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Abstract: Least-Squares Solution (LSS) of a linear matrix equation and Ordinary Least-Squares Estimator
(OLSE) of unknown parameters in a general linear model are two standard algebraical methods in compu-
tational mathematics and regression analysis. Assume that a symmetric quadratic matrix-valued function
ϕ(Z) = Q − ZPZ′ is given, where Z is taken as the LSS of the linear matrix equation AZ = B. In this paper, we
establish a group of formulas for calculating maximum and minimum ranks and inertias of ϕ(Z) subject to
the LSS of AZ = B, and derive many quadratic matrix equalities and inequalities for LSSs from the rank and
inertia formulas. This work is motivated by some inference problems on OLSEs under general linear models,
while the results obtained can be applied to characterize many algebraical and statistical properties of the
OLSEs.
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1 Introduction
Throughout this paper, Rm×n stands for the set of all m × n real matrices. A′, r(A) and R(A) stand for the
transpose, rank, and range (column space) of a matrix A ∈ Rm×n, respectively. Im denotes the identity matrix
of orderm. [A, B ] denotes a rowblockmatrix consisting of A and B. TheMoore–Penrose inverse of A ∈ Rm×n,
denoted by A†, is defined to be the unique solution X satisfying the fourmatrix equations AXA = A, XAX = X,
(AX)′ = AX and (XA)′ = XA. EA and FA stand for EA = Im − AA† and FA = In − A†A with r(EA) = m − r(A) and
r(FA) = n− r(A). The Frobenius norm of a matrix A ∈ Rm×n is defined to be ‖A‖F =

√︀
trace(AA′). The symbols

i+(A) and i−(A) for A = A′ ∈ Rm×m, called the partial inertia of A, denote the number of the positive and
negative eigenvalues of A counted with multiplicities, respectively, both of which satisfy r(A) = i+(A) + i−(A).
For brief, we use i±(A) to denote the both numbers. For a symmetric matrix A = A′ ∈ Rm×m, the notations
A ≻ 0, A < 0, A ≺ 0 and A 4 0 mean that A is positive definite, positive semi-definite, negative definite,
and negative semi-definite, respectively. Two symmetric matrices A and B of the same size are said to satisfy
the inequalities A ≻ B, A < B, A ≺ B and A 4 B in the Löwner partial ordering if A − B is positive definite,
positive semi-definite, negative definite, and negative semi-definite respectively. It is well known that the
Löwner partial ordering is a surprisingly strong and useful relation between two complex Hermitian (real
symmetric)matrices. Formore issues about connections between the inertias and the Löwner partial ordering
of complex Hermitian (real symmetric) matrices, as well as applications of the matrix inertia and the Löwner
partial ordering in statistic analysis, see, e.g., [18, 20, 30, 31].
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Consider a general linear model defined by

y = Xβ + e, E(e) = 0, Cov(e) = σ2Σ, (1.1)

where y is an n × 1 observable random vector, X is an n × p known matrix of arbitrary rank, β is a p × 1 fixed
but unknown parameter vector, e is a random error vector, σ2 is an unknown positive number, and Σ is an
n × n known positive semi-definite matrix of arbitrary rank.

Recall that the well-knownOrdinary Least Squares Estimator (OLSE for short) of the unknown parameter
vector β in (1.1) is defined to be

̂︀β = argmin
β∈Rp×1

( y − Xβ )′( y − Xβ ), (1.2)

while the OLSE of the parametric vector Kβ under (1.1) is defined to be K̂︀β. A direct decomposition of the norm
( y − Xβ )′( y − Xβ ) in (1.2) is

( y − Xβ )′( y − Xβ ) = ( y − XX†y )′( y − XX†y ) + ( XX†y − Xβ )′( XX†y − Xβ )

= y′EXy + ( PXy − Xβ )′( PXy − Xβ ),

where the two terms on the right-hand side satisfy y′EXy > 0 and ( PXy − Xβ )′( PXy − Xβ ) > 0. Hence,

min
β∈Rp×1

( y − Xβ )′( y − Xβ ) = y′EXy + min
β∈Rp×1

( PXy − Xβ )′( PXy − Xβ ) = y′EXy,

where the equation Xβ = PXy, which is equivalent to the so-called normal equation X′Xβ = X′y by pre-
multiplying X′, is always consistent; see, e.g., [6, p. 114] and [19, pp. 164–165]. An alternative definition of the
OLSE of β in (1.1) is given by

̂︀β = ̂︀Ly and ̂︀L = argmin
L∈Rp×n

( y − XLy )′( y − XLy ). (1.3)

Also notice that ( y − XLy )′( y − XLy ) in (1.3) can be decomposed as

( y − XLy )′( y − XLy ) = y′EXy + y′( PX − XL )′( PX − XL )y,

where y′EXy > 0 and y′( PX − XL )′( PX − XL )y > 0. Hence,

min
L∈Rp×n

( y − XLy )′( y − XLy ) = y′EXy + min
L∈Rp×n

y′( PX − XL )′( PX − XL )y = y′EXy,

where the matrix equation XL = PX is always solvable for L, say, L = X†. Solving the equation Xβ = PXy by
Lemma 1.5 below yields the following well-known results.

Lemma 1.1. Assume that PXy ≠ 0. Then, the OLSEs of β and Kβ under (1.1) can be written as

̂︀β = (︁
X† + FXU

)︁
PXy =

(︁
X† + FXUPX

)︁
y,

K̂︀β = (︁
KX† + KFXU

)︁
PXy =

(︁
KX† + KFXUPX

)︁
y,

where U ∈ Rp×n is arbitrary. In this setting, the following results hold.
(a) The expectations of ̂︀β and K̂︀β are

E(̂︀β) = (︁
X†X + FXUX

)︁
β, E(K̂︀β) = (︁

KX†X + KFXUX
)︁
β.

(b) The covariance matrices of ̂︀β and K̂︀β are
Cov(̂︀β) = σ2 (︁X† + FXU)︁ PXΣPX (︁X† + FXU)︁′ ,

Cov(K̂︀β) = σ2 (︁KX† + KFXU)︁ PXΣPX (︁KX† + KFXU)︁′ .
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(c) The matrix mean square errors (MMSEs) of ̂︀β and K̂︀β are
MMSE(̂︀β) = E [︁(̂︀β − β)(̂︀β − β)′]︁ = Cov(̂︀β) + Bias(̂︀β)Bias(̂︀β)′,

MMSE(K̂︀β) = E [︁(K̂︀β − Kβ)(K̂︀β − Kβ)′]︁ = Cov(K̂︀β) + Bias(K̂︀β)Bias(K̂︀β)′.
(d) There exists U ∈ Rp×n such that

E(K̂︀β) = ( KX†X + KFXUX )β = Kβ

holds for all β if and only if R(K′) ⊆ R(X′), namely, Kβ is estimable. In this case,

K̂︀β = KX†y, E(K̂︀β) = Kβ, MMSE(K̂︀β) = Cov(K̂︀β) = σ2KX†Σ(KX†)′;
in particular,

X̂︀β = PXy, E(X̂︀β) = Xβ, MMSE(X̂︀β) = Cov(X̂︀β) = σ2PXΣPX .
In the inference theory of linearmodels, there has been considerable interest in establishing estimators of the
unknown parameters by certain linear functions of the observed response vectors in the models. The OLSE
of unknown parameters in a linear model, as described above, is a simplest linear estimator with extensive
applications in regression analysis, while many results on computational and algebraic properties of OLSEs
were established in the statistical literature. Once an estimator is defined and derived, it is always desirable
to knowmore behaviors of the estimators under the models. In particular, equalities and inequalities for the
covariance matrices of given estimators and the corresponding matrix risk functions, such as

Cov(K̂︀β) = Q (≻ Q < Q, ≺ Q, 4 Q), MMSE(K̂︀β) = Q (≻ Q < Q, ≺ Q, 4 Q )

for a given symmetric matrix Q, as well as the matrix minimization problems

Cov(K̂︀β) L= min, MMSE(K̂︀β) L= min

in the Löwner partial ordering, can be used to characterize mathematical and statistical properties of the
estimators. Note from Lemma 1.1 that Cov(K̂︀β) and MMSE(K̂︀β) are in fact symmetric quadratic matrix-valued
functions with arbitrary matrix U. Hence, equalities and inequalities for Cov(K̂︀β) and MMSE(K̂︀β) depend on
the choices of U.

Motivated by the above considerations in statistical analysis , we propose some general problems on
establishing equalities and inequalities for a symmetric quadraticmatrix-valued function subject to the Least-
Squares Solution (LSS) of a linear matrix equation as follows.

Problem 1.2. Let

AZ = B (1.4)

be a linear matrix equation, where A ∈ Rp×n and B ∈ Rp×m are two given matrices. Then, the LSS of (1.4) is
defined to be the matrix

Z0 = argmin
Z∈Rn×m

‖AZ − B ‖2F = argmin
Z∈Rn×m

tr
[︁
(AZ − B )′(AZ − B )

]︁
.

The solution is not necessarily unique, and let S be the collection of all LSSs of (1.4):

S =
{︁
Z ∈ Rn×m | tr[ (AZ − B )′(AZ − B ) ] = min

}︁
.

Further, let ϕ(Z) = Q − ZPZ′ be a quadratic matrix-valued function, where P = P′ ∈ Rm×m and Q = Q′ ∈
Rn×n are given matrices. In this setting, establish exact algebraic formulas for calculating the following six
maximum and minimum ranks and inertias

max
Z∈S

r(Q − ZPZ′ ), min
Z∈S

r(Q − ZPZ′ ),

max
Z∈S

i±(Q − ZPZ′ ), min
Z∈S

i±(Q − ZPZ′ ).
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Problem 1.3. Under the assumptions in Problem 1.2, establish necessary and sufficient conditions for the
following two partial ordering optimization problems{︁

Q − ZPZ′ | Z ∈ S
}︁

L= max,
{︁
Q − ZPZ′ |Z ∈ S

}︁
L= min

to have solutions, respectively, and give exact algebraic expressions of the solutions.

Problem 1.4. Under the assumptions in Problem 1.2, establish necessary and sufficient conditions for the
following constrained quadratic matrix equation

ZPZ′ = Q s.t. Z ∈ S

to have a solution, as well as necessary and sufficient conditions for the following four constrained quadratic
matrix inequalities

ZPZ′ ≻ Q (< Q, ≺ Q, 4 Q )

to hold for a Z ∈ S (for all matrices Z ∈ S), respectively.

Concerning the LSS of (1.4), we have the following direct derivation. Decompose ( B − AZ )′( B − AZ ) as

( B − AZ )′( B − AZ ) = ( B − AA†B )′( B − AA†B ) + (AA†B − AZ )′(AA†B − AZ )

= B′EAB + ( PAB − AZ )′( PAB − AZ ).

Hence,

tr
[︁
( B − AZ )′( B − AZ )

]︁
= tr(B′EAB) + tr

[︁
( PAB − AZ )′( PAB − AZ )

]︁
,

min
Z∈Rn×m

tr
[︁
( B − AZ )′( B − AZ )

]︁
= tr(B′EAB) + min

Z∈Rn×m
tr
[︁
( PAB − AZ )′( PAB − AZ )

]︁
= tr(B′EAB),

where the equation AZ = PAB, which is equivalent to A′AZ = A′B, is always consistent. A seminal result due
to [17] on (1.4) is given below.

Lemma 1.5. Thematrix equation in (1.4) has a solution if and only if AA†B = B. In this case, the general solution
can be written in the following parametric form Z = A†B + FAV , where V ∈ Rn×m is arbitrary. The solution of
(1.4) is unique if and only if r(A) = n. If (1.4) is inconsistent, then the normal equation of (1.4) is A′AZ = A′B,
and the general expression of the LSSs of (1.4) can be written as Z = A†B + FAV , where V ∈ Rn×m is arbitrary.
The LSSs of (1.4) is unique if and only if r(A) = n.

Lemma 1.6 ([16]). The pair of matrix equations AZ = B and ZC = D have a common solution if and only if
AA†B = B, DC†C = D and AD = BC. In this case, the general common solution can be written in the following
parametric form Z = A†B + DC† − A†ADC† + FAVEC , where V is arbitrary.

Lemma 1.7 ([20]). Let S be a set consisting of matrices over Rm×n , and letH be a set consisting of symmetric
matrices over Rm×m . Then, the following assertions hold.
(a) Under m = n, there exists a nonsingular matrix Z ∈ S if and only ifmaxZ∈S r(Z) = m.
(b) Under m = n, all Z ∈ S are nonsingular if and only ifminZ∈S r(Z) = m.
(c) 0 ∈ S if and only ifminZ∈S r(Z) = 0.
(d) S = {0} if and only ifmaxZ∈S r(Z) = 0.
(e) All Z ∈ S have the same rank if and only ifmaxZ∈S r(Z) = minZ∈S r(Z).
(f) H has a matrix Z ≻ 0 (Z ≺ 0) if and only ifmaxZ∈H i+(Z) = m

(︀
maxZ∈H i−(Z) = m

)︀
.

(g) All Z ∈ H satisfy Z ≻ 0 (Z ≺ 0) if and only ifminZ∈H i+(Z) = m
(︀
minZ∈H i−(Z) = m

)︀
.

(h) H has a matrix Z < 0 (Z 4 0) if and only ifminZ∈H i−(Z) = 0
(︀
minZ∈H i+(Z) = 0

)︀
.

(i) All Z ∈ H satisfy Z < 0 (Z 4 0) if and only ifmaxZ∈H i−(Z) = 0
(︀
maxZ∈H i+( Z) = 0

)︀
.
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(j) All Z ∈ H have the same positive index of inertia if and only ifmaxZ∈H i+(Z) = minZ∈H i+(Z).
(k) All Z ∈ H have the same negative index of inertia if and only ifmaxZ∈H i−(Z) = minZ∈H i−(Z).

The assertions in Lemma 1.7 directly follow from the definitions of rank/inertia, definiteness, and semi-
definiteness of (symmetric) matrices. These assertions show that if certain expansion formulas for calculat-
ing ranks/inertias of differences of (symmetric) matrices are established, we can use them to characterize
the corresponding matrix equalities and inequalities. This fact reflects without doubt the most exciting and
intriguing values of matrix ranks/inertias in matrix theory and applications, and thus prompt people to
produce a huge amount of matrix rank/inertia formulas from the theoretical and applied points of view in
the past 40 years. It has long history to establish rank formulas for block matrices and use the formulas
in statistical inferences, and a pioneer work in this aspect can be found in [7]. The intriguing connections
between generalized inverses of matrices and rank formulas of matrices were recognized in 1970s, and a
seminal work on rank formulas for matrices and their generalized inverses was presented in [15]. Over the
last 40 years, the theory of matrix ranks/inertias has grown into an active area of research in its own right,
and now becomes amagic weapon of simplifying variousmatrix expressions and establishing variousmatrix
equalities and inequalities according to the assertions in Lemma 1.7.

It should be pointed out that matrix rank and inertia optimization problems are a class of discontinuous
optimization problems on finding the global maximum and minimum ranks and inertias of matrix-valued
functions, in which the variable matrices are running over certain feasible matrix sets. Concerning the ana-
lytical formulas for calculating the global maximum and minimum ranks and inertias of Q − ZPZ′ subject to
AZ = B, we have the following known results.

Lemma 1.8 ([22]). Let ϕ(Z) be as given in Problem 1.2, and assume that (1.4) is consistent. Then, the following
six formulas hold

max
AZ=B

r(Q − ZPZ′ )

= min
{︁
2n + r(AQA′ − BPB′ ) − 2r(A), n + r[AQ, BP ] − r(A), r(Q) + r(P)

}︁
,

min
AZ=B

r(Q − ZPZ′ ) = max{ s1, s2, s3, s4 },

max
AZ=B

i±(Q − ZPZ′ ) = min
{︁
n + i±(AQA′ − BPB′ ) − r(A), i±(Q) + i∓(P)

}︁
,

min
AZ=B

i±(Q − ZPZ′ ) = max{ u±, v± },

where

s1 = r(AQA′ − BPB′ ) + 2r[AQ, BP ] − 2r[AQA′, BP ],
s2 = 2r[AQ, BP ] + r(Q) − r(P) − 2r(AQ),

s3 = 2r[AQ, BP ] + i+(AQA′ − BPB′ ) − r[AQA′, BP ] + i−(Q) − i−(P) − r(AQ),

s4 = 2r[AQ, BP ] + i−(AQA′ − BPB′ ) − r[AQA′, BP ] + i+(Q) − i+(P) − r(AQ),

u± = i±(AQA′ − BPB′ ) + r[AQ, BP ] − r[AQA′, BP ],
v± = r[AQ, BP ] + i±(Q) − i±(P) − r(AQ).

2 Main results
Theorem 2.1. Let ϕ(Z) and S be as given in Problem 1.2. Then, the following results hold.
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(a) The maximum rank of ϕ(Z) subject to Z ∈ S is

max
Z∈S

r(Q − ZPZ′ ) = min
{︁
2n + r(A′AQA′A − A′BPB′A ) − 2r(A),

n + r[A′AQ, A′BP ] − r(A), r(Q) + r(P)
}︁
.

(b) The minimum rank of ϕ(Z) subject to Z ∈ S is

min
Z∈S

r(Q − ZPZ′ ) = max{ s1, s2, s3, s4 },

where

s1 = r(A′AQA′A − A′BPB′A ) + 2r[A′AQ, A′BP ] − 2r[A′AQA′, A′BP ],

s2 = 2r[A′AQ, A′BP ] + r(Q) − r(P) − 2r(AQ),

s3 = 2r[A′AQ, A′BP ] + i+(A′AQA′A − A′BPB′A ) − r[A′AQA′, A′BP ]
+ i−(Q) − i−(P) − r(AQ),

s4 = 2r[A′AQ, A′BP ] + i−(A′AQA′A − A′BPB′A ) − r[A′AQA′, A′BP ]
+ i+(Q) − i+(P) − r(AQ).

(c) The maximum partial inertia of ϕ(Z) subject to Z ∈ S are

max
Z∈S

i±(Q − ZPZ′ ) = min
{︁
n + i±(A′AQA′A − A′BPB′A ) − r(A), i±(Q) + i∓(P)

}︁
.

(d) The minimum partial inertia of ϕ(Z) subject to Z ∈ S are

min
Z∈S

i±(Q − ZPZ′ ) = max {u±, v±} ,

where

u± = i±(A′AQA′A − A′BPB′A ) + r[A′AQ, A′BP ] − r[A′AQA′, A′BP ],

v± = r[A′AQ, A′BP ] + i±(Q) − i±(P) − r(AQ).

Proof. It can be seen from Lemma 1.5 that

max
Z∈S

r(Q − ZPZ′ ) = max
A′AZ=A′B

r(Q − ZPZ′ ), min
Z∈S

r(Q − ZPZ′ ) = min
A′AZ=A′B

r(Q − ZPZ′ ),

max
Z∈S

i±(Q − ZPZ′ ) = max
A′AZ=A′B

i±(Q − ZPZ′ ), min
Z∈S

i±(Q − ZPZ′ ) = min
A′AZ=A′B

i±(Q − ZPZ′ ).

In these cases, replacing A with A′A and B with A′B in Lemma 1.8 and simplifying, we obtain the formulas in
(a)–(d).

Applying Lemma 1.7 to Theorem 2.1, we obtain the following consequences. Their proofs are omitted.

Corollary 2.2. Let ϕ(Z) and S be as given in Problem 1.2, s1, . . . , s4 be as given in Theorem 2.1. Then, the
following results hold.
(a) AZ = B has an LSS such that Q − ZPZ′ is nonsingular if and only if

r(A′AQA′A − A′BPB′A ) > 2r(A) − n, r[A′AQ, A′BP ] = r(A), r(Q) + r(P) > n.

(b) Q − ZPZ′ is nonsingular for all LSSs of AZ = B if and only if one of si = n, i = 1, . . . , 4 holds.
(c) AZ = B has an LSS such that ZPZ′ = Q if and only if

A′AQA′A = A′BPB′A, R(A′AQ) ⊆ R(A′BP), r(A′BP) + i±(Q) 6 i±(P) + r(AQ).

(d) All LSSs of AZ = B satisfy ZPZ′ = Q if and only if r(A) = n and A′AQA′A = A′BPB′A, or Q = 0 and P = 0.
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(e) AZ = B has an LSS such that Q − ZPZ′ ≻ 0 if and only if

i+(A′AQA′A − A′BPB′A ) = r(A) and i+(Q) + i−(P) > n.

(f) All LSSs of AZ = B satisfy Q − ZPZ′ ≻ 0 if and only if

i+(A′AQA′A − A′BPB′A ) + r[A′AQ, A′BP ] = n + r[A′AQA′, A′BP ]

or
r[A′AQ, A′BP ] + i+(Q) = n + i+(P) + r(AQ).

(g) AZ = B has an LSS such that Q − ZPZ′ ≺ 0 if and only if

i−(A′AQA′A − A′BPB′A ) = r(A) and i−(Q) + i+(P) > n.

(h) All LSSs of AZ = B satisfy Q − ZPZ′ ≺ 0 if and only if

i−(A′AQA′A − A′BPB′A ) + r[A′AQ, A′BP ] = n + r[A′AQA′, A′BP ]

or
r[A′AQ, A′BP ] + i−(Q) = n + i−(P) + r(AQ).

(i) AZ = B has an LSS such that Q − ZPZ′ < 0 if and only if

A′AQA′A < A′BPB′A, r[A′AQA′, A′BP ] = r[A′AQ, A′BP ] 6 i−(P) − i−(Q) + r(AQ).

(j) All LSSs of AZ = B satisfy Q − ZPZ′ < 0 if and only if r(A) = n and A′AQA′A < A′BPB′A, or Q < 0 and
P 4 0;

(k) AZ = B has an LSS such that Q − ZPZ′ 4 0 if and only if

A′AQA′A 4 A′BPB′A, r[A′AQA′, A′BP ] = r[A′AQ, A′BP ] 6 i+(P) − i+(Q) + r(AQ).

(l) All LSSs of AZ = B satisfy Q − ZPZ′ 4 0 if and only if r(A) = n and A′AQA′A 4 A′BPB′A, or Q 4 0 and
P < 0.

The following two corollaries follow directly from Theorem 2.1.

Corollary 2.3. Let ϕ(Z) and S be as given in Problem 1.2 with P ≻ 0 and Q ≻ 0. Then,

max
Z∈S

r(Q − ZPZ′ ) = min
{︁
n, 2n + r(A′AQA′A − A′BPB′A ) − 2r(A)

}︁
,

min
Z∈S

r(Q − ZPZ′ ) = max
{︁
r(A′AQA′A − A′BPB′A ), i−(A′AQA′A − A′BPB′A ) + n − m

}︁
,

max
Z∈S

i±(Q − ZPZ′ ) = min
{︁
n + i±(A′AQA′A − A′BPB′A ) − r(A), i±(In) + i∓(Im)

}︁
,

min
Z∈S

i±(Q − ZPZ′ ) = max
{︁
i±(A′AQA′A − A′BPB′A ), i±(In) − i±(Im)

}︁
.

In consequence, the following results hold.
(a) AZ = B has an LSS such that Q − ZPZ′ is nonsingular if and only if

r(A′AQA′A − A′BPB′A ) > 2r(A) − n.

(b) Q − ZPZ′ is nonsingular for all LSSs of AZ = B if and only if

r(A′AQA′A − A′BPB′A ) = n or i−(A′AQA′A − A′BPB′A ) = m.

(c) AZ = B has a least-squares solution such that ZPZ′ = Q if and only if A′AQA′A = A′BPB′A and m > n.
(d) All LSSs of AZ = B satisfy ZPZ′ = Q if and only if A′AQA′A = A′BPB′A and r(A) = n.
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(e) AZ = B has an LSS such that Q ≻ ZPZ′ if and only if i+(A′AQA′A − A′BPB′A ) = r(A).
(f) All LSSs of AZ = B satisfy Q ≻ ZPZ′ if and only if i+(A′AQA′A − A′BPB′A ) = n.
(g) AZ = B has an LSS such that Q ≺ ZPZ′ if and only if i−(A′AQA′A − A′BPB′A ) = r(A) and m > n.
(h) All LSSs of AZ = B satisfy Q ≺ ZPZ′ if and only if i−(A′AQA′A − A′BPB′A ) = n.
(i) AZ = B has an LSS such that Q < ZPZ′ if and only if A′AQA′A < A′BPB′A.
(j) All LSSs of AZ = B satisfy Q < ZPZ′ if and only if A′AQA′A < A′BPB′A and r(A) = n.
(k) AZ = B has an LSS such that Q 4 ZPZ′ if and only if A′AQA′A 4 A′BPB′A and n 6 m.
(l) All LSSs of AZ = B satisfy Q 4 ZPZ′ if and only if A′AQA′A 4 A′BPB′A and r(A) = n.

Corollary 2.4. Let S be as given in Problem 1.2. Then,

max
Z∈S

r( In − ZZ′ ) = min
{︁
n, 2n + r(A′AA′A − A′BB′A ) − 2r(A)

}︁
,

min
Z∈S

r( In − ZZ′ ) = max
{︁
r(A′AA′A − A′BB′A ), i−(A′AA′A − A′BB′A ) + n − m

}︁
,

max
Z∈S

i±( In − ZZ′ ) = min
{︁
n + i±(A′AA′A − A′BB′A ) − r(A), i±(In) + i∓(Im)

}︁
,

min
Z∈S

i±( In − ZZ′ ) = max
{︁
i±(A′AA′A − A′BB′A ), i±(In) − i±(Im)

}︁
.

In consequence, the following results hold.
(a) AZ = B has an LSS such that In − ZZ′ is nonsingular if and only if r(A′AA′A − A′BB′A ) > 2r(A) − n.
(b) In−ZZ′ is nonsingular for all LSSs of AZ = B if and only if r(A′AA′A−A′BB′A ) = n or i−(A′AA′A−A′BB′A ) =

m.
(c) AZ = B has an LSS such that ZZ′ = In , i.e., the rows of a solution of AZ = B are orthogonal, if and only if

A′AA′A = A′BB′A and m > n.
(d) All LSSs of AZ = B satisfy ZZ′ = In if and only if A′AA′A = A′BB′A and r(A) = n.
(e) AZ = B has an LSS such that ZZ′ ≺ In if and only if i+(A′AA′A − A′BB′A ) = r(A).
(f) All LSSs of AZ = B satisfy ZZ′ ≺ In if and only if i+(A′AA′A − A′BB′A ) = n.
(g) AZ = B has an LSS such that ZZ′ ≻ In if and only if i−(A′AA′A − A′BB′A ) = r(A) and m > n.
(h) All LSSs of AZ = B satisfy ZZ′ ≻ In if and only if i−(A′AA′A − A′BB′A ) = n.
(i) AZ = B has an LSS such that ZZ′ 4 In if and only if A′AA′A < A′BB′A.
(j) All LSSs of AZ = B satisfy ZZ′ 4 In if and only if A′AA′A < A′BB′A and r(A) = n.
(k) AZ = B has an LSS such that ZZ′ < In if and only if A′AA′A 4 A′BB′A and m > n.
(l) All LSSs of AZ = B satisfy ZZ′ < In if and only if A′AA′A 4 A′BB′A and r(A) = n.

In mathematics, the collection of all matrices Z that satisfy ZZ′ = In is called a complex Stiefel manifold;
see, e.g., [8, 11], while the collections of all matrices Z that satisfy ZZ′ ≻ In (< In , ≺ In , 4 In ) are called
generalized complex Stiefel manifolds. The results in Corollary 2.4 characterize some basic relations between
the manifold S and these Stiefel manifolds.

In the remaining part of this section, we solve Problem 1.3, i.e., to find ̂︀Z, ̃︀Z ∈ S such that

ϕ(Z) 4 ϕ(̂︀Z) for all Z ∈ S, (2.1)

ϕ(Z) < ϕ(̃︀Z) for all Z ∈ S (2.2)

hold, respectively.

Theorem 2.5. Let ϕ(Z) and S be as given in Problem 1.2 with r(A) < n. Then, the following results hold.
(a) There exists a ̂︀Z ∈ S such that (2.1) holds if and only if P < 0 and A′BP = 0. In this case, the maximizer and

the corresponding maximum matrix are given by

argmax
<

{︀
ϕ(Z) | Z ∈ S

}︀
= A†B + FAUFP , max

<

{︀
ϕ(Z) | Z ∈ S

}︀
= Q,

where U ∈ Rn×m is arbitrary.
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(b) There exists a ̃︀Z ∈ S such that (2.2) holds if and only if P 4 0 and A′BP = 0. In this case, the minimizer and
the corresponding minimum matrix are given by

argmin
<

{︀
ϕ(Z) | Z ∈ S

}︀
= A†B + FAUFP , min

<

{︀
ϕ(Z) | Z ∈ S

}︀
= Q,

where U ∈ Rn×m is arbitrary.

Proof. Under r(A) = n, the LSS of AZ = B is unique, so that (2.1) and (2.2) become trivial. Let

ϕM(Z) = ϕ(Z) − ϕ(̂︀Z) = ̂︀ZP̂︀Z′ − ZPZ′, ϕm(Z) = ϕ(Z) − ϕ(̃︀Z) = ̃︀ZP̃︀Z′ − ZPZ′.
Then, (2.1) and (2.2) are equivalent to

ϕM(Z) 4 0, Z, ̂︀Z ∈ S,

ϕm(Z) < 0, Z, ̃︀Z ∈ S,

respectively. It can be seen from Corollary 2.2(j) and (l) that they are further equivalent to

̂︀ZP̂︀Z′ 4 0, A′Â︀Z = A′B, P < 0,̃︀ZP̃︀Z′ < 0, A′Ã︀Z = A′B, P 4 0,

respectively. The two inequalities ̂︀ZP̂︀Z′ 4 0 and ̃︀ZP̃︀Z′ < 0 are equivalent to ̂︀ZP = 0 and ̃︀ZP = 0 when P is
definite. Hence, the above two groups of equality and inequality reduce to

̂︀ZP = 0, A′Â︀Z = A′B, P < 0,̃︀ZP = 0, A′Ã︀Z = A′B, P 4 0,

respectively. From Lemma 1.6, the above two equations for ̂︀Z have a common solution if and only if A′BP = 0.
In this case, the general common solution ̂︀Z is ̂︀Z = A†B + FAUFP . Substituting this solution into ϕ(Z) gives
ϕ(̂︀Z) = Q, establishing (a). Result (b) can be shown similarly.

The results and techniques in this section can be applied to establishmany rank/inertia formulas, equalities,
and inequalities for the covariance matrices and MMSEs in Lemma 1.1. For instance, let X ∈ Rn×p and denote

S =
{︁
Z | tr

[︁
( XZ − In )′( XZ − In )

]︁
= min

}︁
=
{︁
Z | X′XZ = X′

}︁
.

Then, we obtain from Lemma 1.1(b) and (c) that

Q − MMSE(̂︀β) = Q − σ2( X† + FXU )PXΣPX( X† + FXU )′ − Bias(̂︀β)Bias(̂︀β)′
= Q − Bias(̂︀β)Bias(̂︀β)′ − σ2ZPXΣPXZ′, Z ∈ S,

which are special forms of S and ϕ(Z) in Problem 1.2. Hence, many new and valuable features of the MMSE,
as exercises in linear algebra, can be derived from the previous algebraic methods.

Statistical methods in many areas of application require mathematical computations with vectors and
matrices, while various formulas and algebraic tricks for handling matrices in linear algebra and matrix
theory play important roles in the derivations and characterizations of estimators and their properties under
linear regression models. Recall that ranks and inertias of real symmetric (complex Hermitian) matrices
are conceptual foundation in elementary linear algebra, which are the most significant finite integers in
reflecting intrinsic properties of matrices. Dislike the quantities with continuous properties of determinants,
norms, traces of matrices, rank/inertia are unique quantities to demonstrate finite-dimensional properties
of matrix algebra, and are unreplaceable in role and cannot directly be extended to infinite-dimensional
matrices and operators. There were many classic approaches on rank/inertia theory of real symmetric (com-
plex Hermitian) matrices and their applications in the mathematical literature; see, e.g., [1–5, 9, 10, 12],
while a variety of new formulas for calculating maximum/minimum ranks/inertias of linear/nonlinear real
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symmetric (complex Hermitian) matrix-valued functions were established, e.g., in [13, 14, 20–29]. It has been
realized that matrix rank/inertia formulas can be utilized to characterize many features and performances of
real symmetric (complex Hermitian) matrix-valued functions, such as, establishing and simplifying various
complicated matrix expressions, deriving matrix equalities/inequalities that involve generalized inverses of
matrices, characterizingdefiniteness/semi-definiteness of real symmetric (complexHermitian)matrix-valued
functions, and deriving exact algebraic solutions to the corresponding real symmetric (complex Hermitian)
matrix-valued function optimization problems in the Löwner partial ordering.
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