Abstract
In this paper, four-band Toeplitz matrices and four-band Hankel matrices of type I and type II with perturbed rows are introduced. Explicit determinants, inverses and eigenvalues for these matrices are derived by using a nice inverse formula of block bidiagonal Toeplitz matrices.
References
[1] E.L. Allgower, Exact inverses of certain band matrices, Numer. Math., 21(1973), 279-284.10.1007/BF01436382Search in Google Scholar
[2] A. Böttcher, L. Fukshansky, S. R. Garcia, H. Maharaj, Toeplitz determinants with perturbations in the corners, J. Funct. Anal., 268(2015), 171–193.10.1016/j.jfa.2014.10.023Search in Google Scholar
[3] M. El-Mikkawy, A. Karawia, Inversion of general tridiagonal matrices, Appl. Math. Lett., 19(2006), 712-720.10.1016/j.aml.2005.11.012Search in Google Scholar
[4] C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 200(1)(2007), 283–286.10.1016/j.cam.2005.08.047Search in Google Scholar
[5] C.M. da Fonseca, Fatih Yilmaz, Some comments on k-tridiagonal matrices: Determinant, spectra and inversion, Appl. Math. Comput., 270(2015), 644-647.Search in Google Scholar
[6] C.M. da Fonseca, J. Petronilho, Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 325(2001), 7-21.10.1016/S0024-3795(00)00289-5Search in Google Scholar
[7] C.M. da Fonseca, J. Petronilho, Explicit inverse of a tridiagonal k-Toeplitz matrix, Numer. Math., 100(2005), 457-482.10.1007/s00211-005-0596-3Search in Google Scholar
[8] Q.H. Feng, F.W. Meng, Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method, Optik, 12(2016)7, 7450-7458.10.1016/j.ijleo.2016.05.147Search in Google Scholar
[9] C.F. Fischer, R.A. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal., 6(1)(1969), 127-142.10.1137/0706014Search in Google Scholar
[10] T. Hopkins, E. Kılıç, An analytical approach: Explicit inverses of periodic tridiagonal matrices, J. Math. Anal. Appl., 335(2018), 207–226.Search in Google Scholar
[11] Y. Huang, W.F. McColl, Analytical inversion of general tridiagonal matrices, J. Phys. A: Math. Gen., 29(1997), 1511-1513.Search in Google Scholar
[12] G.Y. Hu, R.F. O’Connell, Analytical inversion of symmetric tridiagonal matrices, J. Phys. A: Math. Gen., 30(1996), 7919-7933.Search in Google Scholar
[13] W.D. Hoskins and P.J. Ponzo, Some properties of a class of band matrices, Math. Camp., 26(1972), 393-400.10.1090/S0025-5718-1972-0303703-3Search in Google Scholar
[14] Z.L. Jiang, X.T. Chen, J.M. Wang, The explicit inverses of CUPL-Toeplitz and CUPL-Hankel matrices, E. Asian J. Appl. Math., 7(1)(2017), 38-54.10.4208/eajam.070816.191016aSearch in Google Scholar
[15] X.Y. Jiang, K. Hong, Skew cyclic displacements and inversions of two innovative patterned matrices, Appl.Math. Comput., 308(2017), 174-184.Search in Google Scholar
[16] X.Y. Jiang, K. Hong, Z.W. Fu, Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix, J. Nonlinear Sci. Appl., 10(2017), 4058-4070.10.22436/jnsa.010.08.02Search in Google Scholar
[17] X.Y. Jiang, K.C. Hong, Explicit inverse matrices of Tribonacci skew circulant type matrices, Appl. Math. Comput., 268(2015), 93-102.Search in Google Scholar
[18] J.T. Jia, Q.X. Kong, A symbolic algorithm for periodic tridiagonal systems of equations, J. Math. Chem., 52(2014), 2222-2233.10.1007/s10910-014-0378-1Search in Google Scholar
[19] J.T. Jia, S.M Li, Symbolic algorithms for the inverses of general k-tridiagonal matrices, Comput. Math. Appl., 70(2015), 3032-3042.10.1016/j.camwa.2015.10.018Search in Google Scholar
[20] J.T. Jia, T. Sogabe, Moawwad El-Mikkawy, Inversion of k-tridiagonal matrices with Toeplitz structure, Comput. Math. Appl., 65(2013), 116-125.10.1016/j.camwa.2012.11.001Search in Google Scholar
[21] Z.L. Jiang, D.D. Wang, Explicit group inverse of an innovative patterned matrix, Appl. Math. Comput., 274(2016), 220-228.Search in Google Scholar
[22] Z.L. Jiang, T.T. Xu, Norm estimates of ω-circulant operator matrices and isomorphic operators for ω-circulant algebra, Sci. China Math., 59(2)(2016), 351-366.10.1007/s11425-015-5051-zSearch in Google Scholar
[23] E. Kılıç, P. Stanica, The inverse of banded matrices, J. Comput. Appl. Math., 237(2013), 126–135.10.1016/j.cam.2012.07.018Search in Google Scholar
[24] G. Meurant, A review on inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM J. Matrix Anal. Appl., 13(3)(1992), 707-728.10.1137/0613045Search in Google Scholar
[25] D.S. Meek, The inverses of some matrices deviating slightly from a symmetric, tridiagonal, Toeplitz form, SIAM J. Numer. Anal., 17(1)(1980), 39-43.10.1137/0717006Search in Google Scholar
[26] D.S. Meek, The inversion of Toeplitz band matrices, Linear Algebra Appl., 49(1983), 117-129.10.1016/0024-3795(83)90097-6Search in Google Scholar
[27] R.P. Mentz, On the inverse of some covariance matrices of Toeplitz type, SIAM J. Appl. Math., 31(1976), 426-437.10.1137/0131036Search in Google Scholar
[28] T.S. Papatheodorou, Inverses for a class of banded matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math., 8(4)(1982), 285-288.10.1016/0771-050X(82)90053-5Search in Google Scholar
[29] L. Rehnqvist, Inversion of certain symmetric band matrices, BIT, 12(1972), 90-98.10.1007/BF01932677Search in Google Scholar
[30] P.A. Roebuck, S. Bamett, A survey of Toeplitz and related matrices, Intermt. J. Systems Sci., 9(1978), 921-934.10.1080/00207727808941749Search in Google Scholar
[31] G. Strang, Fast transforms: Banded matrices with banded inverses, PNAS, 107(28)(2010), 12413-12416.10.1073/pnas.1005493107Search in Google Scholar
[32] Y.G. Sun, F.W. Meng, Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. Math. Comput., 198(2008), 375–381.Search in Google Scholar
[33] J. Shao, Z.W. Zheng and F.W. Meng, Oscillation criteria for fractional differential equations with mixed nonlinearities, Advances in Difference Equations, 2013(2013), 323.10.1186/1687-1847-2013-323Search in Google Scholar
[34] W.F. Trench, Inversion of Toeplitz band matrices, Math. Cump., 28(1974), 1089-1095.10.1090/S0025-5718-1974-0347066-8Search in Google Scholar
[35] R.A. Usmani, Inversion of Jacobi’s tridiagonal matrix, Comput. Math. Appl., 27(1994), 59-66.10.1016/0898-1221(94)90066-3Search in Google Scholar
[36] J. Wittenburg, Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics, J. Appl. Math. Mech., 62(4)(1998), 575-587.10.1016/S0021-8928(98)00074-4Search in Google Scholar
[37] J. Wang, F.W. Meng, Interval oscillation criteria for second order partial differential systems with delays, J. Comput. Appl. Math., 212(2008), 397–405.10.1016/j.cam.2006.12.015Search in Google Scholar
[38] R. Xu, F.W. Meng, Some new weakly singular integral inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2016(1)(2016), 78.10.1186/s13660-016-1015-2Search in Google Scholar
[39] T. Yamamoto, Inversion formulas for tridiagonal matrices with applications to boundary value problems, Numer. Funct. Anal. Optim., 22(2001), 357-385.10.1081/NFA-100105108Search in Google Scholar
[40] H.A. Yamani, M.S. Abdelmonem, The analytic inversion of any finite symmetric tridiagonal matrix, J. Phys. A: Math. Gen., 30(1997), 2889-2893.10.1088/0305-4470/30/8/029Search in Google Scholar
[41] T. Yamamoto, Y. Ikebe, Inversion of band matrices, Linear Algebra Appl., 24(1979), 105-111.10.1016/0024-3795(79)90151-4Search in Google Scholar
[42] F.Z. Zhang, The Schur Complement and Its Applications, (Springer Science & Business Media, 2006)Search in Google Scholar
[43] B.S. Zuo, Z.L. Jiang, D.Q. Fu, Determinants and inverses of Ppoeplitz and Ppankel matrices, Special Matrices, 6(2018), 201-215.10.1515/spma-2018-0017Search in Google Scholar
[44] Y.P. Zheng, S. Shon, Exact determinants and inverses of generalized Lucas skew circulant type matrices, Appl. Math. Comput., 270(2015), 105-113.Search in Google Scholar
[45] Y.P. Zheng, S. Shon, J. Kim, Cyclic displacements and decompositions of inverse matrices for CUPL Toeplitz matrices, J. Math. Anal. Appl., 455(2017), 727-741.10.1016/j.jmaa.2017.06.016Search in Google Scholar
© 2019 Maoyun Zhang et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.