Abstract
In this paper,we state and prove an analog of Lie product formula in the setting of Euclidean Jordan algebras.
References
[1] R. Bhatia, Matrix Analysis, Springer Graduate Texts in Mathematics, Springer-Verlag, New York, 1997. 10.1007/978-1-4612-0653-8Search in Google Scholar
[2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994. Search in Google Scholar
[3] M.S. Gowda, Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras, Technical Report, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, 2016. Search in Google Scholar
[4] Gerd Herzog, A proof of Lie’s product formula, The American Mathematical Monthly, Vol. 121, No.3, 254-257, 2014. 10.4169/amer.math.monthly.121.03.254Search in Google Scholar
[5] S. Lie and F. Engel, Theorie der transformationsgruppen, 3 vols. Teubner, Leipzig, 1888. Search in Google Scholar
[6] B.K. Rangarajan, Polynomial convergence of infeasible-interior-point methods over symmetric cones, SIAM J. Optim., 16, 1211-1229, 2006. 10.1137/040606557Search in Google Scholar
[7] J.F. Sturm, Similarity and other spectral relations for symmetric cones, Linear Alg. Appl., 312, 135-154, 2000. 10.1016/S0024-3795(00)00096-3Search in Google Scholar
[8] J. Tao, L. Kong, Z. Luo, and N. Xiu, Somemajorization inequalities in Euclidean Jordan algebras, Linear Alg. Appl., 461, 92-122 (2014). Search in Google Scholar
[9] X. Zhan, Matrix Inequalities, Springer, 2002. 10.1007/b83956Search in Google Scholar
[10] F. Zhang, Quaternions and matrices of quaternions, Linear Alg. Appl. 251, 21-27 (1997). Search in Google Scholar
©2016 Jiyuan Tao
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.