1)xi)

∏︀n
i=1(X +

(d + 2)xm+i − xm+n+1)(
∑︀n

i=1 −xm+i)) + Cx1x2···xm+n ((d − m + 1)
∏︀m
i=1 X + (d + 1)xi)

∏︀n
i=1(X + (d + 2)xm+i)).

Now (d − m + 1)
∏︀m
i=1(X + (d + 1)xi)

∏︀n
i=1(X + (d + 2)xm+i) = (d − m + 1)[Xm+n + Xm+n−1

∑︀
f1(d)xi +

Xm+n−2
∑︀
f12(d)x1x2 + · · ·+ f123···m+n(d)x1x2 · · · xm+n], where f123···j(d) is a product of some (d+1) and (d+2)

which is clear from the context. So Cx1x2···xm+n ((d −m + 1)
∏︀m
i=1(X + (d + 1)xi)

∏︀n
i=1(X + (d + 2)xm+i)) = (d −m +

1)
∑︀m+n+1

r=1 (−1)m+n−r+1(m+n−r+1)!fr(d), where fr(d) =
∑︀

i+j=r−1

(︃
m
i

)︃(︃
n
j

)︃
(d+2)j(d+1)i .Nowproceed-

ing as theproof of Lemma5.1weget Cx1x2···xm+n+1 (
∏︀m
i=1(X+(d+1)xi)

∏︀n
i=1(X+(d+2)xm+i−xm+n+1)(

∑︀n
i=1 −xm+i) =

n
∑︀m+n

r=1 (−1)m+n−r(m + n − r)![
∑︀

i+j=r−1

(︃
m
i

)︃
(
(︃
n − 1
j

)︃
+ (n − 1)

(︃
n − 2
j

)︃
)(d + 2)j(d + 1)i].

Hence the permanent of the Laplacian matrix of Γ is

m+n∑︁
r=1

{(−1)m+n−r(m + n − r)!Fr(d)} + (d − m + 1)
∑︁

i+j=m+n

(︃
m
i

)︃(︃
n
j

)︃
(d + 2)j(d + 1)i ,

where

Fr(d) =
∑︀

i+j=r−1

(︃
m
i

)︃
(d+2)j(d+1)i{n

(︃
n − 1
j

)︃
+n(n−1)

(︃
n − 2
j

)︃
− (d−m+1)(m+n− r+1)

(︃
n
j

)︃
}.

Theorem 5.4. Let G be a group of order n.
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1. If G is cyclic then the permanent of the Laplacian matrix of strong power graph of G is
∑︀n−1

r=1 {(−1)
n−r−1)(n −

r − 1)!Fr(d)} + (n − ϕ(n) − 1)
∑︀

i+j=n−1

(︃
ϕ(n)
i

)︃(︃
n − ϕ(n) − 1

j

)︃
nj(n − 1)i, where

Fr(d) =
∑︀

i+j=r−1

(︃
ϕ(n)
i

)︃
nj(n − 1)i{(n − ϕ(n) − 1)

(︃
n − ϕ(n) − 2

j

)︃
+ (n − ϕ(n) − 1)(n − ϕ(n) −

2)
(︃
n − ϕ(n) − 3

j

)︃
− (n − ϕ(n) − 1)(n − r)

(︃
n − ϕ(n) − 1

j

)︃
}.

2. If G is noncyclic then the permanent of the Laplacian matrix of the strong power graph Ps(G) is (−1)nn!(1−
n
1! +

n2
2! −

n3
3! + · · · + (−1)

n nn
n! ).
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