Abstract
In this paper we studied the classical numerical range of matrices in sp(2n, C). We obtained some
result on the relationship between the numerical range of a matrix in and that
of its diagonal block, the singular values of its off-diagonal block A2.
References
[1] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z., 3 (1919), pp. 314-316. Search in Google Scholar
[2] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967, pp. 317-318. Search in Google Scholar
[3] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, N. Y., 1972, pp. 3. 10.1007/978-1-4612-6398-2Search in Google Scholar
[4] C.-K. Li, A simple proof of the elliptical range theorem, Proc. Amer. Math. Soc., 124 (1996), pp. 1985-1986. Search in Google Scholar
[5] R. Raghavendran, Toeplitz-Hausdorff theorem on numerical ranges, Proc. Amer. Math. Soc., 20 (1969), pp. 284-285. Search in Google Scholar
[6] O. Toeplitz, Das algebraische Analogon zu einern Satze von Fejér, Math. Z., 2 (1918), pp.187-197. Search in Google Scholar
[7] T.Y. Tam, On the shape of numerical range associated with Lie groups, Taiwanese J. Math., 5(2001), pp. 497-506. Search in Google Scholar
[8] R.C. Thompson, Singular Values and Diagonal Elements of Complex SymmetricMatrlces, Linear Algebra Appl., 26(1979), pp. 65-106. Search in Google Scholar
©2016 W. Yan et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.